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Abstract—This paper considers the queueing performance of
a system that transmits coded data over a time-varying erasure
channel. In our model, the queue length and channel state
together form a Markov chain that depends on the system
parameters. This gives a framework that allows a rigorous
analysis of the queue as a function of the code rate. Most prior
work in this area either ignores block-length (e.g., fluid models) or
assumes error-free communication using finite codes. This work
enables one to determine when such assumptions provide good,
or bad, approximations of true behavior. Moreover, it offers a
new approach to optimize parameters and evaluate performance.
This can be valuable for delay-sensitive systems that employ short
block lengths.

I. INTRODUCTION

Forward error-correcting codes have played an instrumental
role in the many successes of digital communications over
the past decades [1]. The fact that it is possible to transmit
digital information reliably at a positive rate over an unknown
noisy channel is now universally acknowledged [2]. The main
cost of improving reliability is the use of increasingly long
codewords [3]. One situation where the valuable lessons of
classical coding theory may not apply directly is the general
area of delay-constrained communications. If system speci-
fications dictate that almost all information bits should be
made available at the destination shortly after they arrived
at the transmitter, it may not be possible to aggregate a
large number of them before encoding and transmission. In
some cases, stringent delay requirements will force a system
designer to resort to short block codes or short constraint-
length convolutional codes.

From a coding perspective, using short codewords on chan-
nels with memory creates two impediments. First, decoders
are designed to correct the most-likely error patterns and
the probability of seeing atypical error patterns cannot be
neglected for short block lengths. Second, if the coherence
time of the channel is longer than a codeword transmission
interval, then optimal code rate may depend heavily on the
channel state, which is unknown to the transmitter. Together,
these factors impair the rapid transmission of information.

Coding performance as a function of block-length and code-
rate has been assessed in the information theory literature
using the reliability function [3]. This criterion focuses on the
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exponential rate at which the error probability decays with
block length, known as the error exponent, as a function of
information rate. The concept of a reliability function can
also be extended to variable-length codes in the presence of
feedback [4]. More recently, consideration has been given to
the reliability function for bits with fixed delay, as opposed to
coded blocks, in the presence of feedback [5].

While remarkable, these results remain asymptotic in nature
and do not necessarily capture overall system behavior ade-
quately. For delay-sensitive applications and short codewords,
three interrelated effects come into play. The probability of
decoding failure for every codeword is not negligible. Packet
retransmissions lead to queue buildups at the source and,
thereby, induce longer latencies. Channel correlation over time
introduces dependencies among successive decoding attempts,
which further perturb queueing behavior and end-to-end delay.
This is especially true when decoding failures are likely to
occur in sequence [6]. Thus, a queueing analysis is necessary
when considering the behavior of communication systems
subject to very stringent delay requirements.

For delay-sensitive systems with short codewords, the nat-
ural tradeoff between code-rate and probability of decoding
failure is hard to characterize [7]. In a non-asymptotic regime
where information is queued at the source, transmitting data
at a rate slightly below Shannon capacity may lead to poor
performance. Recent results in the literature hint at the fact
that, for delay-constrained communication, optimal code-rate
selection depends heavily on block-length and channel corre-
lation [8], [9]. These findings are especially important for real-
time traffic and live interactive sessions, as these applications
are sensitive to latency and require the use of short codewords.

Guidelines for code-rate selection in the context of delay-
sensitive traffic were previously obtained for an erasure chan-
nel with memory [10]. The approach favored therein, which
permits a complete characterization of queueing behavior,
consists in building a Markov model for the evolution of
the system. Crucial assumptions that facilitate analysis can
be summarized as follows: the packet arrival process at the
source is Bernoulli, the packet lengths are i.i.d. geometric, the
error protection uses random codes, and the channel evolution
is governed by a Markov chain.

In this article, we adopt a similar formulation and extend
results that were obtained for the correlated erasure case to a
more encompassing Gilbert-Elliot framework. This latter class
of erasure channels is common to the literature on channels
with memory, and subsumes earlier work based on similar
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Fig. 1. A Gilbert-Elliot bit erasure channel is employed to model the
operation of a communication link with memory. This model captures both
the uncertainty associated with transmitting bits over a noisy channel and
correlation over time typical of several communication channels.

concepts. We also present an in-depth analysis of system
performance using different criteria that reflect the needs of
various contemporary applications. This research is significant
because it offers a new perspective on the selection of code-
rate and block-length for delay-sensitive systems and provides
a rigorous investigation into the effects of time-correlation on
the queued performance of real-time wireless connections.

