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Abstract—Wireless systems offer a unique mixture of connec-
tivity, flexibility, and freedom. It is therefore not surprising that
wireless technology is being embraced with increasing vigor. For
real-time applications, user satisfaction is closely linked to quanti-
ties such as queue length, packet loss probability, and delay. System
performance is therefore related to, not only Shannon capacity,
but also quality of service (QoS) requirements. This work studies
the problem of resource allocation in the context of stringent QoS
constraints. The joint impact of spectral bandwidth, power, and
code rate is considered. Analytical expressions for the probability
of buffer overflow, its associated exponential decay rate, and the
effective capacity are obtained. Fundamental performance limits
for Markov wireless channel models are identified. It is found that,
even with an unlimited power and spectral bandwidth budget, only
a finite arrival rate can be supported for a QoS constraint defined
in terms of exponential decay rate.

Index Terms—Communication systems, effective capacity, fluid
models, quality of service (QoS), resource allocation, wireless net-
works, wireless systems.

I. INTRODUCTION

MOTIVATED by the emergence of wireless technologies
and by the constantly increasing demand for connec-

tivity, we study the interplay between resource allocation at
the physical layer and quality of service (QoS) in wireless
communication systems. Radio resources typical of a wireless
communication system include spectral bandwidth and power.
Much research in recent years has been devoted to developing
techniques and strategies that enhance the spectral efficiency
of wireless systems [1], [2]. The prevalent framework used to
evaluate these techniques is information theory, with the insep-
arable concept of Shannon capacity. While this framework is
suitable for an analysis of maximum throughput, it overlooks
many aspects of user satisfaction. Queue length distribution,
packet loss probability, and delay all influence the perceived
quality of a communication link. These performance metrics
are especially important in real-time applications where user
satisfaction implies stringent QoS constraints.
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Quality of service has been studied extensively in the context
of wired networks [3]–[5]. Research on asynchronous transfer
mode (ATM) networks and their statistical performance require-
ments led to the unifying concept of effective bandwidth [6],
which has been applied to admission control and pricing. Ef-
fective bandwidth and the related concept of effective capacity
provide a framework to identify the statistical characteristics
of a stochastic process over various time scales. The literature
on effective bandwidth is rich. Comprehensive discussions on
the subject and its applications are provided by Kelly [7] and
Chang [4].

User satisfaction and QoS also play an important role in the
design of wireless systems, especially for mobile terminals that
support real-time applications. Unlike its wired counterpart, a
wireless connection is subject to attenuation and fading. The
time-varying nature of a wireless link will affect the queue
length distribution at a terminal and, consequently, it will have
a significant impact on performance. The allocation of system
resources for real-time applications is therefore critically im-
portant and demands a careful analysis. Performance and user
satisfaction may not be captured adequately by the sole attribute
of Shannon capacity. The goal of this paper is to relate power
and spectral bandwidth to QoS using an evaluation frame-
work akin to effective bandwidth. Two elements are needed to
achieve this goal: a wireless channel model and a meaningful
performance metric. Wireless channels have been studied in
many contexts. In [8], Wang and Moayeri propose a finite-state
Markov process to model a wireless fading environment.
Markov models have successively been applied to Rayleigh
and Nakagami fading channels [9]–[11]. Krunz and Kim [12],
[13] employ independent two-state Markov processes to model
the arrival traffic and offered service of a wireless connection.
Based on this framework, they derive delay-bound violation
probabilities for point-to-point wireless transmissions.

In [14]–[16], Wu and Negi extend the concept of effective
bandwidth to effective capacity. Broadly speaking, the effec-
tive capacity characterizes the maximum arrival rate that a wire-
less system can sustain subject to a given QoS requirement.
This concept can be viewed as the dual of the effective band-
width. Much like its precursor, effective capacity is a useful
tool to identify system limitations as a function of statistical
delay-bound violation probabilities.

