
Lecture-17: Minimax bounds

1 Introduction

When solving a statistical learning problem, there are often many procedures to choose from. This leads
to the following question: how can we tell if one statistical learning procedure is better than another?
One answer is provided by minimax theory which is a set of techniques for finding the minimum, worst
case behavior of a procedure. We provide upper and lower bounds on error achievable by any algorithm
regardless of its complexity and storage. Estimation problems under consideration are:

1. hypothesis testing,
2. point estimation, and
3. regression for parameter estimation

2 Definitions and notations

We denote a set of distributions by P over input space X, such that X : Ω →Xm is an i.i.d. random vector
with some distribution P ∈ P . Let θ : P → Ω be some function of probability distribution P, where Ω
can be finite or infinite dimensional and the map may not be bijective. For example θ(P) can be the
mean, variance, or density of P. We want to estimate θ(P) from an i.i.d. sample X with an unknown
distribution P ∈ P . There are policies, where we consider dependent samples. We measure the quality
of estimator using the metric ρ : Ω × Ω → R+.

Example 2.1. Let θ̂ be an estimate of θ from sample S, then ρ ≜E
∥∥θ − θ̂

∥∥ is a potential cost function.
If θ̂S = θ0 then if actual distribution P from which sample comes from is Pθ0 and the estimate is
perfect. If Pθ is away from Pθ0 , then the error is ρ(θ,θ0).

Remark 1. The Bayesian approach is to find the parameter θ̂ that minimizes the Bayesian risk Eπ [ρ(θ, θ̂)]
given a prior distribution π.

Definition 2.2 (Minimax approach). Find the parameter θ that minimizes the worst case performance
of the estimator. That is, minimax estimator is the one that minimizes the worst case risk

Rm(θ̂)≜ sup
P∈P

EP[ρ(θ̂,θ(P))].

Remark 2. We also want to get lower bounds on the worst case risk. Minimax estimators may not
provide good performance in real life.

Definition 2.3 (Minimax risk). The minimax risk is defined as Rm ≜ infθ̂ Rm(θ̂).

Example 2.4. Let N(θ,1) denote a Gaussian distribution with mean θ and variance 1, and the family
of distributions P = {N(θ,1) : θ ∈ R}. Consider estimating mean θ with metric ρ(a,b) = (a − b)2.
The minimax risk is Rm = infθ̂ supP∈P EP(θ̂ − θ)2.

Example 2.5. Consider an i.i.d. labeled sample S ∈ (X×Y)m from distribution P ∈ P, and regression
function m(x)≜ EP[Y | {X = x}]. Consider estimating regression function with metric ρ(m1,m2) =∫
(m1(x)− m2(x))2dx. The minimax risk is Rm = infm̂ supP∈P EP(m̂(x)− m(x))2dx.
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Definition 2.6. For real valued parameter θ, if the minimax estimator is unique, then it is admissible.

Remark 3. If minimax estimator has additional good properties, such as being a Bayes estimate, then it
is often a good estimator.

Definition 2.7 (Admissible estimator). An estimator θ̂ of parameter θ is admissible, if no other estima-
tor is better than θ̂ uniformly over P . That is, there exists no other θ′ such that for all P ∈ P

EP[ρ(θ̂,θ(P))]⩾ EP[ρ(θ
′,θ(P))].

3 Bounding the minimax risk

The way we find risk Rm is to find an upper bound and a lower bound. Upper bound can be obtained
by considering some estimator and getting bounds on its error. Let θ̂ be any estimator, then we observe
that

Rm = inf
θ̂

Rm(θ̂)⩽ Rm(θ̂) = Um.

So the maximum risk of any estimator provides an upper bound Um. Finding a lower bound Lm is
harder. We will consider two methods: the Le Cam method and the Fano method. If the lower and
upper bound are close, then we have succeeded. For example, if Lm = c−α

m and Um = Cm−α for some
positive constants c,C and α, then we have established that the minimax rate of convergence is m−α.

