
Lecture-16: Nearest neighbors

1 Introduction

The idea of nearest neighbor algorithms is to predict the label of a new example based on the labels of
closest neighbors in the training set.

Assumption 1.1. Close points in feature space have the same label.

Remark 1. Nearest neighbor search algorithms are fast even for a very large training set.

2 k-nearest neighbors

Assumption 2.1. Input space X is a normed space with distance between two examples x, x′ ∈ X is
defined as ρ(x, x′)≜ ∥x − x′∥ .

Let S ∈ (X × Y)m be an m-length sequence of training sample. For each test example x ∈ X, let
πx : [m] → [m] be a permutation of training example indices in non-decreasing order of distance from
x. That is, for i ∈ [m − 1], we define ρi ≜ ρ(x, xi) and

ρπx
i
= ρ(x, xπx

i
)⩽ ρ(x, xπx

i+1
) = ρπx

i+1
.

Algorithm 1 k-nearest neighbor algorithm for binary classification Y= {−1,1}
1: procedure kNEARESTNEIGHBOR(test sample S = ((x1,y1), . . . , (xm,ym)), test example x)
2: Find the permutation πx : [m]→ [m] such that (ρπx

i
: i ∈ [m]) is non-decreasing

3: Find the majority in hS(x)≜
{

yπx
i

: i ∈ [k]
}

4: return hS(x)

Remark 2. For 1-nearest neighbor, we have hS(x) = yπx
1
.

Definition 2.2 (Regression output). When Y = R, one can define the prediction hS : X → Y to be the
average target of the k nearest neighbors. That is, hS(x) = ∑k

i=1 yπx
i
.

Definition 2.3 (General k-nearest neighbor). When Y = R, we can define a function ϕ : (X× Y)k → Y

such that the prediction hS : X→ Y is defined as hS(x) = ϕ((xπx
i
,yπx

i
) : i ∈ [k]).

Example 2.4. Let z ∈ (X× Y)k. For binary classification ϕ(z) = sign(∑k
i=1 yi). For regression, ϕ(z) =

1
k ∑k

i=1 yi. For generative models, ϕ(z) = ∑k
i=1

ρ(x,xi)

∑k
j=1 ρ(x,xj)

yi.

3 Finite sample analysis

3.1 Generalization bound for the 1-NN rule

Consider 1-NN rule for binary classification such that Y= {0,1}, loss function ℓ : Y× Y→{0,1} defined
as ℓ(h(x),y) = 1{h(x) ̸=y}, input space X = [0,1]d equipped with Euclidean norm ∥x∥ ≜ (∑d

i=1 x2
i)

1
2 for

1

any x ∈ X. Let D be the distribution over X× Y and DX the induced marginal over input space X, and
η : Rd → R be the conditional probability over the labels. That is,

η(x) = P({Y = 1} | {X = x}) = lim
h→0

D((x′,1) : x′ ∈ B(x, h))
D((x′,y′) : x′ ∈ B(x, h),y ∈ Y)

.

Recall that the Bayes optimal rule hB(x) = argminy LD(h) = argminy EDℓ(h(X),Y), and is given by

hB(x) = 1{η(x)> 1
2}.

Assumption 3.1. Conditional probability function η is c-Lipschitz for some c > 0. That is,∣∣η(x)− η(x′)
∣∣⩽ c

∥∥x − x′
∥∥ .

Remark 3. This is technical assumption that ensures that if feature vectors are close, then their labels are
likely to be close.

Lemma 3.2. Let X= [0,1]d,Y= {0,1}, and D be a distribution over X× Y for which the conditional probability
function η is a c-Lipschitz function. Let S ∈ (X× Y)m be an i.i.d. sample and let hS be its corresponding 1-NN
hypothesis. Let hB be the Bayes optimal rule for η. Then,

E[LD(hS)]⩽ 2LD(hB) + cE

∥∥∥x − xπx
1

∥∥∥ .