To relate radio resources to system performance and statis-
tical QoS requirements, we link the behavior of the system to
its physical-layer infrastructure. A mobile terminal and its asso-
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Fig. 1. Block diagram of a wireless communication channel where the trans-
mitted signal is subject to attenuation, fading, and noise corruption.

ciated wireless connection can be modeled as a single-server
queue, provided that the receiver has the ability to acknowl-
edge reception of the data. For example, a simple physical-layer
automatic repeat request (ARQ) mechanism may be incorpo-
rated in the communication protocol to ensure that erroneous
data is retransmitted. We assume that such a mechanism is in
place throughout. Drawing intuition from information theory
and error-control coding, the service offered to a mobile ter-
minal can be modeled as a Markov-modulated fluid process.
Previous results on Markov-modulated fluid processes and large
deviations can therefore be leveraged to characterize the inter-
play between system resources at the physical layer and the sta-
tistical behavior of queues. In particular, we develop a frame-
work in which spectral bandwidth, power, and code rate are tied
to system performance.

The remainder of this paper is as follows. In Section II, we
describe the generic wireless connection that is used as an ab-
straction for the physical layer. Based on a Markov assump-
tion, we then construct a mathematical representation for the
overall channel behavior. Section III contains a derivation of
the equilibrium distribution for a system with a constant arrival
rate and a Gilbert–Elliott wireless channel. Specifically, buffer
overflow probabilities, the corresponding large deviations, and
the effective capacity function are given explicit expressions
in terms of physical system parameters. This analysis is sub-
sequently extended to a variable data source. The performance
analysis of the Gilbert–Elliott queueing system is presented in
Section IV. We compare and contrast the statistical character-
istics of the Gilbert–Elliott model with the characteristics of a
continuous-state Markov channel using numerical simulations
in Section V. Finally, we give our conclusions in the last section.

II. WIRELESS CHANNEL

The complex baseband representation of the wireless channel
under consideration is shown in Fig. 1. The term accounts
for the mean path attenuation, and represents the small-
scale variations due to the motion of the terminals and changes
in the environment [17]. The additive noise term is mod-
eled as a proper complex white Gaussian process. Note that

is normalized so that the expected power gain introduced
by is equal to one. The bandwidth of the transmitted
signal is assumed to be much smaller than the reciprocal
of the delay spread. The channel is therefore purely time selec-
tive, with no frequency distortion [18]. In this case, the standard
channel model of Fig. 1 can be written as

where . Furthermore, we assume that the
channel is subject to purely diffuse scattering, i.e., no specular

Fig. 2. Continuous-time Gilbert–Elliott Markov representation of a wireless
communication link.

component is present. For a rich scattering environment, the
multipath component is well modeled as a zero-mean,
proper complex Gaussian process. In particular, the envelope
process and the phase process are independent, with

having a Rayleigh probability distribution function and
the phase being uniform over .

While it is straightforward to describe the first-order statis-
tics of , a complete characterization of this random process
requires that joint distributions be specified as well. Under a
Gaussian process model, it suffices to describe the correlation
between any two sample points of the process. For Rayleigh
flat fading, the autocorrelation function of the envelope process
can be modeled using the zeroth-order Bessel function of the
first kind [19]. This function is reasonable over short time hori-
zons corresponding to terminal movements of the order of a few
wavelengths. It is derived under the assumption that a mobile
terminal is moving in an isotropic environment at a constant ve-
locity. Alternatively, an autocorrelation function can be derived
by assuming that the in-phase and quadrature components of

are independent stationary Ornstein–Uhlenbeck processes
[20]. The latter model states that the correlation between two
samples decays exponentially over time.

These two autocorrelation structures are useful in various
contexts. However, for the sake of mathematical tractability,
we consider a slightly simplified channel model. We retain the
first-order statistics of the channel and assume that the marginal
distribution of the envelope process is Rayleigh. Second, we
assume that for a fixed threshold , the probability of
being above or below this threshold is accurately modeled
as a continuous-time Markov chain. We refer to the channel
envelope exceeding as the “ON” state; otherwise, the channel
is in its “OFF” state. Such a channel structure is commonly
referred to as the Gilbert–Elliott model. It is assumed to provide
a sufficiently accurate representation for the statistical behavior
of the quantized Rayleigh channel. This quantized channel
model appears in Fig. 2. The transition rate from OFF to ON is
denoted by ; while the transition rate from ON to OFF, by .
The generator matrix for this Markov chain is given by

It is easy to verify that the invariant probability for the ON state
is , while the invariant probability of being OFF is

. For consistency, the stationary distribution of the
Markov chain should agree with the marginal distribution of the
underlying channel
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(1)

where with is the marginal distribution
of the normalized envelope process. To solve for and , two
equations are needed. The first one is given by condition (1).
The second condition can be derived from the Markov structure
of the wireless link.

