
Lecture-18: Regression

1 Regression

Consider input space X ⊆ Rd and output space Y ⊆ R, and an i.i.d. labeled sample S ∈ (X× Y)m from
an unknown distribution D. The deterministic case when SX is i.i.d. with an unknown distribution
DX and Yi = c(Xi) for an unknown concept c : X → Y, is a special case. We consider a loss function
L : Y′ × Y→ R+ that measures the magnitude of error.

Example 1.1. A common loss function used in regression problems is Lp : Y′ × Y → R+ for p ⩾ 1,
defined by Lp(y′,y)≜ |y′ − y|p for all (y′,y) ∈ Y′ × Y.

Definition 1.2. The hypothesis class is denoted by H⊆ (Y′)X. The generalization error for a hypothesis
h ∈H under loss function L is defined as R(h)≜ EDL(h(X), c(X)). The empirical error for a hypothesis
h ∈H under loss function L, and sample S ∈ (X× Y)m is defined as R̂(h)≜ 1

m ∑m
i=1 L(h(xi),yi).

Assumption 1.3. We consider bounded regression problems where loss functions are bounded. That is,
some M > 0, we have L(h(x), c(x))⩽ M for all inputs x ∈ X and hypothesis h ∈H.

1.1 Generalization bounds

We are interested in generalization bounds on the generalization error.

1.1.1 Finite hypothesis set

Theorem 1.4 (Hoeffding). Consider a random walk S : Ω → RN defined by Sn ≜ ∑n
i=1 Xi for each n ∈ N,

where the random step-size sequence X : Ω → ∏i∈N[ai,bi] is independent and bounded. Then,

P{Sm − ESm ⩽−ϵ}⩽ e
− 2ϵ2

∑m
i=1(bi−ai)

2 .

Theorem 1.5. Consider an M-bounded loss function L and finite hypothesis set H. For a fixed δ > 0, with

probability at least 1 − δ, we have R(h)⩽ R̂(h) + M
√

log|H|+log 1
δ

2m , for any hypothesis h ∈H.

Proof. Applying the Hoeffding inequality for M-bounded loss functions, we can bound the probability
of generalization error exceeding empirical error by at least ϵ, as

P
{

R(h)− R̂(h)⩾ ϵ
}
= P

{
m

∑
i=1

[L(h(Xi),Yi)− EL(h(Xi), c(Xi))]⩽−mϵ

}
⩽ e−

2mϵ2

M2 .

It follows from the union bound that

P
(
∪h∈H

{
R(h)− R̂(h)⩾ ϵ

})
⩽ ∑

h∈H
P
{

R(h)− R̂(h)⩾ ϵ
}
⩽ |H| e−

2mϵ2

M2 .

Defining δ ≜ |H| e−
2mϵ2

M2 , the result follows.
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1.1.2 Infinite hypothesis set

Theorem 1.6. Consider a family of functions G≜ {(x,y) 7→ L(h(x),y) : h ∈H} . For any δ > 0, with probabil-

ity at least 1 − δ, we have R(h)⩽ R̂(h) + 2R̂m(G) + M
√

log 1
δ

2m , for any hypothesis h ∈H.

Proof. We observe that Eg(z) = R(h) = EDL(h(X), c(X)) and 1
m ∑m

i=1 g(zi) = R̂(h).

Remark 1. For p ⩾ 1, we write the loss function Lp(y′,y) ≜ |y′ − y|p for all (y′,y) ∈ Y′ × Y. For the loss
function to be bounded, we assume that |h(x)− c(x)| ⩽ M for all x ∈ X. For this loss function, we call
G=Hp.

Remark 2. Recall Talagrand’s contraction lemma that states that for a hypothesis set H and another set
Ĥ≜ {Φ ◦ h : h ∈H} where Φ is L-Lipschitz, we have R̂S(Ĥ)⩽ LR̂S(H).

Theorem 1.7. R̂S(Hp)⩽ pMp−1R̂S(H) and Rm(Hp)⩽ pMp−1Rm(H).

