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Abstract— Network coding has gained significant attention
in recent years as a means to improve throughput, especially
in multicast scenarios. These capacity gains are achieved by
combining packets algebraically at various points in the network,
thereby alleviating local congestion at the nodes. The benefits
of network coding are greatest when the network is heavily
utilized or, equivalently, when the sources have infinite backlogs.
However, if a network supports delay-sensitive applications,
traffic is often sparse and congestion becomes undesirable. The
lighter loads typical of real-time traffic with variable sources
tend to reduce the returns of network coding. This work seeks
to identify the potential benefits of network coding in the context
of delay-sensitive applications. As a secondary objective, this
paper also studies the cost of establishing network coding in
wireless environments. For a network topology to be suitable
for coding, links need to possess a proper structure. The cost
of establishing this structure may require excessive wireless
resources in terms of bandwidth and transmit power. Together,
these effects decrease the potential benefits of network coding.
For real-time applications over wireless networks, it may be best
not to combine information at the nodes.

I. INTRODUCTION

Network coding is a new paradigm that has received much
attention in the literature lately [1], [2], [3], [4]. It has
the potential to improve the throughput and robustness of
communication networks. This performance gain is achieved
by relaxing the assumption that data belonging to different
information flows should remain separated. Indeed network
coding is a transmission strategy where packets are combined
algebraically at intermediate nodes in the network, and can
be viewed as an extension of traditional routing. In certain
circumstances, network coding helps improve overall through-
put and it is known to achieve the min-cut flow in multicast
scenarios [5].

The research enthusiasm generated by network coding can
be explained, partly, by the ever expanding demand for Internet
access and fast connectivity. Not only is network coding math-
ematically elegant, it seeks to improve network performance at
a time when the number of data applications is rising furiously.
The growing demand for network connectivity is felt both at
the core of the Internet and at its periphery, where wireless
systems are increasingly employed to provide flexibility to
mobile users. One class of data connections that is rapidly
gaining prominence on the Internet is the traffic generated by
real-time applications. Delay-sensitive services including VoIP,
video conferencing, gaming and electronic commerce are now
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commonly used by vanguardists on both wired and wireless
devices. Future communication infrastructures are therefore
expected to carry much larger volumes of data with varying
quality of service (QoS) requirements. This paper seeks to
provide preliminary answers to two important questions.

First, are the potential benefits of network coding as sub-
stantial in the context of delay-sensitive applications? It seems
intuitively clear that the gains of network coding are maximal
when the links in the network are fully utilized. However,
the bursty nature of many data sources and the service
quality required of most real-time applications may force a
network to operate much below its maximum throughput. This
phenomenon is captured, in part, by the concept of effective
bandwidth, which identifies the data-rate needed by a source to
fulfill its service requirement [6], [7]. The effective bandwidth
of a source can be much larger than the average throughput
it generates. The sparse traffic generated by delay-sensitive
applications combined with the gains associated with statistical
multiplexing act as to decrease the benefits of network coding.
Therefore, it is not clear how much we gain with network
coding in a communication system subject to QoS constraints.
In this paper, we provide quantitative results on the benefits of
network coding for a simple butterfly network in the context
of delay-sensitive applications.

Another pertinent observation about network coding is that
it often requires a structured network topology. Coding benefits
are optimum when the data-rates of various links are integer
multiples of one another. In a wireless environment, physical-
layer resources can be allocated progressively to the different
nodes. To maximize the coding gain, the resources must be
assigned as to create a suitable topology. While this enables
efficient coding, there may be a non-negligible cost associated
with creating such a structure. In other words, in a wireless en-
vironment, the performance of a system with network coding
should be compared to the operation of the equivalent classic-
routing system, but with physical resources allocated optimally
in both cases. The second question we seek to address is the
following. When is it relevant to create a topology suitable for
network coding in a wireless environment?

These two questions are not only related through the rising
popularity of real-time applications over wireless networks,
their answers necessitate the development of analogous math-
ematical tools. This similarity motivates our joint treatment of
these related topics. Specifically, we investigate the impact
of network coding on the queueing behavior of wireless
communication systems. We consider a simple scenario where
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two varying rate sources communicate to multiple destinations
through the notorious butterfly network. We analyze the perfor-
mance of this system, and compute its achievable rate-region
when the system operates under stringent service constraints.
Due to the time-varying nature of arrivals and service, it is
difficult to provide deterministic delay guarantees. Thus, we
adopt a statistical QoS measure that captures the asymptotic
decay-rate of buffer occupancy

θ = − lim
x→∞

ln Pr{L > x}
x

, (1)

where L is the equilibrium distribution of the buffer at the
transmitter. The parameter θ reflects the perceived quality
of the corresponding communication link: a larger θ implies
a lower probability of violating the delay restriction or a
tighter QoS constraint. This metric is closely tied to large-
deviation theory and forms a basis for the concept of effective
bandwidth, which has been studied extensively in the past [8],
[9].

