Lecture-12: Multi-class classification: Generalization
bounds

1 Generalization bounds: mono-label case

In the binary setting, classifiers are often defined based on the sign of a scoring function. In the multi-
class setting, a hypothesis is defined based on a scoring function /1 : X x Y — IR. The label associated to
point x is the one resulting in the largest score h(x,y), which defines the following mapping from X to

Y
x — argmax {h(x,y):y € Y}.

Definition 1.1. The margin p;,(x,y) for a scoring function /1 : X — Y at a labeled example (x,y) is defined
as

on(x,y) = h(x,y) — maxh(x,y").
y#Y

A scoring function h misclassifies an example x iff p; (x,) < 0. For any p > 0, we can define the empir-
ical margin loss of a hypothesis & for multi-class classification as

m

Rsp() = ) ®y(on(xi,91))
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where &, is the margin loss function defined as ®,(x) = Lyy<oy + (1 — %)l{ogxgp}-
Remark 1. Since @y (x) < Ly}, we obtain ﬁslp(h) <lym, Ly, (v <p}-

Lemma 1.2. Let Fy,..., 3 be L hypothesis sets in RY andlet G £ {max{hy,...,hy} : h; € F;,i € [L]}. Then,
for any sample S of size m, the empirical Rademacher complexity of G can be upper bounded as

L
Rs(9) < Y Rs(F0)-
=1

Proof. Let S = (x1,...,Xp) € X" be a sample of size m. We show this for L = 2, and then it follows
inductively. We observe that for hy € F1,hy € F,, we have hy V hy = %(hl + hy + |hy — hy|). Therefore,
we can write from the definition of Rademacher complexity, that
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Rs(§) = —Ey[ sup ) oymax{hi(x;),h2(x;)}]
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= TIEU[ sup Z(Ti(hl +hy + |h1 — h2|)(xi)]
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The result follows from Talagrand’s Lemma since x — |x| is 1-Lipschitz. O
Definition 1.3. For any family H of hypotheses mapping X x Y — IR, we define
I (H) = {x—h(x,y):y€YhecH}.

Remark 2. Recall that for a family of functions § C [0,1]Z and any i.i.d. sample S € 2™, we have with
probability greater than or equal to 1 — 4, for any function g € §
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This follows from the application of McDiarmid’s inequality. In addition, recall that the empirical
Rademacher complexity of family § for o : QO — {—1,1}" i.i.d. Rademacher random sequence, is given

R (9) = %IEU [sup i(fig(zi)] .
8€5i=1
[K].

Theorem 1.4 (Margin bound for multi-class classification). Let 3 C R**Y be a hypothesis set with Y =
Fix p > 0. Then, for any 6 > 0, with probability at least 1 — §, the following multi-class classification
generalization bound holds for all h € J(

2m’
Proof. Let us define the margin pg ,(x,y) £ miny cy[(x,y)
Then, we observe that

(x,y") +01,_,] for some constant 6 >0
pon(xy) < Iyr}?igyl[h(x,y) —h(xy') +01y_n] = on(xy).

Therefore, it follows that 1, (r,)<0y < ]l{pgh(x,y)@}' Since 1y,<o) < Pp(u) forallu € R, we have R(h) =
EL{p,(xy<0) SELgy (ry)<0) SEPp (po,u(x,y)). Defining the family of functions H = { (x,y) — pgu(x,y) : h € H}

WaAY
=1(x0y) = ponlx,
and family of composition of functions H £ {®, o h:h € 7(}. Applying the remark to family 7, we get

1 & _ In
R(h) <E®p(pgnu(x,y)) %Z (0on(xi,yi)) + 2R (H)
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Fixing 6 = 2p, we observe that pg(x;, ;) =
otherwise. This implies that

=

= pn(xi,yi) if pp(xi,y) <0, and pg,u(xi,yi) = 20 < (i yi)
Pon(Xi Vi)
Po(pon(xiryi)) = R{Pe,h(xiryiKO} +(1- #) {o<pon(xiyi)<p} = R{Po,h(xi/yi)éo} = Lipy(xim)<0) = Do (on(xiryi))-
From Talagrand’s Lemma, we have R, () < %Rm (F¢) since @, is -Lipschitz function. Therefore, with
probability at least 1 — J, we have forall h € I{

. > I
R(H) < Rsp(h) +  %on(50) + il

It suffices to show that R, () < 2kR,, (I11(H)). To this end, we write

R (F) = —]ESU sup ZU’Z (xi,yi) — max(h(x;,y) — 201y, yz}))}
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We bound both the terms on the right hand side of the above equation individually. Defining €; =
2Ly} — Bk
term as

. .« e . . A
1 € {—1,1}, and observing that o;¢; and 0; have identical distribution, we can write the first
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Z—]ESU{supZ Za, xl,y)(eﬁ—l)} Z TES’”
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We apply Lemma ?? to the second term, to obtain

1
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[sup iaih(xi,y)(ei +1)] < KR (I (36)).
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{sup Y oimax(h(x;,y) — 201y yy) } Z ]Egg{sup Z(Tl (xi,y) — 201y, yl})}
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O
Remark 3. Larger margin means smaller second term and larger first term. That is, there is a trade-off
between empirical error and complexity.



1.1 Rademacher complexity of family I'T; ()

Let K: X x X — R be a PDS kernel and let ® : X — H be the associated feature map. In multi-class
classification, a kernel-based hypothesis is based on k weight vectors wy, ..., wy € H, where each weight
vector w; defines a scoring function x — (w;, ®(x)) for each i € [k] and the class associated to point x € X

is given by argmaxycy (wy, ®(x)). Let W= [wy -+ wy] T and for p > 1 we define the Ly, group

norm of W as B
1
P
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For any p > 1, the family of kernel-bases hypotheses under consideration is

W]

Hicp 2 { (xy) = (wy, @(x)) £ [Wllgy, A}

Proposition 1.5 (Rademacher complexity of multi-class kernel-based hypotheses). Let K: X x X — R
be a PDS kernel and let & : X — H be the associated feature mapping. Assume that there exists r > 0 such that
K(x,x) < r2for all x € X. Then, for any m € N, we have

1’2/\2
o

Rin (T (Hk p)) <

Proof. Let S € X™ be an i.i.d. sample. We observe that for each weight vector, we have ||w; || < [[W||g,,

for all i € [k]. Thus, for any W € Hk ,, we have w; < A for all i € [k]. Therefore, form Cauchy-Schwarz
and Jensen’s inequality, we have

m

Yo ®(x))
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Since the Rademacher random sequence ¢ is i.i.d. zero mean, we get Eg - ||/ ; ;P (x;) HE{ =Esy ", [|P(x;) HE{ =
Es Y™, K(x;,x;) < mr?, and the result follows. O

H

Corollary 1.6 (Margin bound for multi-class classification with kernel-based hypotheses). Let K :
X x X — R be a PDS kernel and let ® : X — H be an associated feature map. Assume that there exists r > 0
such that K(x,x) < r? for all x € X. Fix p > 0. Then, with probability at least 1 — ¢ for all h € Hi,p
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R(h) < RS,p(h) + 4k pzm + m