Proof. Defining H′ ≜ {x 7→ h(x)− c(x) : h ∈H}, we observe that Hp =
{

Φp ◦ h : h ∈H′}, where Φp :
R → R+ defined by Φp(x) = |x|p. We observe that Φp is pMp−1-Lipschitz for all x ∈ [0, M]. Therefore,
it follows from Talagrand’s Lemma, that R̂S(Hp)⩽ pMp−1R̂S(H

′), where

R̂S(H
′) =

1
m

Eσ

[
sup
h∈H

m

∑
i=1

σi(h(xi)− c(xi))
]
=

1
m

Eσ

[
sup
h∈H

m

∑
i=1

σi(h(xi)
]
= R̂S(H).

Remark 3. Let p ⩾ 1 and |h(x)− c(x)| ⩽ M for all x ∈ X and h ∈ H. Then, for any y′ ∈ Y′, the map
y′ 7→ |y′ − y|p is pMp−1-Lipschitz for (y′ − y) ∈ [−M, M]. Therefore, for a fixed δ > 0, with probability
at least 1 − δ,

E |h(X)− Y|p ⩽ 1
m

m

∑
i=1

|h(xi)− yi|p + 2pMp−1R̂S(H) + Mp

√
log 1

δ

2m
.

2 Regression algorithms

2.1 Kernel ridge regression

We consider regression for bounded linear hypotheses in a feature space H defined by a feature map
Φ : X→ H associate to a PDS kernel K : X×X→ R+ such that ⟨Φ(x),Φ(x′)⟩= K(x, x′) for all x, x′ ∈ X.

Theorem 2.1. Let H≜ {x 7→ ⟨w,Φ(x)⟩ : ∥w∥H ⩽ Λ}, PDS kernel K(x, x)⩽ r2 for all x ∈ X and some r > 0,
and |h(x)− y| < M for all (x,y) ∈ X× Y some M > 0. Then, for a fixed δ > 0, with probability at least 1 − δ,

R(h)⩽ R̂(h) + 4M

√
r2Λ2

m
+ M2

√
log 1

δ

2m
for all h ∈H.

Remark 4. The learning bound suggests minimizing a trade-off between the empirical squared loss, and
the norm of the weight vector or equivalently the norm squared.

Definition 2.2 (Kernel ridge regression). The optimal weight vector is defined as

argmin
w

F(w) = argmin
w

λ∥w∥2 +
m

∑
i=1

(⟨w,Φ(xi)⟩ − yi)
2.

Remark 5. The Kernel ridge regression problem is a convex optimization problem with quadratic cost,
and the optimal solution can be obtained by taking derivatives with respect to weight vector w, to
obtain

0 =∇wF(w) = 2λw +
m

∑
i=1

2(⟨w,Φ(xi)⟩ − yi)Φ(xi).

For N-dimensional feature space H, we can define matrices X,Y ∈ RN×m by X ≜
[
Φ(x1) . . . Φ(xm)

]
and Y ≜

[
y1 . . . ym

]
, to rewrite the solution to Kernel ridge regression as

0 = 2λw + 2X(XTw − Y).
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Since XXT is positive semidefinite, it follows that (XXT + λI) is positive definite, and its inverse exists.
Therefore, we have w = (XXT +λI)−1XY. Computing the optimal weight vector requires O(mN2 + N3)
computations.

Remark 6. The positive parameter λ determines the trade-off between the regularization term ∥w∥2

and the empirical mean squared error. Kernel ridge regression can also be written as a constrained
optimization problem

argmin
w

{
m

∑
i=1

(⟨w,Φ(xi)⟩ − yi)
2 : ∥w∥⩽ Λ

}
.

Remark 7. Kernel ridge regression has (a) good theoretical guarantees, (b) good stability properties, (c)
closed form optimal solution, and (c) can be generalized to maps c : X→ Rp by formulating the problem
as p independent regression problems. However, Kernel ridge regression is computationally expensive
and optimal weight vector is not sparse in general.

2.2 Support vector regression

This algorithm is inspired by SVM, where the points that are ϵ-close to the predicted output are not
penalized and points further away are penalized according to their distance from the predicted output.

Definition 2.3. Consider the ϵ-insensitive loss |·|ϵ : Y′×Y→R+ defined by |y′ − y|ϵ =max{0, |y′ − y| − ϵ}
for all y′,y ∈ Y⊆ R.

Remark 8. The ϵ-insensitive loss function provides sparse solutions, where the insensitivity parameter
ϵ controls the sparsity. Sparsity increases with the insensitivity ϵ.

