
Lecture-15: Generative models

1 Introduction

We followed a discriminative approach in which our goal is not to learn the underlying distribution but
rather to learn an accurate predictor. That is, a sample S ∈ (X× Y)m is i.i.d. with a fixed and unknown
distribution D.

An alternative approach where we assume that the underlying distribution over the data has a
specific parametric form and our goal is to estimate the parameters of the model is called the generative
approach, and this task is called parametric density estimation. That is, we assume that the distribution D

has a density from a parametric family (pθ : θ ∈ Θ) with unknown parameter θ ∈ Θ.
The discriminative approach has the advantage of directly optimizing the prediction accuracy in-

stead of learning the underlying distribution.

Principle 1 (Vladimir Vapnik). Principle for solving problems using a restricted amount of informa-
tion: When solving a given problem, try to avoid a more general problem as an intermediate step.

Remark 1. If we succeed in learning the underlying distribution accurately, we can predict labels for
new examples using the Bayes optimal classifier. The problem is that it is usually more difficult to
learn the underlying distribution than to learn an accurate predictor. However, in some situations, it
is reasonable to adopt the generative learning approach. For example, sometimes it is computationally
easier to estimate the parameters of the model than to learn a discriminative predictor. Additionally,
in some cases we do not have a specific task at hand but rather would like to model the data either for
making predictions at a later time without having to retrain a predictor or for the sake of interpretability
of the data.

If we knew the true parameter θ, then the distribution pθ is known and a Bayes or ML estimator
can be used. For unknown parameter, we estimate θ̂m from the sample S. For a Bayesian estimate,
the distribution pθ̂m

can be used as the true distribution for a new observation to estimate the label
y. For maximum likelihood estimate, one selects the parameter θ that maximizes the likelihood of the
observations. That is,

θ̂ML = argmax
θ∈Θ

m

∑
i=1

log pθ(xi,yi).

The new observation is assumed to be from the density pθ̂ML
.

Principle 2 (Vladimir Vapnik). As the sample sizes grows large, each of the descriptive and generative
approaches reach their asymptotic value of the generalized risk.

Remark 2. Each approach may have a different asymptotic generalized risk. Asymptotic performance
of discriminative approaches is generally better than those of generative approaches. However, the
asymptotic performance is reached slower for the discriminative approaches when compared to gener-
ative approaches. The asymptotic performance is reached in O(m) steps for discriminative approaches,
as compared to O(lnm) steps for generative approaches. Therefore, for small sample size, generative
approaches may outperform discriminative approaches, which get better for large sample size.

2 Maximum likelihood estimator

Definition 2.1. If a sample S ∈Xm is generated i.i.d. from a density pθ , then the log-likelihood of sample
S is defined as L(S;θ)≜ ln∏m

i=1 pθ(xi). The maximum likelihood estimator θ̂ML ≜ argmaxθ L(S;θ).
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Example 2.2. Consider an i.i.d. Bernoulli sample S ∈Xm where X= {0,1} and the underlying prob-
ability of P{X1 = 1} = θ for some θ ∈ Θ = [0,1]. We are interested in estimating θ from the sample
S. We can write the probability of observation S as

Pθ(S) =
m

∏
i=1

θxi (1 − θ)1−xi = θ∑i∈[m] xi (1 − θ)∑i∈[m](1−xi).

The log-likelihood of sample S for a parameter θ is

L(S;θ)≜ ln Pθ(S) = lnθ ∑
i∈[m]

xi + ln θ̄ ∑
i∈[m]

x̄i.

The maximum likelihood estimator of S is θ̂ ∈ argmax L(S;θ)

2.1 Empirical risk minimization

Definition 2.3. Given a parameter θ ∈ Θ and observation x ∈ X generated i.i.d. from density pθ , we
define a loss function ℓ : Θ ×X→ R+ as the negative of log-likelihood of observation. That is, ℓ(θ, x)≜
− log2 pθ(x).

Remark 3. Maximum likelihood estimator is minimizing the empirical risk with respect to loss function
ℓ defined in Definition 2.3.

Remark 4. If the observation x ∈ X is i.i.d. with a true density p, then the generalized risk of parameter
θ is

Eℓ(θ, x) = −
∫

x∈X
p(x) log2 pθ(x) = D(p∥pθ) + H(p).