Fig. 1. Network with tandem queues

To study the performance of a communication system
subject to a buffer occupancy constraint akin to (1), we need to
characterize the queueing performance of the network. In the
framework adopted in this paper, independent sources sharing
the same link can be studied separately. This is one of the
appealing properties of an analysis based on large deviations.
The main challenge is to characterize the performance of the
tandem network shown in Fig. 1. This network consists of
two successive nodes where the input to the second node is
the output of the preceding one. Due to page limitations, we
can only state the results obtained for the tandem queue and
apply them to study the butterfly network.

Fig. 2 shows the butterfly network we wish to study. We
consider two distinct versions of the butterfly network. First,
we analyze an AWGN limited network with constant and
identical link capacities. This configuration is suitable for
network coding and provides ground for our initial queueing
comparison. Then, we examine a wireless network under a
broadcast paradigm. In the latter case, we assume that network
resources can be allocated among the various nodes to create
non-identical links, thereby maximizing the performance of
each configuration.

To compare the queueing performance of network coding
versus classical routing, we compute the achievable rate re-
gions for both cases. Not too surprisingly, network coding
outperforms classical routing for a network with identical link
capacities. Although statistical multiplexing had the potential
to offset some of the coding gain, classical routing remains
a distant second to network coding for all QoS requirements.
The wireless butterfly offers more interesting results. In this
case, combining packets at intermediate node 3 doesn’t always
offer throughput benefits, and sometimes may even be harmful.
This phenomenon depends on the physical location of the
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Fig. 2. Butterfly Network with Buffers of Interest

nodes. It results from the fact that network coding needs
symmetric links between link 1–3 and link 1–5 for the coding
gains to be realized. If the link capacities are not equal on
both these links, then destination C needs to wait for packets
from the slower link to be able to decode the cross-traffic from
source B.

II. PROBLEM STATEMENT

We study a communication system where two independent
users wish to send their messages to two common destinations
over a butterfly network, as shown in Fig. 2. A multicast
scenario is considered, where independent sources A & B
store their respective information in buffers at nodes 1 & 2,
and must transmit their data to both destinations, C & D. To
facilitate this, node 1 sends its packets to node 5 and a replica
to the buffer at node 3. Similarly, node 2 forwards its packets
to node 6 and to a buffer at node 3. Node 3 can take two
courses of action; either it stores the packets from both sources
and forward them successively to node 4 or it combines the
packets algebraically before forwarding the data.

The first case will be called the no coding case. In this
scenario, node 4 duplicates the received packets from node 3
and forwards copies to nodes 5 & 6. These destination nodes
disregard the redundant information (or they could use it to
improve the reliability of the previously received data) and
retain the new information. For the second case, we consider
a simple network coding scheme where node 3 adds the
two streams of packets over GF (2) and relays the coded
packets to node 4 [5]. The latter duplicates the received
packets and transmits them to nodes 5 & 6. Node 5 can
resolve the information received from node 2 by adding the
packets obtained from node 1 to the corresponding packets
received from node 4. In a similar fashion, node 6 can decode
the information originating from node 1 by adding it to the
corresponding packets from node 4. Service quality is captured
by a global QoS constraint θ0 on the system. That is, the
asymptotic decay-rate of buffer occupancy must not exceed
θ0 for any of the queues in the system.

For the sake of analysis, we assume that packets are
infinitely divisible and hence arrival and service processes
are fluid in nature. Accordingly, it becomes possible to define
instantaneous arrival and service rates. Under this assumption,
we have a single server fluid queue at all the nodes. We
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also take the buffers in the system to be arbitrary large. For
finite buffers, a similar approach applies albeit with additional
boundary conditions on the buffer occupancy.

A. Source Model
Many real-time traffic sources can be accurately represented

by on-off sources [10]. This motivates our assumption of
arrivals being two-state Markov-modulated fluid processes. In
addition, there is a vast amount of literature available on the
queueing behaviors of Markov-modulated fluid processes for
wire-line networks [11], [7], [8]. We postulate that source A is
independent from source B and they both satisfy the following
assumption.

