
Lecture-14: Point estimation

1 Point estimation

Consider the case when the output space Y= Rd.

1.1 Bayesian estimation

Consider a parameter family Θ ⊆ Rd, and parametrized family of probability measures (Pθ ∈ M(X) :
θ ∈ Θ). We assume that for some parameter θ ∈ Θ, an unlabeled sample X ∈ Xm is generated condi-
tionally i.i.d. from the distribution Pθ . We are interested in estimating the parameter θ, under a known
prior distribution π ∈M(Θ) on family of parameters. Denoting pθ as the parametrized density of ob-
servation X : Ω → Xm, we can write the posterior density of parameter θ given the observation {X = x}
as

p(θ | x)≜
π(θ)pθ(x)

p(x)
,

where density of observation X is p(x) ≜
∫

Θ dθp(x | θ)π(θ). We consider the square loss function L :
Θ × Θ → R+ defined by L(θ,θ′)≜ ∥θ − θ′∥2 for all parameters θ,θ′ ∈ Θ.

Definition 1.1. Bayes estimator of θ with respect to a loss function L is defined as h : Xm → Θ defined
for each unlabeled sample x ∈ Xm and the following mean taken over random θ generated by posterior
distribution p(θ | x),

h(x)≜ argmin
θ′∈Θ

E[L(θ,θ′) | {X = x}].

Remark 1. We can re-write the minimization in the right hand side of the definition of Bayes estimator
as

argmin
θ′∈Θ

E[L(θ,θ′) | {X = x}] = argmin
θ′∈Θ

∫
Θ

L(θ,θ′)pθ(x)π(θ)dθ.

Example 1.2 (Gaussian mean estimate). Consider an unlabeled sample X ⊆ Xm where X = Rd

and unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean µ ≜ EX1 ∈ Rd and fixed
and known covariance Λ ≜ E(X1 − µ)(X1 − µ)T ∈ Rd×d. We are interested in estimating the label
y = EX1 = µ given sample X. We assume a prior distribution the unknown mean to be Gaussian
with zero mean and covariance being identity I ∈ Rd×d. for d = 1 and Λ = σ2, we can compute the
Bayes estimator for square loss function as

h(x) = argmin
y∈R

∫
R
(z − y)2

m

∏
i=1

e−
1

2σ2 (xi−z)2
e−

1
2 (z−1)2

dz

= argmin
y∈R

∫
R

dx(z − y)2 exp
[
−

1 + m
σ2

2

(
z −

(1 + ∑m
i=1 xi
σ2 )

(1 + m
σ2 )

)2]
.

This expression is minimized when h(x) =
(1+

∑m
i=1 xi
σ2 )

(1+ m
σ2 )

, is the mean of examples. For the absolute

difference loss function and d = 1, it can be shown that the Bayes estimator is median, which is
same as mean for Gaussian distribution.

Proposition 1.3. If the parameter family Θ ⊆ Rd is compact then optimal Bayes estimate exists, and if the loss
function is strictly convex then the Bayes estimator is unique.
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Remark 2. Under some regularity conditions for sample x ∈ Xm with large number of examples, the
posterior density p(θ | x) is approximately Gaussian with mean θ0 ∈ Θ ⊆ Rd and covariance I(θ)−1,
where I(θ) = aaT ∈ Rd×d is Fisher matrix and ai ≜

∂
∂θi

pθ(x) for all i ∈ [d]. This is independent of the
prior distribution π, provided the prior distribution is absolutely continuous with respect to Lebesgue
measure.

Definition 1.4. Maximum a posterior estimator for the parameter θ is defined as

h(x)≜ argmax
θ∈Θ

p(θ | x).

Example 1.5 (Gaussian mean estimate). Consider an unlabeled sample X ⊆ Xm where X= R and
unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean µ ≜ EX1 ∈ R and fixed and
known variance σ2. We are interested in estimating the label y = EX1 = µ given sample X. We
assume a prior distribution the unknown mean to be Gaussian with zero mean and unit variance,
to write the posterior density

p(µ | x) =
1√
2π

1+ m
σ2

exp
[
−

1 + m
σ2

2

(
z −

(1 + ∑m
i=1 xi
σ2 )

(1 + m
σ2 )

)2]
.

In this case, MAP estimator and Bayes estimator for square loss functions are identical.

Definition 1.6. An estimator of parameter θ is unbiased if Eθh(x) = θ for all θ ∈ Θ.