Let be the probability transition matrix of the
Gilbert–Elliott channel. More specifically, entry of the
matrix represents the probability of being in state after

seconds, when starting in state . For a time interval , this
probability transition matrix is given by

We note that the channel memory of this two-state Markov
process decays at a rate . Thus, if the memory of the
underlying quantized Rayleigh channel has an exponential
decay rate , we must have . This relationship
provides the second equation necessary to determine and .
Solving for these parameters explicitly in terms of the channel
parameters, we get

The quantized channel and its associated Markov structure
will prove instrumental in computing the probability of buffer
overflow and the effective capacity of the associated wire-
less connection. The more elaborate channel description whose
in-phase and quadrature components are independent stationary
Orstein–Uhlenbeck processes will be revisited in Section V.

A. Coding and Information Theory

A celebrated result from information theory is the Shannon
capacity of the Gaussian channel

bits per second (2)

The variable represents the power of the signal, de-
notes the power spectral density of the noise process, and
is the channel bandwidth. In theory, error-free communication
can be achieved on this channel for any rate below the capacity
using asymptotically long codewords [21]. Today, there exists a
collection of practical codes that operate close to capacity, with
minimal error rates and small delays. The capacity expression
of (2) can therefore be employed as an optimistic approximation
of code performance. If a code is designed to operate at a rate

, the sent information is decoded reliably whenever ;
it is lost otherwise.

Fig. 3. Mean throughput as a function of code rate R for a Gilbert–Elliott
channel model.

A similar performance description can be employed for time-
varying channels such as the one introduced at the beginning of
Section II. Suppose that a wireless channel varies slowly, data is
assumed to reach its destination provided that , where

bits per second (3)

is the instantaneous capacity. On the other hand, if
then information is lost. This simplified characterization is valid
provided that the decoding delay is small compared to the co-
herence time of the wireless channel. It is used in this work for
mathematical convenience and because it yields useful guide-
lines on how to select code rates for specific systems and QoS
requirements. This model can be altered to accommodate real
codes and probabilities of link failures.

The state of the Gilbert–Elliott channel is related to the in-
stantaneous capacity and the code rate as follows. Let code rate

be given. The Gilbert–Elliott channel is ON if or
equivalently

(4)

It is OFF otherwise. We can rewrite the generator matrix for this
Gilbert–Elliott channel as

(5)

where is the exponential decay parameter of the Markov chain
and is the threshold defined in (4). The corresponding service
rate is zero when the channel is OFF and when the channel is
in its ON state.

Under these assumptions, the maximum throughput of this
wireless channel is immediately seen to equal

This throughput can be optimized by selecting a proper code
rate . A higher rate allows more information to be transmitted
when the channel is ON. However, it also implies that the channel
is ON less often (larger ). Conversely, a lower rate increases
the probability of the channel being ON but reduces the rate at
which data is transfered. Fig. 3 plots the throughput as a function
of code rate . The parameter values for the wireless channel
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TABLE I
SYSTEM PARAMETERS

used in this example appear in Table I. The maximum average
throughput is 508 kb/s, and it is achieved with a code rate

Mb/s.

III. QUEUEING PERFORMANCE OF MARKOV-MODULATED

PROCESSES

In a wireless system, much like in a broadband network, the
usage of system resources may not be well assessed by the
single value of throughput or Shannon capacity. Performance
measures such as queue length, packet loss probability, and
delay play an instrumental role in user satisfaction. Require-
ments on these attributes may force a wireless system to operate
much below its theoretical Shannon limit. Furthermore, the un-
reliable link quality intrinsic to wireless communication along
with stringent delay and loss constraints may significantly alter
the optimal allocation of system resources. This is exemplified
below.

A. Markov Fluid Model of a Queue

Consider a simple fluid queueing system with a single queue
and one server. Let denote the instantaneous arrival rate,
and let be the instantaneous service rate. The cumulative
arrival function over interval is given by

Similarly, the amount of service offered in the interval is
equal to

Under a work-conserving policy and provided that the queue is
initially empty, the state of the queue is governed by the fol-
lowing equation [6]:

This generic model provides an appropriate framework for eval-
uating the performance of a queueing system subject to QoS
constraints.