Proof. Since LD(hS) =ED1{hS(x) ̸=y}, we obtain that ESLD(hS) is the probability to sample a training set
S and an additional example (x,y), such that yπx

1
̸= y. In other words, we can first sample m unlabeled

examples SX = (x1, . . . , xm) and an additional unlabeled example x, all i.i.d. according to DX. Then find
πx

1 to be the nearest neighbor of x in SX, and finally sample y according to η(x) and yπx
1

according to
η(xπx

1
). It follows that

E[LD(hS)] = E1{
yπx

1
̸=y′

} = ESX∼Dm
X

,x∼DX
[Py∼η(πx

1),y
′∼η(x)

{
y ̸= y′

}
].

We can write the inner probability as

Py∼η(x),y′∼η(x′)
{

y ̸= y′
}
= η(x′)(1− η(x))+ (1− η(x′))η(x) = 2η(x)(1− η(x))+ (η(x)− η(x′))(2η(x)− 1).

Since |2η(x)− 1|⩽ 1 and η is c-Lipschitz, we obtain an upper bound

Py∼η(x),y′∼η(x′)
{

y ̸= y′
}
⩽ 2η(x)(1 − η(x)) + c

∥∥x − x′
∥∥ .

We also observe that LD(hB)⩾ E[η(x)∧ (1− η(x))]⩾ E[η(x)(1− η(x))]. This concludes the proof.

Lemma 3.3. Consider a collection {Ci ⊆ X : i ∈ [r]}. Let S ∈ Xm be a sequence of m points sampled i.i.d.
according to some probability distribution D over X. Then,

E[∑
i:Ci∩S=∅

P(Ci)]⩽
r

me
.

Proof. From the linearity of expectation, we obtain E[∑i:Ci∩S=∅ P(Ci)] = ∑r
i=1 P(Ci)E1{Ci∩S=∅}. Since

each example is distributed i.i.d. , we can write P{Ci ∩ S = ∅} = ∏m
j=1 P

{
xj /∈ Ci

}
= (1 − P(Ci))

m ⩽

e−mP(Ci). Combining the two results, we obtain

E[∑
i:Ci∩S=∅

P(Ci)]⩽
r

∑
i=1

P(Ci)e−mP(Ci) ⩽ r max
i∈[r]

P(Ci)e−mP(Ci).

The result follows from the fact that maxa ae−ma ⩽ 1
me .

Theorem 3.4. Let X= [0,1]d,Y= {0,1}, and D be a distribution over X×Y for which the conditional probability
function η is a c-Lipschitz function. Let hS denote the result of applying the 1-NN rule to an i.i.d. random sample
S ∈ (X× Y)m with distribution D. Then,

ELD(hS)⩽ 2LD(hB) + 4c
√

dm− 1
d+1 .

2

Proof. Fix T ∈ N and define ϵ ≜ 1/T and r ≜ Td. Let (C1, . . . ,Cr) be the cover of the set X using d-
dimensional boxes of length ϵ. Then for every α ∈ [T]d, there exists a set Ci of the form

∩d
j=1

{
x ∈ [0,1]d : xj ∈

[(αj − 1)
T

,
αj

T

]}
.

Each point x ∈ X falls in one of the sets Ci. Therefore, for each x, x′ ∈ X, we have

∥∥x − x′
∥∥⩽

{√
dϵ, if x, x′ in the same box,√
d, else.

The test point x ∈ Ci for some i ∈ [r]. It is possible that none of the training points S intersect with that
set or at least one does. If none of the training points intersect with Ci, then the distance

∥∥∥x − xπx
1

∥∥∥ ⩽
√

d. If at least one of the training points intersect with Ci, then the distance from the closest point is∥∥∥x − xπx
1

∥∥∥⩽
√

dϵ. Therefore, given a sample S, we can write∥∥∥x − xπx
1

∥∥∥⩽
√

dP(∪i:Ci∩S=∅Ci) + ϵ
√

dP(∪i:Ci∩S ̸=∅Ci).