For discrete space X, the relative entropy D(p∥pθ)⩾ 0 and equal to zero when pθ = p.

Remark 5. If the true distribution D = pθ0 for some θ0 ∈ Θ, then D(p∥pθ) = D(pθ0∥pθ), and this loss
function is minimized for θ = θ0. It shows that if the underlying distribution indeed has a parametric
form, then by choosing the correct parameter we can make the risk be the entropy of the distribution.

Remark 6. This expression underscores how our generative assumption affects our density estimation,
even in the limit of infinite data. If the underlying distribution is not of the assumed parametric form,
even the best parameter leads to an inferior model and the sub-optimality is measured by the relative
entropy divergence.

3 EM algorithm

Assumption 3.1. Sample S ∈ Xm is generated from a specific parametric distribution, generated by
latent (hidden) random variables over discrete state space Y. Specifically, let θ ∈ Θ be the parameters
for the joint distribution over state space X× Y.

Example 3.2 (Mixture of Gaussian random variables). Let X= Rd and Y= [k] where the probabil-
ity mass function of random variable Y is c ∈ M(Y) and the conditional density of x ∈ X for each
latent variable y ∈ Y is

py(x) =
1√

(2π)d detΣy

exp
(
− 1

2
(x − µy)Σ−1

y (x − µy)
)

,

for mean vector µy ∈ X and covariance matrix Σy ∈ RX×X. It follows that density of observation
x ∈ X is fX(x) = ∑y∈Y cy py(x). Here, the parameters of joint distribution are (cy,µy,Σy) for each
y ∈ Y.
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Definition 3.3. The log-likelihood of an observation is defined as log pθ(x) = log
(

∑y∈Y pθ(x,y)
)

. Given
an i.i.d. sample S ∈ Xm, the log-likelihood of sample is defined as

L(θ)≜ log
m

∏
i=1

pθ(xi) =
m

∑
i=1

log
(

∑
y∈Y

pθ(xi,y)
)

.

Problem 1 (ML estimator). The maximum-likelihood estimator is the solution of the maximization
problem

θ̂ML ≜ argmax
θ

L(θ) = argmax
θ

m

∑
i=1

log
(

∑
y∈Y

pθ(xi,y)
)

.

Remark 7. In many situations, the summation inside the log makes the ML optimization problem com-
putationally hard.

Remark 8. Using the log-sum inequality which gives a log a
b ⩽ ∑i ai log ai

bi
, we can write

log
(

∑
y∈Y

pθ(xi,y)
)
= log

(
∑

y∈Y
Pθ({Y = y} | {X = xi})pθ(xi)

)
⩽

Remark 9. The Expectation-Maximization (EM) algorithm, due to Dempster, Laird, and Rubin, is an
iterative procedure for searching a local maximum of log-likelihood L(θ). While EM is not guaranteed
to find the global maximum, it often works reasonably well in practice.

Remark 10. EM is designed for those cases in which, had we known the values of the latent variables Y
, then the maximum likelihood optimization problem would have been tractable.

Definition 3.4. Consider a matrix Q ∈ [0,1][m]×Y such that Qi ∈ M(Y) is the conditional distribution
for example xi ∈ X and i ∈ [m]. For a parameter θ ∈ Θ, we define expected log-likelihood F(Q,θ) of a
sample S ∈ Xm where ith example has distribution Qi, written as

F(Q,θ)≜ EQ log pθ(xi,y) =
m

∑
i=1

∑
y∈Y

Qi,y log pθ(xi,y).

Assumption 3.5. For any matrix Q ∈ [0,1][m]×Y the optimization problem argmaxθ F(Q,θ) is tractable.

Definition 3.6 (EM algorithm). EM algorithm finds a sequence of solutions ((Q(1),θ(1)), (Q(2),θ(2)), . . . ).
The initial values of Q(1) and θ(1) are usually chosen at random and the procedure terminates af-
ter the improvement in the likelihood value stops being significant. At iteration t, one constructs
(Q(t+1),θ(t+1)) by performing the following two steps.