A natural choice to model the communication system intro-
duced in the preceding section is a Markov-modulated fluid
process. Consider a queue subject to a Markov-modulated rate
process. Let be the generator matrix of the underlying finite-
state Markov process, and assume that is irreducible with state
space . In particular, the off-diagonal entry
represents the transition rate of going from state to ; and the
corresponding diagonal entry is , making
the total row sum zero. The state is associated with a rate ,
which represents the difference between the instantaneous ar-
rival rate and the instantaneous service rate. Hence, the net rate

of change in the buffer while in state is when the buffer
is not empty, and it is equal to when the buffer is
empty. In other words, when the buffer is empty and the Markov
process is in state with then the buffer simply remains
empty. We denote the diagonal matrix by .

If we use to denote the level of fluid in the buffer at time
and we let be the state of the underlying Markov chain at

time , then forms a continuous-state Markov process.
Define the event probability

Using the Chapman–Kolmogorov equation, we find that the
function satisfies

(6)

where . The equilibrium
distribution of the continuous-state Markov process

is subject to , which in turn yields

(7)

We denote the invariant probability distribution of the under-
lying Markov chain by , with . Then

Since the equilibrium distribution is a bounded solution to (7),
it has spectral representation

(8)

where are the stable eigenvector–eigenvalue pairs of
the eigenvalue problem

(9)

If is reversible [22], then all such eigenvalues are real num-
bers [23]. Moreover, there are strictly
negative eigenvalues (counting multiplicity). These values are
the ones included in (8). The coefficients are found using
the boundary conditions

The unique solution to this boundary value problem is the equi-
librium distribution [24]. The reader is referred to Mitra [25]
and Meyn [26] for additional information about fluid models.

B. Equilibrium Distribution of Gilbert-Elliott Systems

Consider a communication system where data arrives in a
buffer at a constant rate . Suppose that this buffer is
serviced through a wireless connection at a rate , where
is the Markov-modulated process described in Section II. That
is, is equal to when the channel is ON, and zero otherwise.
We assume that the generator matrix of the underlying finite-
state Markov chain is the matrix obtained in (5), i.e.,
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Note that is reversible since and are in detailed balance,
. The net arrival rate in the buffer when the

buffer is not empty is

The eigenvalue problem has two solution pairs

The queue will be stable provided that

(10)

Under this condition, converges in distribution to a finite
random variable . Using the boundary condition ,
we obtain the equilibrium solution

(11)
Based on this equilibrium distribution, we can compute a
number of performance metrics including the probability of
buffer overflow, its exponential rate of convergence to zero, and
the effective capacity of the system.

The probability of buffer overflow is an important perfor-
mance metric. For the Gilbert–Elliott system at hand, the prob-
ability of the buffer exceeding a threshold is given by

As seen in (11), the eigenvalue problem (9) applied to the
present two-state system contains only one negative solution.
The large deviation principle governing the probability of
buffer overflow is therefore immediately seen to equal

The large deviation principle governing the distribution of a
queue is sometimes preferable as a design criterion because it
admits a simpler form.

The effective capacity is the dual concept of effective band-
width [14]. Given specific system parameters and an exponential

decay rate , the effective capacity is the maximum arrival rate
for which the QoS requirement is fulfilled. Mathematically,
this can be expressed as

(12)

Under sufficient conditions, the effective capacity function is
given by

(13)

where is defined by

For the simple problem considered in this section, (12) leads to

(14)

Taking into account condition (10), this yields an explicit for-
mula for the effective capacity of the Gilbert–Elliott channel

(15)

Appendix I shows that (15) can also be obtained directly
from (13).

C. On–Off Information Sources

Some traffic sources are better modeled as on–off sources.
Voice, for instance, is a good example of an information process
that can be accurately modeled as an on–off source. When two
people are carrying a conversation, they are unlikely to speak
simultaneously. On average, a person involved in a discussion
speaks at most half of the time. Other data sources such as in-
stant messaging applications and wireless sensors [27] can also
be modeled as on–off sources. As such, we extend the analysis
of the previous section to the case where the data source features
an on–off behavior.