Assumption 1: In an on state, the source emits packets at
a constant peak rate into its corresponding data buffer, and
remains idle otherwise. Moreover, the off and on times are
independent and exponentially distributed.
The peak-rate for source at node i ∈ {1, 2} is taken as ai.
Whereas, the mean off and on times are denoted by λ−1

i and
μ−1

i respectively.

B. Queueing Model
We denote the capacity of link i–j by cij . That is, if there

is a link between nodes i & j and the buffer associated to
node i is non-empty, then this node can transmit to node j
at a maximum rate cij . For simplicity, we assume that c34 =
c45 = c46 = c3. The offered service-rates on links 4–5 and 4–6
are then equal to the maximum arrival-rate at node 4. As such,
node 4 doesn’t need to store any data. It only facilitates the
forwarding of the packets it receives, to nodes 5 & 6. Hence,
the buffer associated to node 4 is always empty.

Node 1 sends the same information to both nodes 3 & 5,
and therefore retains data in its buffer until both receiving
nodes have acquired the packet. The service rate at node 1
is c1 = min{c13, c15}. Similarly, the service offered to the
buffer at node 2 is c2 = min{c23, c26}. More specifically,
nodes 1, 2 and 3 transmit packets at rates c1, c2 and c3,
respectively, whenever their own buffers are non-empty. Note
that, by construction, congestion can only occur at these nodes.
We can therefore safely assume that there are no queues at the
other nodes. We have depicted the fluid model of interest in
Fig. 2, for the butterfly network under consideration.

III. KEY RESULTS

In this section, we list the results needed to compute the
achievable rate-regions for communicating through a butterfly
network under specific QoS requirements. Let L1(t) be the
amount of fluid at time t in an arbitrary large reservoir being
fed by an on-off source satisfying Assumption 1, and serviced
at a constant rate c. Let a denote the arrival-rate into this buffer
when the source is on. The mean off and on times of the source
are denoted by λ−1 and μ−1, respectively. Furthermore, the
output of this queue (also called departure process) is fed into
another arbitrary large reservoir. This second queue is being
serviced at a constant rate ν. The amount of fluid in the latter
buffer at time t is denoted by L2(t).

We wish to find maximum rate a, such that the QoS
constraint θ0 is satisfied by both queues. Let θ1 and θ2 be the

asymptotic buffer decay-rate governing the first and second
queues in the tandem network, where

θj = − lim
x→∞

ln Pr{Lj > x}
x

(2)

and Lj is the steady-state distribution of the jth buffer in
tandem. Specifically, we wish to find set A such that

A(θ0, c, ν) = {a ∈ R
+ : θ0 ≤ min{θ1, θ2}}.

Here, a ∈ R
+ is admissible with a ∈ A(θ0, c, ν) if and only

if

a ≤
{

a1(θ0, ν) 0 < ν ≤ ν∗

min{a1(θ0, c), au2(θ0, c, ν)} ν∗ < ν < c;
(3)

where a1(θ, c) � c + cμ/(λ + cθ) and the expression for
au2(θ, c, ν) is

c

⎡
⎢⎣1 +

μ

λ

⎛
⎝−1 +

√
1 − [(c − ν) θ

μ − 1][(c − ν) θ
λ − 1]

(c − ν) θ
μ − 1

⎞
⎠

2⎤⎥⎦ .

Parameter ν∗ is given implicitly by

c

ν∗ − 1 =
θν∗μ

λμ + (λ + θν∗)2
.

IV. ACHIEVABLE RATE REGIONS

The results listed above can be used to characterize the
achievable rate regions for the butterfly network under con-
sideration, with independent on-off sources A & B. Let θi

be the asymptotic decay-rate of buffer-occupancy for buffer at
nodes i ∈ {1, 2, 3}, and let a1 and a2 be the peak-arrival rates
from sources A and B, respectively. We need to find the set
of all two-tuples (a1, a2) such that the global QoS constraint
θ0 is satisfied, i.e.,

R =
{
(a1, a2) ∈ R

+ × R
+ : θ0 ≤ min {θ1, θ2, θ3}

}
. (4)

A. Network Coding

For network coding, packets on links 1–3 and 2–3 are
combined algebraically over GF (2) and then stored in the
buffer at node 3. From a fluid perspective, this is equivalent to
both flows entering the buffer at node 3 oblivious of the other
flow. Buffer 3 can be serviced at a maximum rate c3. However,
to avoid any decoding delay at the destinations, the service
rates offered at nodes 1, 2 and 3 are c′1 = min{c1, c3}, c′2 =
min{c2, c3} and c′3 = max{c′1, c′2}. Using the notation of the
previous section, we can write the achievable rate-region R
for this system as Rnc = A1(θ0, c

′
1, c

′
1)×A2(θ0, c

′
2, c

′
2), where

Ai is the achievable rate region corresponding to the source
at node i.