Definition 2.4 (Support vector regression). For a hypothesis set of linear functions

H≜
{

x 7→ ⟨w,Φ(x)⟩+ b : w ∈ RN ,b ∈ R
}

,

the optimal hypothesis is defined as

argmin
w,b

F(w) = argmin
w,b

1
2
∥w∥2 + C

m

∑
i=1

|yi − (⟨w,Φ(xi)⟩+ b)|ϵ .

Remark 9. Support vector regression is a convex quadratic optimization with affine constraints. It differs
from Kernel ridge regression in that the loss functions is akin to L1 and not L2. One can choose any PDS
K for this problem, however, one still needs to choose regularization parameter C and insensitivity
parameter ϵ.

Theorem 2.5. Let H≜ {x 7→ ⟨w,Φ(x)⟩ : ∥w∥H ⩽ Λ} , kernel function K(x, x)⩽ r2 for all x ∈X, and |h(x)− y|⩽
M for all (x,y) ∈ X× Y. For ϵ-insensitive loss function and some δ > 0, with probability at least 1 − δ, we have

R(h)⩽ R̂(h) + 2

√
r2Λ2

m
+ M

√
log 1

δ

2m
for all h ∈H.

Proof. We define hypothesis sets H′ ≜ {x 7→ h(x)− y : h ∈H} and Hϵ ≜ {x 7→ |h(x)− y|ϵ : h ∈H}. Each
hypothesis in Hϵ is 1-Lipschitz, and the result follows from Theorem 1.6 and bound on the empirical
Rademacher complexity of H.

2.3 Lasso

Definition 2.6 (Least Absolute Shrinkage and Selection Operator (LASSO)). We consider the input
space X= RN , a hypothesis set of linear functions

H≜
{

x 7→ ⟨w, x⟩ : w ∈ RN
}

,

and the optimal hypothesis is defined as

argmin
w,b

F(w) = argmin
w

λ∥w∥1 + C
m

∑
i=1

(yi − ⟨w, xi⟩)2.
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Remark 10. LASSO problem defers from kernel ridge regression and support vector regression in that
the complexity term is taken as L1 norm rather than L2 norm of weight vector w. The empirical error for
LASSO and kernel ridge regression is L2 norm of the prediction error, whereas it is modified L1 norm
for support vector regression.

Remark 11. Taking complexity term as L1 norm ensures a sparse solution for the weight vector w. To
achieve sparsity, one would like to minimize the L0 (which is not a norm). However, this is a combina-
torial task, since this is equivalent to the support of w. The L1 norm is a convex surrogate for L0.

Remark 12. For this algorithm, we can show that for a sample S ∈ (X× Y)m with ∥xi∥∞ ⩽ r∞ < ∞ for all
i ∈ [m], set of linear hypotheses H ≜ {x 7→ ⟨w, x⟩ : ∥w∥1 ⩽ Λ1}, the empirical Rademacher complexity
is upper bounded as

R̂m(H)⩽

√
2r2

∞Λ2
1 log2N
m

In addition, if |c(x)|⩽ Λ1r∞, then by triangular inequality and Hölder’s inequality applied to conjugate
pair (1,∞), we obtain

|h(x)− c(x)|⩽ |h(x)|+ |c(x)|⩽ ∥w∥1 ∥x∥∞ + Λ1r∞ ⩽ 2Λ1r∞.

Theorem 2.7. Consider a sample S ∈ (X× Y)m with ∥xi∥∞ ⩽ r∞ < ∞ for all i ∈ [m], set of linear hypotheses
H≜ {x 7→ ⟨w, x⟩ : ∥w∥1 ⩽ Λ1}, and |c(x)|⩽ Λ1r∞. Then for a fixed δ > 0, with probability at least 1 − δ, we
have

R(h)⩽ R̂(h) +
8r2

∞Λ2
1√

m

[√
log2N +

1
2

√
log 1

δ

2

]
.

Remark 13. On the plus side, Lasso is (a) a quadratic optimization problem with convex constraints, (b)
thus has efficient schemes to find the optimal weight vector for the given optimization problem, and
has (c) strong theoretical generalization bounds. On the flip side, it has (a) no closed form solution, and
(b) can not be used readily with kernels.
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