Suppose that data arrive in the buffer at a rate , where
is a two-state Markov-modulated source. We assume that

the arrival rate is equal to when the source is ON; it is
equal to zero otherwise. The generator matrix of the underlying
Markov chain for this arrival process can be written as

Again, we assume that the service offered through the wireless
channel is a Markov-modulated process with generator matrix

, as defined in (5). The aggregate system is therefore a sto-
chastic fluid process modulated by a four-state Markov chain.
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The evolution of the buffer content is governed by (6), where
the generator matrix is equal to

Throughout, we use to denote the Kronecker product
of matrices and . Again, it is straightforward to verify that
the generator matrix is reversible. The net arrival rate in the
buffer is represented by

where the matrix is defined by

We assume that the system is stable; that is, the following con-
dition is satisfied:

The equilibrium distribution of this system is governed by (7),
and its spectral representation follows the general form of (8).

The generalized eigenvalue problem admits
three eigenvector–eigenvalue pairs in the present case because

is a third-order polynomial . We note that
the underlying Markov chain is reversible since it satisfies the
detailed balance condition, for .
This property ensures that all the eigenvalues of are
real numbers. The first eigenvector is the invariant distribution
given by

(16)

The associated eigenvalue is, of course, zero. To find the re-
maining two eigenvector–eigenvalue pairs, we make an edu-
cated guess based on a standard decomposition technique pop-
ularized by Mitra [25]. For any vector of the form ,
we can rewrite (9) as

(17)

Consider the two vectors defined by

(18)

where is either solution of the quadratic form

(19)

It is straightforward to show that the vectors jointly defined
by (18) and (19) are eigenvectors of (17), with corresponding
eigenvalues

(20)

Incidentally, (19) is obtained by equating the preceding two ex-
pressions for . Since (19) has two distinct real roots, the two
associated eigenvectors along with the invariant distribution de-
scribed in (16) completely characterize the eigenvalue problem

. We can see from the spectral representation of
the equilibrium distribution (8) that the large deviation principle
governing the queue occupancy is dominated by the largest neg-
ative eigenvalue of (17).

Consider an exponential decay rate requirement of on
the probability of buffer overflow

(21)

This requirement will be satisfied provided that the largest neg-
ative eigenvalue of (20) is less than . In particular, we want
the following equations to hold:

These conditions will be fulfilled if and only if the value of
corresponding to the largest negative eigenvalue of (20) is less
than but greater than , where is the effective ca-
pacity introduced earlier

and is the effective bandwidth of a two-state Markov-mod-
ulated fluid source [28], [3], [12]

Clearly, the QoS requirement of (21) can only be met if
. A standard buffer decoupling argument shows that this

inequality is, in fact, a necessary and sufficient condition for (21)
to hold. That is, the exponential decay rate requirement
will be satisfied if and only if . The decoupling
argument is contained in Appendix II.

This observation greatly facilitates the performance analysis
contained in the next section. In particular, for a QoS require-
ment such as (21), an on–off source shares the same service
needs as a constant source with rate . Thus, for a given

, the allocation of system resources can be studied in terms
of fixed arrival rates, whether the source rate is a constant or a
Markov-modulated fluid model. This is illustrated in the next
section.
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Fig. 4. Optimal code rate (dashed) and effective capacity (solid) as a func-
tion of exponential decay rate � for various Markov decay parameters � 2
f10 ; 10 ; 10 g.

IV. PERFORMANCE ANALYSIS OF GILBERT–ELLIOTT SYSTEMS

We proceed to analyze the performance of the Gilbert–Elliott
system as a function of physical resources. Following the liter-
ature on effective bandwidth, we use the exponential decay rate
as our primary performance measure.

A. Effective Capacity Analysis

The effective capacity quantifies the maximum supported ar-
rival rate for a set of system parameters and a QoS constraint

. It is an appropriate tool to quantify the optimal oper-
ating point of a wireless system. This maximum rate can either
be the true rate of a constant source or the effective bandwidth
of a time-varying source. Fig. 4 shows the maximal supported
arrival rate as a function of the QoS constraint for the
system parameters of Table I and the Markov decay param-
eters . This figure also includes the op-
timal code rate as a function of . We emphasize that for
queueing constraint , the optimal code rate differs from
the throughput maximizing rate introduced in Section II-A. Not
surprisingly, more stringent QoS constraints result in lower ef-
fective capacities for fixed system parameters. This is intuitive
since a lower arrival rate reduces the expected queue length.
More importantly, we see that the optimal code rate is also a
function of the QoS requirements. Under strict QoS constraints,
an error-control code with a lower rate performs better as it re-
duces the probability of the channel being OFF. This analysis
provides a new and systematic way to select the code rate as
a function of the channel profile and the QoS requirement of a
specific system.