B. Classical Routing

For the case of classical routing, consider two parallel
buffers at node 3 with positive constant service-rates ν and
c3 − ν, respectively. Assume that the flow from node 1 goes
to the first buffer; and the flow from node 2, to the second
one. The aggregate fluid in both the buffers will be greater
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than or equal to that of a single buffer with incoming flows
from nodes 1 & 2 and serviced at rate c3. Thus, the LDP of
a single buffer at node 3 would be larger than the LDP of
the aggregate of the parallel buffers. Yet, it can be shown that
for independent flows and an optimal splitting, they are equal.
Therefore the two independent flows can be studied separately.
If the shared buffer is constrained by a requirement θ0 on the
decay-rate of buffer-occupancy, the queues in the decoupled
system are constrained by the same parameter as well. For
a given ν ≥ 0, we can find the allowable rate-pairs (a1, a2)
such that the QoS constraint θ0 is satisfied by the system.
Accordingly, the achievable rate-region will be equal to the
union of the regions corresponding to all possible values of ν.
That is,

Rcr =
⋃

0≤ν≤c3

A1(θ0, c1, ν) × A2(θ0, c2, c3 − ν); (5)

where Ai is the achievable rate region corresponding to the
source at node i.

V. WIRELESS BUTTERFLY NETWORK

We study a wireless butterfly network under a broadcast
paradigm. We assume that the system operates in frequency
division multiplexing (FDM) mode. Consider the multicast
scenario where two sources wish to communicate with two
destination nodes. An additional node that acts as a relay is
present to facilitate communication over the network. All the
nodes have identical power budget P and the total spectral
bandwidth available to the system is limited. The source nodes
produce independent on-off traffic, as in our previous setting.
The total available spectral bandwidth W is divided to make
three non-interfering frequency bands.

Node 1 broadcasts its message to nodes 3 & 5, and node 2
does the same to nodes 3 & 6. Node 3 can broadcast its
message to nodes 5 & 6. The packets transmitted by node 3
can be either multiplexed messages from nodes 1 & 2, or their
algebraic sum. We call these modes of operation routing and
network coding, respectively.

For simplicity, we assume that all the transmission links
are time-invariant. We consider two cases: (i) the additive
white Gaussian noise (AWGN) case, and (ii) channels that
are subject to path loss components. Again, we suppose that
every node is equipped with an arbitrary large buffer to store
information before being sent to the destination. We also
assume that a simple link layer acknowledgment scheme is
present, so that data is flushed out of the corresponding buffer
once reception is confirmed.

A. Channel Model
For an AWGN channel, the maximum rate at which error-

free data transfer is possible is given by

W log2

(
1 +

P

N0W

)
(6)

where P is the power of the received signal, N0/2 is the
double sided power spectral density of the noise process, and
W is the spectral bandwidth. Recent developments in error-
control coding allow operation near Shannon capacity with

minimal error-rates and small delays. Therefore, the channel
capacity expression of (6) can be viewed as an optimistic
approximation of code performance. We assume that codes
are designed to operate at a fixed rate which is the constant
service rate offered by the channel. In the case where all the
links are AWGN limited, we allocate equal spectral bandwidth
to the links, and hence they become of equal capacity. We
can denote the constant service rate offered by each link
as c = (W/3) log2 (1 + 3γ), where γ = P/(N0W ) is the
observed SNR.

For the second case, we ignore fading and assume that
received power decays exponentially in distance with an
exponent α. With a spectral bandwidth allocation of ξW and
a distance of d meters, the capacity of the corresponding link
in bits/second becomes

c(d, ξ) = ξW log2

(
1 +

γ

ξdα

)
. (7)

Once the spectral bandwidth allocation is completed, the
capacity of each link is fixed. We choose a rate to operate
close to this capacity, which becomes the maximum allowable
constant service rate for the corresponding queue.