Taking the mean on both sides, linearity of expectation, union bound, and the fact that P(∪i:Ci∩S ̸=∅Ci)⩽
1, we obtain

E

∥∥∥x − xπx
1

∥∥∥⩽
√

d
[r

me
+ ϵ

]
=

√
d
[1

meϵd + ϵ
]
.

Taking ϵ = m− 1
d+1 , we obtain that E

∥∥∥x − xπx
1

∥∥∥⩽√
dm− 1

d+1

[
1
e + 1

]
⩽ 2

√
dm− 1

d+1 . The result follows from
substituting this upper bound in right hand side of Lemma 3.2.

Remark 4. The theorem implies that if we first fix the data-generating distribution and then let m go
to infinity, then the error of the 1-NN rule converges to twice the Bayes error. The analysis can be
generalized to larger values of k, showing that the expected error of the k-NN rule converges to (1 +√

8
k) times the error of the Bayes classifier.

3.2 Curse of dimensionality

Remark 5. The generalization upper bound on the performance of 1-NN grows with the Lipschitz
coefficient c of η with the Euclidean dimension d of the input space X. We observe that the term

4c
√

dm− 1
d+1 ⩽ ϵ if m ⩾ (4c

√
d

ϵ)d+1. That is, the size of the training set should increase exponentially
with the dimension.

Theorem 3.5. For any c > 1, and every learning rule L, there exists a distribution over [0,1]d × {0,1}, such
that η(x) is c-Lipschitz, the Bayes error of the distribution is 0, but for sample sizes m ⩽ 1

2 (c + 1)d, the true error
of the rule L is greater than 1

4 .

Proof. Fix any values of c and d. Let Gd
c be the grid on [0,1]d with distance of 1

c between points on
the grid. That is, each point on the grid is of the form (a1

c , . . . , ad
c) where ai ∈ {0, ..., c − 1, c}. Note that,

since any two distinct points on this grid are at least 1
c apart, any function η : Gd

c → [0,1] is a c-Lipschitz
function. It follows that the set of all c-Lipschitz functions over Gd

c contains the set of all binary valued
functions over that domain. We can therefore invoke the No-Free-Lunch result to obtain a lower bound
on the needed sample sizes for learning that class. The number of points on the grid is (c + 1)d. Hence,
if m < 1

2 (c + 1)d, Theorem 5.1 implies the lower bound we are after.

Remark 6. The exponential dependence on the dimension is known as the curse of dimensionality.

Theorem 3.6 (No-Free-Lunch). Let A be any learning algorithm for the task of binary classification with
respect to the 0 − 1 loss over an input space X. Let the training set size m ⩽ |X|

2 . Then, there exists a distribution
D over X× {0,1} such that

1. There exists a function f : X→ {0,1} with LD(f) = 0.
2. With probability of at least 1

7 over the choice of i.i.d. sample S, we have that LD(A(S))⩾ 1
8 .

Proof. Let C ⊆ X such that |C| = 2m. The intuition of the proof is that any learning algorithm that
observes only half of the instances in C has no information on what should be the labels of the rest of
the instances in C. Therefore, there exists a ‘reality,’ that is, some target function f , that would contradict
the labels that A(S) predicts on the unobserved instances in C.

3

4 Nonparametric regression

Let S ∈ (X × Y)m be i.i.d. with a fixed but unknown distribution D over space X × Y. We assume a
model y = m0(x) + ϵ where the function m0 is unknown x,ϵ are independent random variables, and
distribution of noise ϵ is unknown. We are interested in estimating function m0, and denote its estimate
by m̂.

Definition 4.1 (Mean square error). The performance measure of estimate m̂ is the mean square error
E(Y − m̂(X))2. The mean square error estimate is the one that minimizes this error.