Remark 4. Lower bounds can be used to show if a particular estimator is optimal. If we don’t have an
estimator which matches the lower bound, then we know we have work to do. Either, the lower bound
may not be tight enough and we may look for better bound. Or, we may look for better estimator which
can meet the lower bound.

4 Lower bound on minimax risk

For a map Φ : R+ → R+, we can write the minimax bound for θ(P) with metric Φ ◦ ρ

Rm(Φ ◦ ρ)≜ inf
θ̂

sup
P∈P

EP[Φ ◦ ρ(θ, θ̂)].

Remark 5 (LeCam’s bound via testing). We have a problem of estimation which can be lower bounded
by addressing a testing problem. We can define the set of possible parameters θ(P)≜= {θ(P) : P ∈ P},
and take M points from θ(P) as

{
θ(1), . . . ,θ(M)

}
such that ρ(θ(i),θ(j)) ⩾ 2δ for all i ̸= j ∈ [M] and fixed

δ > 0.
Consider the following setting. Let J : Ω → [M] be a uniform random variable, and the conditional

distribution of labeled sample Z given J = j is denoted by Pθ(j) for all j ∈ [M]. We denote the joint
distribution of pair (Z, J) by Q. That is,

Q(z, j) = P{Z = z, J = j} = 1
M

Pθ(j)(z).

Marginal distribution of Z is written as

Q̄(z)≜ P{Z = z} = 1
M ∑

j∈[M]

Pθ(j)(z).

We consider the following hypothesis testing problem. Given a sample of Z, find the label j ∈ [M] from
which Z is generated. Let ψ : Zm → [M] be the classifier for this problem.

Proposition 4.1. If Φ is nondecreasing, then for any classifier ψ : Zm → [M], we can write

Rm(Φ ◦ ρ)⩾ Φ(δ) inf
ψ

Q{ψ(z) ̸= J} .

Proof. Consider a fixed P ∈ P and θ = θ(P). Using the nonnegativity and monotone nondecreasing
property of Φ, we can lower bound the mean

EPΦ(ρ(θ̂,θ))⩾ EP[Φ(ρ(θ̂,θ))1{ρ(θ̂,θ)⩾δ}]⩾ Φ(δ)P
{

ρ(θ̂,θ)⩾ δ
}

.
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We next focus on lower bounding the probability term. Since reducing the set decreases the supremum,
we get

sup
P∈P

P
{

ρ(θ̂,θ)⩾ δ
}
⩾ sup

j∈[M]

Pθ(j)

{
ρ(θ̂,θ(j))⩾ δ

}
⩾

1
M

M

∑
j=1

Pθ(j)

{
ρ(θ̂,θ(j))⩾ δ

}
.

For any given estimator θ̂ of θ form the sample z ∈ Zm, we define M-ary classifier ψ for the testing
problem as

ψ(z)≜ arg min
ℓ∈[M]

ρ(θ(ℓ), θ̂).

The probability of error for classifier ψ is Pθ(j) {ψ(z) ̸= j} when z has distribution Pθ(j) . We observe that

Pθ(j) {ψ(z) ̸= j}⩽ Pθ(j)

{
ρ(θ̂,θ(j))⩾ δ

}
.

From the definition of distribution Q, we can write

Q
{

ρ(θ̂,θ(J))⩾ δ
}
=

M

∑
j=1

P{J = j}Pθ(j)

{
ρ(θ̂,θ(j))⩾ δ

}
=

1
M

M

∑
j=1

Pθ(j)

{
ρ(θ̂,θ(j))⩾ δ

}
.

Combining the two results, we get Q
{

ρ(θ̂,θ(J))⩾ δ
}
⩾ Q{ψ(z) ̸= J}, and the result follow.

4.1 Distance measure on family of distributions

Definition 4.2. Total variation distance between two distribution P, Q ∈ P can be defined as

∥P − Q∥TV ≜ sup
A

|P(A)− Q(A)| .