Expectation step: Q(t+1)
i,y ≜ Pθ(t)({Y = y} | {X = xi}). This step is called the Expectation step, because

it yields a new probability over the latent variables, which defines a new expected log-likelihood
function over θ.

Maximization step: θ(t+1) ≜ argmaxθ F(Q(t+1),θ). By Assumption 3.5, it is possible to efficiently find
the maximizer of the expected log-likelihood, where the expectation is according to Q(t+1).

3.1 EM as an alternate maximization algorithm

Definition 3.7. Consider the set of distributions Q ≜
{

Q ∈ [0,1][m]×Y : Qi ∈M(Y)
}

, and the objective
function G : Q× Θ → R defined as

G(Q,θ)≜ F(Q,θ)−
m

∑
i=1

∑
y∈Y

Qi,y log Qi,y = F(Q,θ) +
m

∑
i=1

H(Qi).

Lemma 3.8. The EM procedure can be written as

Q(t+1) = argmax
Q∈Q

G(Q,θ(t)), θ(t+1) = argmax
θ

G(Q(t+1),θ).

In addition, we have G(Q(t+1),θ(t)) = L(θ(t)).
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Proof. It is clear that argmaxθ G(Q,θ) = argmaxθ F(Q,θ) since ∑m
i=1 H(Qi) doesn’t depend on parameter

θ. In addition, we observe that

G(Q,θ) =
m

∑
i=1

(
∑

y∈Y
Qi,y log

Pθ({Y = y} | {X = xi})
Qi,y

+ ∑
y∈Y

Qi,y log pθ(xi)
)

= −
m

∑
i=1

D(Qi∥Pθ(Y | {X = xi})) + L(θ)⩽ L(θ).

The result follows since inequality is achieved by equality for Qi,y = Pθ({Y = y} | {X = xi}) for all y ∈ Y

and i ∈ [m].

Remark 11. For a fixed θ, we have maxQ G(Q,θ) = L(θ) and the maximizing distribution Qi for each
i ∈ [m] is the conditional distribution of latent variable y given observation xi.

Remark 12. The intuitive idea of EM is that we want to maximize G(Q,θ) over both Q and θ. For a
known Q, the optimization problem of finding the best parameter θ is tractable when Assumption 3.5
holds. For known parameter θ, one can set Qiy = P({Y = y} | {X = xi}). The EM algorithm therefore
alternates between finding optimal parameter θ given some Q and finding optimal Q given some θ.

Corollary 3.9. The EM procedures never decreases the log-likelihood. That is, L(θ(t+1))⩾ L(θ(t)) for all t ∈ N.

Proof. From the Lemma 3.8, we have

L(θ(t+1)) = G(Q(t+2),θ(t+1))⩾ G(Q(t+1),θ(t+1))⩾ G(Q(t+1),θ(t)) = L(θ(t))

Example 3.10 (Mixture of Gaussian random variables). In Example 3.2, we assume Σy = I for all
y ∈ Y for simplicity. Thus, we have θ = ((cy,µy) : y ∈ Y).

Expectation step: For a partition function Zi, we can write the conditional probability as

Q(t+1)
iy = Pθ(t)({Y = y} | {X = xi}) =

1
Zi

Pθ(t) {Y = y} fX|{Y=y})(xi
) =

1
Zi

c(t)y exp
(
− 1

2

∥∥∥xi − µ
(t)
y

∥∥∥2 )
.

Maximization step: The parameter θ(t+1) maximizes the step

F(Q(t+1),θ) =
m

∑
i=1

∑
y∈Y

Pθ(t)({Y = y} | {X = xi})
(

ln cy −
1
2

∥∥xi − µy
∥∥2

)
.

Taking derivative with respect to µy and equating it to zero, we get µ
(t+1)
y =

∑m
i=1 Pθ(t)({Y = y} | {X = xi})xi. That is, µ

(t+1)
y is a weighted average of the examples xi where

the weights are according to the probabilities calculated in the Expectation step. To find the
optimal c we need to be more careful since we must ensure that c is a probability vector. We
show that

c(t+1)
y =

∑m
i=1 Pθ(t)({Y = y} | {X = xi})

∑z∈Y ∑m
i=1 Pθ(t)({Y = z} | {X = xi})

.
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