B. AWGN Links

First we consider the case when node 3 utilizes network
coding. In this case, the data rate to be transmitted out of
node 3 is the maximum of the rates from nodes 1 & 2,
which is c. Therefore, there is no congestion at this node and
the achievable rate region is limited by the QoS constraint
at nodes 1 & 2. Under a QoS constraint θ0, the maximum
possible rate received by destinations C and D are identical
and equal to a1 from source A and a2 from source B, where

ai = c

(
1 +

μi

λi + θ0c

)
, i ∈ {1, 2}.

That is, the achievable rate region for source rate-pair is Rnc =
A1(θ0, c, c) × A2(θ0, c, c).

Next, we consider the situation where node 3 simply for-
wards packets from nodes 1 & 2 to nodes 5 & 6. Since for
all ν ∈ [0, c] we have Ai(θ0, c, ν) ⊂ Ai(θ0, c, c), the source
rate-pairs (a1, a2) are limited by the congestion at node 3. The
total achievable rate region for classical routing then becomes

Rcr =
⋃

0≤ν≤c

A1(θ0, ν) × A2(θ0, c − ν).

We have plotted the results for different values of θ0 in Fig. 3.
System parameters chosen for this numerical study are N0 =
10−6W/Hz, W = 22MHz, λ−1

1 = λ−1
2 = 650ms, and μ−1

1 =
μ−1

2 = 352ms. Additionally, we chose received power to be
P = 100mW.

C. Links with Path Loss

We consider an example where the sources and destinations
are located on the vertices of a perfect square of side length
d, and the relay node lies on the perpendicular bisector of the
edges connecting the two sources at a distance x. The distance
from the two sources to the relay node being identical, we
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Fig. 3. Performance of a QoS butterfly network.

assume that a fraction ξ/2 of the total bandwidth is allocated
to each source; and the remaining (1−ξ)W , to the relay node.

To maximize the gains of network coding, we need to make
the link capacities identical. The bandwidth allocation is done
accordingly. Hence, we can write the capacity for the network
coding case, as follows:

C(ξ∗) =
ξ∗

2
W log2

(
1 +

2γ

ξ∗dα
e

)

= (1 − ξ∗)W log2

(
1 +

γ

(1 − ξ∗)dα
35

)
;

where de = max(d,
√

(d/2)2 + x2), γ = P/(N0W ), and
the distance from the relay to a destination is d35 = d36 =√

(d/2)2 + (d − x)2.

For the routing case, each source broadcasts its packets to
the relay node, where they are buffered. The relay then simply
forwards the received messages to both destinations using
generalized processor sharing. The links from the sources to
the relay node have identical capacity C13 = C23, given by

C13(ξ) =
ξ

2
W log2

(
1 +

2γ

ξdα
13

)
;

where d13 = d23 =
√

(d/2)2 + x2. Similarly, the link from
the relay node to the destinations have capacity C35 = C36,
given by

C35(ξ) = (1 − ξ)W log2

(
1 +

γ

(1 − ξ)dα
35

)
.

Using the same queueing performance analysis as before and
for a fixed x, we can find the achievable rate-region under
QoS constraint θ0 for network coding and traditional routing
(for different values of ξ). The two regions are shown in
Fig. 4 for transmit power of P = 40W and the same system
parameters as before. Here, we have taken d = 15m and
α = 1.8. The region enclosed by the thick solid lines represent
the achievable rate region achieved by network coding. Thin
solid lines represent the same for classical routing for different
values of ξ. Clearly, classical routing outperforms network
coding in this case.

VI. CONCLUSION

We compared network coding to the classical routing for
this QoS constrained communication system, and computed
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Fig. 4. Achievable Rate Region for x/d = 0.6.

the achievable rate regions for both the cases. For AWGN
case with identical link capacities, network coding outperforms
classical routing for our communication system model. This
essentially implies that network coding gains are more than
the multiplexing gains achieved by routing for a symmetric
network. However, we obtained more interesting results for
the wireless butterfly network. In this case, combining pack-
ets at the intermediate node doesn’t always offer gains and
sometimes it is even harmful. Results depend on the topology
of the butterfly network. For network coding to be useful, we
need a symmetric direct link. It turns out that often it is better
to route packets than trying to set up a direct link (if one can
use the physical resources to set up a link). In our future work,
we wish to study networks with varying service rates.
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