Remark 6. If P, Q have densities p,q respectively, then

∥P − Q∥TV =
1
2

∫
|p(x)− q(x)|dx.

Definition 4.3. The Kullback-Leibler distance between two distributions P, Q ∈ P is defined as

KL(P∥Q)≜
∫

log
( dP

dQ

)
dP.

Remark 7. If P, Q have densities p,q respectively, then

KL(P∥Q) =
∫

p(x) log
p(x)
q(x)

dx.

Definition 4.4. The squared Hellinger distance between two distributions P, Q ∈ P is defined as

H2(P∥Q)≜
∫
(
√

p(x)−
√

q(x))2dx.

Theorem 4.5 (Pinsker). ∥P − Q∥TV ⩽
√

1
2 D(Q∥P).

Lemma 4.6 (Le Cam). ∥P − Q∥TV ⩽ H(P∥Q)
√

1 − 1
4 H2(P∥Q).

Remark 8. Taking M = 2 in the lower bound in Proposition 4.1, we get

Q{ψ(Z) ̸= J} = 1
2

P0 {ψ(z) ̸= 0}+ 1
2

P1 {ψ(z) ̸= 1} .

Classifier ψ : Zm → {0,1} can be identified as a partition {Ac, A} corresponding to the decision regions
where A ≜ {z ∈ Zm : ψ(z) = 1}. We can write

sup
ψ

Q{ψ(z) = J} = sup
A

[1
2

P0(Ac) +
1
2

P1(A)
]
=

1
2
+

1
2

sup
A

(P1(A)− P0(A)) =
1
2
+

1
2
∥P1 − P0∥TV .

It follows that infψ Q{ψ(z) ̸= J}= 1− supψ Q{ψ(z) = J}= 1
2 (1−∥P1 − P0∥TV). Together with Pinsker’s

inequality, we have for M = 2,

Rm(Φ ◦ ρ)⩾
Φ(δ)

2
(1 − ∥P1 − P0∥TV)⩾

Φ(δ)

2
(1 −

√
1
2

D(P0∥P1)).
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Example 4.7. Consider the estimation problem for Gaussian random variables considered in Ex-
ample 2.4 with fixed and known variance σ2 and unknown mean θ. We apply Le Cam’s method for
M = 2 and fixed δ > 0, taking parameters in {0,2δ}. Then,

∥Pm
0 − Pm

1 ∥TV ⩽
1
4
(e

4mδ2

σ2 − 1)

Fixing δ = σ
2
√

m and recalling that Φ(δ) = δ2, we get

inf
θ̂

sup
θ∈R

Eθ(θ − θ̂)2 ⩾
δ2

2
(1 − 1

2

√
e − 1)⩾

σ2

24m
.

Using the empirical mean estimator θ̂ = 1
m ∑m

i=1 Xi, we observe that supθ∈R Eθ(θ̂ − θ)2 = σ2

m . The
lower bound is tight in terms of the order, though the constant 1

24 is not tight.

Example 4.8. Consider the estimation problem for Gaussian random variables with unknown mean
θ and variance σ2. In this case, for ρ(θ, θ̂) = (θ − θ̂)2, we observe that the loss function

Eθρ(θ, θ̂) = Var(θ̂) + (bias)2.

For the MLE of mean θ for this problem, we can show that Varθ(θ̂) ≈ o
( 1

m
)
, and (bias)2 ≈ o

( 1
m2

)
.

That is, the bias term is negligible when compared to Varθ(θ̂) as the sample size increases, and hence
Rm ≈ Varθ(θ̂). Recall that, Varθ(θ̂) ≈ 1

mI(θ) for MLE, where I(θ) is the Fisher information matrix.