Remark 7. If the noise ϵ = Y − m0(X) is zero mean, then we can write the mean square error in terms of
variance of noise, bias m0(X)− Em̂(X), and variance Var m̂(X), as

E(Y − m̂(X))2 = E(Y − m0(X) + m0(X)− Em̂(X) + Em̂(X)− m̂(X))2

= Eϵ2 + E(m0(X)− Em̂(X))2 + Var m̂(X).

The first term is variance of the noise, and that can’t be reduced. Second term is the mean of bias
squared and can be reduced by choosing from a larger class of functions. However, this increases
variance Var m̂(X). This is bias variance tradeoff.

Remark 8. Recall that the generalization risk for an ERM hypothesis hS ∈H can be written as

R(hS) = (R(hS)− R(h∗)) + (R(h∗)− R∗) + R∗,

where R(hS)− R(h∗) is the estimation error in the class H, R(h∗)− R∗ is the approximation error of the
class H, and R∗ is the Bayes error. Recall R(hERM

S)− R(h∗) ⩽ 2suph∈H(R(h)− R(ĥ)) which is upper
bounded by the Rademacher complexity of class H.

4.1 k-NN regression

We assume S ∈ (X × Y)m i.i.d. sample with y = m0(x) + ϵ where the mean of the noise Eϵ = 0, and
X⊆ Rd is equipped with a Euclidean norm. The goal is to estimate m0(x) at the test point x ∈X. Find k-
nearest neighbors of x in the sample SX, and call them (xπx

1
, . . . , xπx

k
) as before. Then, m̂(x)≜ 1

k ∑k
i=1 yπx

i
.

If k = n, then m̂(x) = 1
n ∑n

i=1 yi is the sample mean, same for all test points x.

Remark 9. For a good estimate of m0(x), the number of nearest neighbors k should be large to reduce
the effect of noise. However, k should be not too large as nearest neighbors should be not too far from x.
This is due to the fact that if ∥x − x′∥ is large then so is ∥m0(x′)− m0(x)∥, even for a continuous function
m0. If m0 is discontinuous, then this estimator can be bad in the neighborhood of the discontinuity.

Theorem 4.2 (Universal consistency). Consider a sequence k : N → N such that limm→∞ km = ∞ and
limm→∞

km
m = 0. If EY2 < ∞, then for an m-size sample estimate m̂m, we have limm→∞ E(m̂m(x)− m0(x))2 =

0.

Theorem 4.3. If m0 is ℓ-Lipschitz for a finite ℓ, input space X ⊆ Rd, and km = o(m− 2
2+d), then E(m̂m(x)−

m0(x))2 = o(m− 2
2+d).

Remark 10. If E(m̂m(x)− m0(x))2 = δ, then the sample complexity m ≈ O(δ
2+d

2). That is, the number of
samples needed for a given mean squared error increases exponentially with the number of dimensions.
This is called the curse of dimensionality. Most estimators suffer from this curse.

Remark 11. The asymptotic rate of convergence given above, is optimal.

Remark 12. One can find k-nearest neighbors efficiently in sub-linear time, and hence it is a preferred
algorithm.

4.2 Random Forest

Sample S ∈ (X×Y)m i.i.d. from a distribution D to form L decision trees. A test input x is passed through
all the decision trees in the forest, and one can estimate m0(x) by taking average of the outputs of the L
decision trees in the forest. The ith decision tree output label yi = m̂i(x) and the overall estimate is

m̂(x) =
1
L

L

∑
i=1

yi.

4

4.2.1 Learning the tree

Learning for regression trees can be done similar to decision trees with the following change for impu-
rity measure.

Remark 13 (Classification impurity). Recall that in the greedy method for finding a classifier decision
tree, the next node ni and question qi = xi < ti are selected as the one which minimizes the impurity.
The classification impurity is measured in terms of Entropy, Gini index, or misclassification probability.