Example 1.7 (Gaussian mean estimate). Bayesian estimate of Gaussian examples given by µ̂m ≜
1+ 1

σ2 ∑m
i=1 xi

1+ m
σ2

is a biased estimate of the mean µ, as Eµ̂m = σ2+mµ

σ2+m . When m is large, it becomes an

unbiased estimator, since limm→∞ Eµ̂m = µ. We also observe that limm→∞ µ̂m = µ almost surely from
strong law of large numbers. In addition, it follows from central limit theorem, that

√
m(µ̂m − µ)

converges in distribution to a zero mean normal random variable with variance σ2.

1.2 Maximum likelihood estimation

Definition 1.8. Maximum likelihood estimator is given by

h(x)≜ argmax
θ∈Θ

pθ(x) = argmax
θ∈Θ

log pθ(x).

Example 1.9 (Gaussian mean estimate). Consider an unlabeled sample X ⊆ Xm where X = Rd

and unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean µ ≜ EX1 ∈ Rd and fixed
and known covariance Λ ≜ E(X1 − µ)(X1 − µ)T ∈ Rd×d. We are interested in estimating the label
y = EX1 = µ given sample X. We can compute the maximum likelihood estimator as

h(x) = argmin
y∈R

m

∑
i=1

(xi − y)2 =
1
m

m

∑
i=1

xi.

It follows that h(x) is an unbiased estimator of µ. From strong law of larger numbers it follows
that h(x) asymptotically converges to µ almost surely in number of examples. From central limit
theorem, it follows that

√
h(x)− µ = 1√

m ∑m
i=1(xi − µ) asymptotically converges in distribution to

a zero mean Gaussian random variable with variance σ2.
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1.2.1 Asymptotic properties of maximum likelihood estimator

Let x ∈ Xm be i.i.d. realization from the conditional density pθ0 for some parameter θ0 ∈ Θ ⊆ Rd.

Proposition 1.10. Let θ̂m be the maximum likelihood estimate of θ0, then the following are true.
1. The shifted and normalized estimate

√
m(θ̂m − θ0) converges in distribution to zero-mean Gaussian ran-

dom variable with covariance I(θ)−1.
2. Matrix I(θ)−1 is the minimum covariance.

Proof. 1. It follows from central limit theorem.

Example 1.11 (Gaussian mean estimate). We compute the Fisher information I(θ) when pθ(x) =
1√

2πσ2 e−
1

2σ2 (x−θ)2
. In this case, we can write

A ≜
∂

∂θ
ln pθ(x) =

x − θ

σ2 .

Therefore, we have I = EAAT = 1
σ2 E(X − µ)2 = 1

σ2 .

2 Machine learning framework

We only have labeled sample S ∈ (X× Y)m. Even if we assume the prior density π ∈ M(Y), the prob-
ability density py(x) is unknown. A straightforward approach is to estimate py(x) from the sample.
However, one may require large number of examples and it maybe computationally challenging for
larger number of feature dimensions d, where X⊆ Rd.

2.1 Naive Bayes classifier

Assume that features are conditionally i.i.d. given label y ∈ Y. That is, we have py(x) = ∏d
i=1 py(xi) for

any x ∈ Rd.
Remark 3. One needs to estimate d conditional distributions py(xi) using MLE or Bayes estimator. This
estimator outperforms estimating py(x).

2.2 Bayes classifier

We assume that S ∈ (X× Y)m is i.i.d. with the common unknown distribution D. We are interested in
learning a classifier h ∈ H ⊆ YX where the set of hypotheses is uncountable, and we assume a prior
density π on this set. Using sample S, we obtain a posterior density Q on this set H. Given a loss
function L : Y× Y→ R+, the generalization risk for any hypothesis h ∈H is

R(h) = ED[L(h(X),Y)].

If hypothesis h is picked with posterior distribution Q, then the generalization risk is EQR(h) =EQ[L(h(X),Y)]
and the empirical risk is

EQR̂(h) =
1
m

m

∑
i=1

EQ[L(h(xi),yi)].

Theorem 2.1 (PAC Bayes bound). With probability at least 1 − δ, we have

EQR(h)⩽ EQR̂(h) +

√
D(Q∥π) + ln m

δ

2m − 1
.

Definition 2.2 (Regularized risk minimization principle). Find the posterior density Q that minimizes
the upper bound on the generalization risk, i.e.

argmin
Q

EQR̂(h) +

√
D(Q∥π) + ln m

δ

2m − 1
.
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Remark 4. A common prior π for hypothesis set H=
{

w ∈ Rd : ∥w∥⩽ Λ
}

is the Gaussian distribution.
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