It is interesting to note that the maximum throughput and the
corresponding code rate are independent of the Markov-decay
parameter ,

However, the effective capacity for depends heavily on
the statistical profile of the channel. Correlation impairs effec-
tive capacity. The higher the correlation coefficient, the lower
the effective capacity. In other words, a throughput analysis of
this system is not sufficient to provide an accurate assessment of
supported rates under strict QoS constraints. This also implies
that the common assumption that channel realizations are in-
dependent and identically distributed through time may lead to
over-optimistic performance predictions on effective capacity.

B. Resource Requirement Analysis

The effective capacity shown in Fig. 4 decays rapidly as a
function of . It is therefore of interest to look at the reverse
problem; for a given arrival rate , we wish to characterize the
amount of physical resources necessary to meet a prescribed
QoS constraint . First, we note that a necessary condi-
tion for a solution to exist is the stability criterion .
However, this condition may not be sufficient. Looking at (14),
we see that a solution exists if and only if we can find a power

and a bandwidth such that

This equation can be rearranged as

Since , the following inequality must apply:

A necessary and sufficient condition for a solution to exist is
. We emphasize that, even with an unlimited power

and spectral bandwidth budget, only a finite arrival rate can be
supported for a QoS constraint . Furthermore, this bound
is independent of the actual code rate used in the system.
This fact is in sharp contrast with Shannon capacity, which goes
to infinity as power and spectral bandwidth grow unbounded.
This limitation is partly due to the fact that, in the system under
study, the transmitter has no knowledge of the channel gain.
Thus, it cannot transmit at the (error-free) instantaneous channel
capacity. Without channel state information, the best decay rate

is limited by the ratio of to the arrival rate . In the limit
where the power and spectral bandwidth become very large, the
queueing behavior of the system is increasingly dominated by
the holding time of its OFF state. The queue is drained almost
instantaneously when the channel is ON, while it rises linearly
when the channel is OFF. The probability of the queue exceeding
a threshold is then dominated by the duration of an OFF period,
which is exponentially distributed.

Fig. 5 shows the target power as a function of the QoS
constraint for an arrival rate 14.4 kb/s and the parameters
of Table I. Note that power can be obtained in closed form as
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Fig. 5. Signal power as a function of exponential decay rate � for various
Markov decay parameters � 2 f10 ; 10 ; 10 g.

Fig. 6. Spectral bandwidth as a function of exponential decay rate � for various
Markov decay parameters � 2 f10 ; 10 ; 10 g.

As expected, the required power goes to infinity for a finite .
The set of supported exponential decay rates is intimately con-
nected to the Markov decay factor . Not only does correlation
decrease effective capacity, it also limits the rates and qualities
of service that can be sustained on a given wireless channel.
Similar findings can be obtained for the spectral bandwidth re-
quirement as a function of arrival rate and QoS constraint

. Fig. 6 shows minimum spectral bandwidth as a function of
decay rate for an arrival rate of 14.4 kb/s. Again, the
amount of resource required goes to infinity for a finite .

The speech process of an interlocutor involved in an English
language conversation can be modeled as an on–off information
source [29]. Exponentially distributed talk spurts with a mean
duration of 352 ms are followed by silent periods with
mean 650 ms. Using advanced signal processing tech-
niques, active speech can be compressed to a rate of 14.4 kb/s
[30]. The average throughput of an encoded speech process is
therefore 5.06 kb/s. However, for a delay constraint of 20 ms or
an approximately equivalent QoS constraint , the effec-
tive bandwidth of speech is essentially equal to 14.4 kb/s. The
very strict delay constraint imposed on speech traffic forces the
effective bandwidth to be nearly equal to its peak rate, which is
much higher than the average throughput. As seen on Figs. 5 and
6, voice traffic cannot be successfully transmitted over highly
correlated channels without sophisticated power control. This

partly explains why power control is critical to cellular tele-
phony [31]–[33].