Remark 14 (Regression impurity). If (y1, . . . ,yj) are the outputs at a leaf, then the estimator is given by

m̂(x) = 1
j ∑

j
i=1 yi. For a sample S ∈ (X× Y)m, the mean square error is estimated as

∑
xi that reach the leaf

(yk −
1
j

j

∑
i=1

yi)
2

This mean square estimate is the impurity measure used at a node, in the case of regression.

4.2.2 Random forest

We get L trees T1, . . . , TL where each tree is obtained in the following fashion, similar to how decision
tree classifiers are obtained.

1. Take a random subsample S′ from the sample S
2. Take a random subset of features from [d]
3. From subsample S′ and subset of features get tree T1
4. Repeat the process L times to get trees T1, . . . , TL

Theorem 4.4. Let each tree be formed from am subsamples of m-sized sample S, and let km be the number of
training samples in each leaf. To make the trees, we select a feature at each time randomly with probability 1

d .
Let limm→∞ km = ∞ and limm→∞

km
m = 0. Then, the mean square error limm→∞ E(m̂m(x) − m0(x))2 = 0 if

EY2 < ∞.

Remark 15. In the above theorem on random forest, the trees are not formed using Greedy algorithm
but each feature is selected randomly. Random forests work well in practice.

4.3 Kernel Smoothing

The kernel here is not necessarily, the RKHS kernels we have talked before.

Definition 4.5. We define kernel function K : Rd → R such that
∫

x∈Rd K(x)dx = 1,
∫

x∈Rd xK(x)dx = 0,
and 0 <

∫
x∈Rd x2K(x)dx < ∞.

Remark 16. Any density function with zero mean and finite mean will work as a kernel function.

Example 4.6 (Gaussian kernel). For d = 1, the Gaussian density with zero mean and unit variance

is defined as K(x)≜ 1√
2π

e−
x2
2 for x ∈ R.

Example 4.7 (Box kernel). For d = 1, the Box kernel with zero mean and finite variance is defined
as K(x)≜ 1[−0.5,0.5](x) for x ∈ R.

Definition 4.8 (Nadraya-Watson Kernel regression estimator). For a positive bandwidth h > 0 and
kernel K : Rd → R, we define estimator

m̂(x)≜
∑m

i=1 K(x−xi
h)yi

∑m
i=1 K(x−xi

h)

Remark 17. This estimator can be thought of as generalization of k-nearest neighbor. When compared
to k-nearest neighbors, we observe the following.

1. If K is a continuous function, then m̂(x) is a smooth estimator,

5

2. Different examples in the sample gets assigned different weights for m̂(x). Points closer to x
should be given higher weights.

3. This estimator does suffer from a poor bias on the boundary of the sample.

Theorem 4.9 (Universal consistency). Let EY2 < ∞, kernel K is supported on a compact region, and band-
width sequence h : N → N such that limm→∞ hm = 0 and limm→∞ mhm = ∞. Then, for an m-size sample
estimate m̂m, we have limm→∞ E(m̂m(x)− m0(x))2 = 0.

Remark 18. Optimal sequence hm ≈ m− 1
4+d , then mean square error ≈ m− 4

4+d .

4.3.1 Kernel Method RKHS

Given i.i.d. sample S ∈ (X× Y)m, we wish to estimate m0(x) for a test example x. Given kernel function
K : X×X→ R+, a feature map Φ : X→ H, and Hilbert space H, optimal weight w∗ is obtained as the
solution to the optimization problem

argmin
w

λ∥w∥2
H +

m

∑
i=1

(⟨w,Φ(xi)⟩ − yi)
2.

The estimator for test example x is ⟨w∗,Φ(x)⟩.

6

	Introduction
	k-nearest neighbors
	Finite sample analysis
	Generalization bound for the 1-NN rule
	Curse of dimensionality

	Nonparametric regression
	k-NN regression
	Random Forest
	Learning the tree
	Random forest

	Kernel Smoothing
	Kernel Method RKHS