Remark 9. We can also show that for any estimator θ′ and MLE estimator θ̂, we have R(θ,θ′) ⩾ R(θ, θ̂).
That is MLE is approximately minimax estimator. In general, under some regularity conditions, the
parametric estimation problem, the mean square error (MSE) decays as 1

m . These conditions are satisfied
by Gaussian distribution. However, there are examples which do not satisfy these regularity conditions
and we get a faster rate of decay of MSE.

Example 4.9. Let Uθ be a uniform distribution over an interval [θ,θ + 1] parametrized by θ, and
consider the set of distributions {Uθ = U[θ,θ + 1] : θ ∈ R}. For this example, those regularity con-
ditions are not satisfied. We can show that

inf
θ̂

sup
θ∈R

Eθ(θ − θ̂)2 ⩾
1 − 1√

2

128m2 .

This rate is achieved by θ̂m ≜ min{X1, . . . , Xm}.

4.2 Tightening the lower bound using family of distributions

For M = 2, the lower bound was obtained by taking two points {θ0,θ1} ∈ θ(P) such that ρ(θ0,θ1)⩾ 2δ.
Instead of taking two points, we take two classes of θ(P) which are 2δ separated. That is, let Θ0,Θ1 ⊆
θ(P) where

inf
(θ0,θ1)∈Θ0×Θ1

ρ(θ0,θ1)⩾ 2δ.

We denote the set of distributions P0 ≜ {P ∈ P : θ(P) ∈ Θ0} and P1 ≜ {P ∈ P : θ(P) ∈ Θ1}, and convex
hull of a set of distributions P by conv(P). Recall that conv(P) is the smallest convex set containing P.

Lemma 4.10. For P0,P1 ⊆ P such that ρ(θ0,θ1)⩾ 2δ for all θ0 ∈ θ(P0) and θ1 ∈ θ(P1). Then,

inf
θ̂

sup
P∈P

EPρ(θ̂,θ(P))⩾
δ

2
sup

P0∈conv(P0),P1∈conv(P1)

(1 − ∥P0 − P1∥TV).
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Remark 10. This gives tighter lower bound and improves over the constant 1
24 in the lower bound σ2

24m
for mean estimation of Gaussian random variables with unknown mean and known variance σ2.

Example 4.11. Consider a sample S ∈ (X × Y)m where the input space X = [0,1], random se-
quence X : Ω → [0,1]m is i.i.d. uniform and Yi ≜ c(Xi) + ϵi for an unknown concept c : X × Y

and i.i.d. zero mean unit variance Gaussian random sequence ϵ : Ω → RN independent of
X. We are interested in estimating c(0), where the concept is from the family of maps H ≜{

h ∈ YX : |h(x)− h(x′)|⩽ L |x − x′| , x, x′ ∈ X
}

is L-Lipschitz. For given hypothesis h, density of
labeled example (x,y) is ph = p(x)p(y | x) where p(y | x) is a Gaussian random variable with mean
h(x) and unit variance. We observe that P= {Ph : h ∈H}.

We fix δ > 0 and lower bound the minimax risk by taking two points P0, P1 ∈ P such that
D(P0∥P1) ⩾ 2δ =

log2
m . Recall that family of distributions P is generated by hypothesis set H, and

we choose two hypotheses {h0, h1} ∈H such that h0 = 0 and h1(x) = L(ϵ − x)1[0,ϵ](x) for all x ∈ X

and a fixed ϵ ⩾ 0. It is easy to check that h0, h1 ∈ H since they are both L-Lipschitz. We can show

that D(P0∥P1) =
L2ϵ3

6 and thus taking ϵ ≜
(

6log2
L2m

) 1
3
, we obtain D(P0∥P1) =

log2
m . The lower bound

on minimax risk is given by

Rm(Φ ◦ ρ)⩾
Φ(δ)

2
(1 −

√
1
2

D(P0∥P1))⩾
Φ(δ)

2
(1 −

√
1
2

1
m

log2)⩾
Φ(δ)

2
.
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