V. NUMERICAL ANALYSIS

In Section II, the Gilbert–Elliott channel model is intro-
duced as a first-order approximation to the autocorrelation of
a Rayleigh-fading channel. This simplified channel model per-
mits the derivation in closed form of many important quantities,
including the probability of buffer overflow and the effective
capacity. Recall that the Gilbert–Elliott model is based on two
assumptions. First, the state of the Gilbert–Elliott channel iden-
tifies whether the instantaneous realization of the underlying
Rayleigh channel lies above or below a prescribed threshold.
Second, the stochastic process representing the time evolution
of this quantized channel is accurately modeled as a two-state,
continuous-time Markov chain.

While it is mathematically convenient to assume that the
quantized channel possesses the Markov property, a more
common approach is to assume that the channel itself is
Markov (not the quantized version). Furthermore, we note that
it is straightforward to construct a Rayleigh-fading channel
that possesses the Markov property. In particular, consider the
Ornstein–Uhlenbeck equation

where are real constants and is a one-dimensional
Brownian motion. The solution to this stochastic differential
equation is called the Ornstein–Uhlenbeck process. This solu-
tion has the Markov property and it is given by [20], [34]

The variance of this process at time can be computed explicitly
as

If and , then for all
. A Rayleigh-fading channel that possesses the Markov

property can therefore be obtained by assigning independent
stationary Ornstein–Uhlenbeck processes to the in-phase and
quadrature component of the channel. The first-order statistic
of the corresponding is a zero-mean, proper complex
Gaussian process as desired. The caveat in this approach is that
the quantized version of the channel becomes a hidden Markov
process. This precludes the application of various results and
techniques including the Chapman–Kolmogorov equation
of Section III and the large-deviation principle for Markov
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Fig. 7. Comparison of PrfL > xg for the two-state Markov channel (solid)
along with the empirically measure probabilities of buffer overflow for the
Markov Rayleigh-fading model (dashed) for decay parameters � = 10 .

fluid processes. These limitations and the vast literature on
Markov-modulated processes explain our early adoption of the
Gilbert–Elliott model in Section II.

In this section, we use numerical simulations to assess the va-
lidity of the Gilbert–Elliott channel model in approximating the
behavior of a Markov Rayleigh-fading channel. Since most of
our results are based on the equilibrium distributions of queues,
we compare the analytic probability of buffer overflow for the
Gilbert–Elliott channel with the empirical distribution of the
queue length for the Markov Rayleigh-fading channel. Recall
that the probability of buffer overflow for the Gilbert–Elliott
channel is given by

Fig. 7 shows for the Gilbert–Elliott channel along
with the empirically measured probabilities of buffer overflow
for the Markov Rayleigh-fading model.

As seen on the graph, there is a noticeable difference be-
tween the two systems. Nevertheless, the exponential decay rate
associated with the Gilbert–Elliott channel seems to provide
an upper bound for the decay rate of the Orstein–Uhlenbeck
system. This is encouraging as the Gilbert–Elliott model appears
to provide a conservative measure of effective capacity.

VI. CONCLUSION

We considered the allocation of system resources in the
context of wireless communications under QoS constraints. A
Markov model was introduced to capture the unreliable nature
of wireless systems. For a given error-correcting code, the be-
havior of the overall wireless connection is assumed equivalent
to a continuous-time Markov chain. Code rate selection affects
system throughput. A higher code rate allows more information
to be transmitted when the channel is ON, but it also reduces the
probability of this event occurring. Conversely, a lower code
rate increases the probability of the channel being ON, yet it
decreases the rate at which information flows when the wireless

link is ON. The throughput of a system can be optimized by
proper code selection.

While throughput represents a major component of user sat-
isfaction; queue length distribution, packet loss probability, and
delay are also important factors that influence the QoS perceived
by the users. One of the main QoS measures present in the liter-
ature is the large deviation principle governing the probability
of buffer overflow, i.e.,

This definition of QoS was used to conduct a performance anal-
ysis of the Gilbert–Elliott system as a function of physical re-
sources. The effective capacity is found to decay sharply as a
function of QoS constraint . Furthermore, the optimal
code selection for a wireless system depends on its QoS require-
ment. A more stringent constraint on lowers the optimal code
rate .

