Lecture-14: Point estimation

1 Point estimation

Consider the case when the output space Y = R?.

1.1 Bayesian estimation

Consider a parameter family ® C RY, and parametrized family of probability measures (Py € M (X) :
6 € ©®). We assume that for some parameter 6 € ©, an unlabeled sample X € X™ is generated condi-
tionally i.i.d. from the distribution Py. We are interested in estimating the parameter 8, under a known
prior distribution 77 € M(®) on family of parameters. Denoting pjy as the parametrized density of ob-
servation X : () — X™, we can write the posterior density of parameter 6 given the observation {X = x}
as

P(G | x) A ”(Q)Pe(x)

p(x)

where density of observation X is p(x) £ [, d6p(x | 6)7(6). We consider the square loss function L :
© x ©® — R, defined by L(6,6') £ ||6 — ¢'||* for all parameters 6,6’ € ©.

7

Definition 1.1. Bayes estimator of 0§ with respect to a loss function L is defined as / : X" — © defined
for each unlabeled sample x € X" and the following mean taken over random 6 generated by posterior
distribution p(6 | x),
h(x) £ arg(rgnigIE[L(B,G’) | {X =x}].
'€

Remark 1. We can re-write the minimization in the right hand side of the definition of Bayes estimator
as

inE[L(6,0') | {X = x}] = argmin [ L(6,6' 0)do.
argminE[L(6,6) | {X = x}] = argmin | 1(6,6/)po(x)7r(6)
Example 1.2 (Gaussian mean estimate). Consider an unlabeled sample X C X" where X = R?

and unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean u 2 EX; € R? and fixed

and known covariance A £ E(X; — u)(X; — )T € R**4. We are interested in estimating the label
y = EXj = u given sample X. We assume a prior distribution the unknown mean to be Gaussian
with zero mean and covariance being identity I € R¥*“. for d = 1 and A = 02, we can compute the
Bayes estimator for square loss function as

h(x) = ar min/ (z — )21'"—[67?(9514)26,%(2,1)2(12
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%, is the mean of examples. For the absolute
o2
difference loss function and d = 1, it can be shown that the Bayes estimator is median, which is
same as mean for Gaussian distribution.

This expression is minimized when h(x) =

Proposition 1.3. If the parameter family ® C R? is compact then optimal Bayes estimate exists, and if the loss
function is strictly convex then the Bayes estimator is unique.



Remark 2. Under some regularity conditions for sample x € X" with large number of examples, the

posterior density p(f | x) is approximately Gaussian with mean 6y € ® C R? and covariance I(6) 7,

where 1(8) = aa” € R?* is Fisher matrix and a; £ -2-pg(x) for all i € [d]. This is independent of the
prior distribution 77, provided the prior distribution is absolutely continuous with respect to Lebesgue
measure.

Definition 1.4. Maximum a posterior estimator for the parameter 6 is defined as

N
h(x) = argr&%p(() | x).

Example 1.5 (Gaussian mean estimate). Consider an unlabeled sample X C X" where X = R and
unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean y = EX; € R and fixed and
known variance o2. We are interested in estimating the label y = EX; = y given sample X. We
assume a prior distribution the unknown mean to be Gaussian with zero mean and unit variance,
to write the posterior density

plplx) = 1+£”z(z_<l+zi,%x")>2

2 exp |~ — 42
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In this case, MAP estimator and Bayes estimator for square loss functions are identical.

Definition 1.6. An estimator of parameter 6 is unbiased if Egh(x) = 6 for all 6 € ©.

Example 1.7 (Gaussian mean estimate). Bayesian estimate of Gaussian examples given by i, =
e 2YaL] o> +my

1+ o2+m
unbiased estimator, since limy; 00 Efl;; = . We also observe that lim;; 0 fl;n = pt almost surely from
strong law of large numbers. In addition, it follows from central limit theorem, that v/m(fl,, — pt)
converges in distribution to a zero mean normal random variable with variance 0.

is a biased estimate of the mean y, as Efi,;, = . When m is large, it becomes an

1.2 Maximum likelihood estimation

Definition 1.8. Maximum likelihood estimator is given by

(x) = argmax po(x) = argmaxlog pg (x)

Example 1.9 (Gaussian mean estimate). Consider an unlabeled sample X C X" where X = R?
and unlabeled sample X is i.i.d. Gaussian with fixed and unknown mean x = EX; € R? and fixed
and known covariance A £ E(X; — p)(X; — )T € R?*4. We are interested in estimating the label
y =EXj = u given sample X. We can compute the maximum likelihood estimator as

m 1 m
h(x) = argmin xi—y)2==Y «x.
(x) gye]Rizzl(z ]/) mz; i

It follows that h(x) is an unbiased estimator of y. From strong law of larger numbers it follows
that /1(x) asymptotically converges to y almost surely in number of examples. From central limit
theorem, it follows that \/h(x) — u = ﬁ Y, (x; — ) asymptotically converges in distribution to

a zero mean Gaussian random variable with variance ¢2.



1.2.1 Asymptotic properties of maximum likelihood estimator
Let x € X" be i.i.d. realization from the conditional density pg, for some parameter 6y € @ C RY.

Proposition 1.10. Let 8,, be the maximum likelihood estimate of 8y, then the following are true.
1. The shifted and normalized estimate \/m(0,, — 6q) converges in distribution to zero-mean Gaussian ran-
dom variable with covariance 1(8) 1.

2. Matrix 1(0)~" is the minimum covariance.

Proof. 1. It follows from central limit theorem.

Example 1.11 (Gaussian mean estimate). We compute the Fisher information I(8) when py(x) =

1 =5 (x—6)2 . .
Vo2t 207 . In this case, we can write
d x—0
£ S = —
A= %3 Inpg(x) o

Therefore, we have I = EAAT = LE(X — u)? =1
(%

a2°

2 Machine learning framework

We only have labeled sample S € (X x Y)™. Even if we assume the prior density 7w € M(Y), the prob-
ability density p,(x) is unknown. A straightforward approach is to estimate p,(x) from the sample.
However, one may require large number of examples and it maybe computationally challenging for
larger number of feature dimensions d, where X C R4,

2.1 Naive Bayes classifier

Assume that features are conditionally i.i.d. given label y € Y. That is, we have p, (x) = [T%, py(x;) for
any x € R%,

Remark 3. One needs to estimate d conditional distributions py(x;) using MLE or Bayes estimator. This
estimator outperforms estimating py (x).

2.2 Bayes classifier

We assume that S € (X x Y)™ is i.i.d. with the common unknown distribution D. We are interested in
learning a classifier h € J{ C YX where the set of hypotheses is uncountable, and we assume a prior
density 7 on this set. Using sample S, we obtain a posterior density Q on this set }{. Given a loss
function L : Y x Y — R, the generalization risk for any hypothesis I € H is

R(h) = Ep[L(h(X),Y)].

If hypothesis & is picked with posterior distribution Q, then the generalization riskis EqR (1) = Eg[L(h(X),Y)]
and the empirical risk is
N 1 &
EQR(h) = — ¥ Eo[L(h(x),y)].

m3

Theorem 2.1 (PAC Bayes bound). With probability at least 1 — J, we have

A D In™
EQR(h) < EqR(h) + %

Definition 2.2 (Regularized risk minimization principle). Find the posterior density Q that minimizes
the upper bound on the generalization risk, i.e.

D(Qljm) +Inf

inEqR(h .
arngm oR(h) + P



Remark 4. A common prior 7t for hypothesis set H = {w ER?: ||lw]| < A} is the Gaussian distribution.
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