Correlation is also found to have a major impact on perfor-
mance. The effective capacity of a slowly varying channel can
be very small. For communications under QoS constraints, the
popular assumption of independent and identically distributed
channel realizations results in an over-optimistic assessment of
system performance. The impact of correlation on system per-
formance is perhaps best exemplified by the fact that arrival rate

can only be supported if . That is, even with un-
limited amount of physical resources, the maximum arrival rate
supported under QoS constraint is bounded.

The numerical analysis section suggests that alternative
Markov models for the underlying wireless channel should
be explored. For instance, a finite-state Markov model can be
used to represent the channel itself, rather than modeling the
ability of the decoder to recover data reliably. The performance
evaluation method presented in this work provides, nonethe-
less, an elegant framework to quantify the amount of physical
resources necessary to support rate under QoS constraint .
Alternatively, this framework can be used in conjunction with
effective capacity to characterize the maximal arrival rate
subject to specific resource and QoS constraints.

APPENDIX I
EFFECTIVE CAPACITY OF SERVICE PROCESS

In this appendix, we use the Kolmogorov backward equation
to derive a formula for the effective capacity of a Markov-mod-
ulated service process. We parallel an argument by Kesidis et
al. [28], albeit in the context of effective capacity.

Consider the stationary fluid process introduced in Sec-
tion III. Recall that a process is said to be Markov fluid if its
time derivative is a function of a continuous-time, finite-state
Markov chain. Let be the amount of service offered to
a user during the interval , and suppose that is a
Markov fluid process. Let denote the state of the modulating
Markov chain, taking value in . Using previously
established notation, has generator matrix and invariant
distribution . When the modulating chain is in state ,
we denote the offered service rate by . We assume that



1776 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

for all . Given
that the generator matrix is irreducible and reversible, we
can write the effective capacity of this channel as

We proceed to evaluate explicitly. Define the function

For positive , the transition matrix can be written as

Using this notation, the standard backward equation becomes

Rearrange the preceding equation, we get

(22)

As , (22) becomes

Defining the diagonal matrix and the
vector

we can write the above equations in matrix form as

(23)

This differential equation is subject to the boundary conditions
. It follows that

We can rewrite the effective capacity as

Using the Perron–Frobenius theorem [35], we obtain

where are the eigenvalues of the matrix .

Fig. 8. Illustration of the three systems introduced in the buffer decoupling
argument.

A. Two-State Markov Fluid Example

Consider the Gilbert–Elliott channel model introduced in
Section II. For this channel, the generator matrix is given by

The characteristic equation of the matrix is equal to

The maximum eigenvalue of the matrix is immedi-
ately found to be

Thus, the effective capacity of the Gilbert–Elliott channel
model is

(24)

Using the relations and , the effective
capacity function can be expressed as

which coincides with (15).

APPENDIX II
BUFFER DECOUPLING ARGUMENT

Consider a queueing system with a Markov-modulated
arrival process and a Markov-modulated service process

. Compare this single queue with a system that contains two
queues. The arrival rate in the first queue is again and the
service offered to the second queue is . Moreover, the first
queue is serviced at a constant rate whenever it is nonempty,
and the departing packets from the first queue are immediately
placed in the second queue. This is illustrated in Fig. 8. Because
of the additional constraint present in the second scenario, the
queue length in the first system is always less than or equal to
the sum of the queues in the latter system.
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Now compare the second system with a network composed of
two independent queues. The arrival process in the first queue
is , and this queue is served at a constant rate when it is
nonempty. Packets arrive in the second queue at a constant rate

, and they are served at a rate . Note that the length of the
first queue in the third system is always equal to the length of the
first queue in the second system. Furthermore, the length of the
second queue in the second system is always less than or equal
to the length of the second queue in the third system. It follows
that the large deviation principle governing the queue length in
the first system is always less than or equal to the large deviation
principle governing the sum of the queues in the third system.
As such the QoS constraint as defined in (21) will be fulfilled
whenever there exists a positive such that .
In particular, is a sufficient condition for the QoS
requirement of (21) to be satisfied. This is the desired property.
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