II. CHANNEL ABSTRACTION AND CODING

Throughout, we assume that coded bits are sent from the
transmitter to the destination over a Gilbert-Elliot erasure
channel. This channel can be in one of two states: a good
state g in which every bit is erased with probability εg and
a bad state b in which every bit is erased with probability
εb, independently of other bits. Our naming scheme implies
εb ≥ εg . Transitions between channel states occur according
to a Markov process. The probability of transitioning to state g
given that the Markov chain is currently in state b is denoted
by α. The likelihood of the reverse transition from g to b
is symbolized by β. Under alphabetical state ordering, the
parameters of this Markov chain can be expressed in the form
of a probability transition matrix,

P =

[
1 − α α

β 1 − β

]
. (1)

A graphical interpretation of the communication channel under
consideration appears in Fig. 1.

The state of the channel at time n is a random variable,
which we denote by Cn. Moreover, the succession of states
over time, {Cn : n ∈ N}, forms a Markov process. Finding
the conditional probability Pr(Cn+1 = d|Cn = c) amounts to
selecting an entry in P. Likewise, Pr(Cn+N = d|Cn = c) can
be obtained by locating the corresponding entry in P

N , the
N th power of P. We note that this Markov chain converges to
its stationary distribution at an exponential rate that depends
on the second eigenvalue of P (i.e. 1 − α − β).

In our analysis, a packet of length L is sectioned into M
data segments each containing K information bits. Packing
loss is treated implicitly since the last data segment of each
packet is zero padded to K bits. Every segment is encoded
separately into a codeword of length N , which is subsequently
stored in the queue for eventual transmission over the Gilbert-
Elliot erasure channel. Decoding failures are handled through
immediate retransmission of the missing data.

A. Distribution of Erasures

A quantity that is of fundamental importance in our analysis
is the conditional probability of decoding failure at the desti-
nation. An intermediary step in identifying this probability is
to derive an expression for E, the number of erasures within a
codeword of length N . This, in turn, depends on the number
of visits to each state within N consecutive realizations of the
channel. More specifically, we are interested in conditional
probabilities of the form

Pr(E = e, CN+1 = d|C1 = c), (2)

where e ∈ N0 and c, d ∈ {b, g}. The generating function
for these conditional probabilities is based on generalizing the
entries of P to the vector space of real polynomials in x with

Px =

[
(1 − α)(1 − εb + εbx) α(1 − εb + εbx)

β(1 − εg + εgx) (1 − β)(1 − εg + εgx)

]
.

Let �xj� be the operator which maps a polynomial in x to
the coefficient of xj . Then, the conditional probability (2) is
given, in terms of the N th power of Px, by

Pr(E = e, CN+1 = d|C1 = c) = �xe�
[
P

N
x

]
c,d

.

It is worth mentioning that one can employ this method or
alternative combinatorial means to obtain closed-form expres-
sions for the desired conditional probabilities [11], [10].

B. Probability of Decoding Failure

During every transmission, a segment of K information bits
is encoded using a code defined by a random parity-check
matrix H of size (N−K) × K, where each matrix entry is
selected independently and uniformly from {0, 1}. Maximum
likelihood decoding is used at the destination.

Random coding has the benefit that the probability of
decoding failure depends only on the number of erasures
and not on the locations of the erasures. Consequently, the
decoding failure probability is a function of the number of
erasures E in the block. Once the value of E is known, we
can derive the desired probability as follows. Conditioned on
E = e, decoding at the destination will succeed if and only if
the submatrix of H formed by choosing the e erased columns
has rank e [12]. Furthermore, the probability that a random
e × p matrix over F2, where p = N −K stands for the
number of parity bits, has rank e is equal to

∏e−1
i=0

(
1 − 2i−p

)
.

Thus, given e erasures within a codeword of length N , the
probability of decoding failure can be written as

Pf(N−K, e) � 1 −
e−1∏
i=0

(
1 − 2i−(N−K)

)
.

The average probability of decoding failure at the destina-
tion is therefore equal to Pf(N −K) � E [Pf (N−K,E)],
where the expectation over E depends implicitly on all pos-
sible channel realizations within a block. While the average
probability of decoding failure offers a good measure of per-
formance, it alone does not capture the queueing behavior of
the system. Indeed, correlation among decoding-failure events
may also alter the behavior of the queue at the transmitter.
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III. ARRIVAL AND DEPARTURE PROCESSES

Having introduced a precise model for the physical layer, we
turn to the description of the arrival and departure processes
at the queue. In our framework, the block-length, which we
denote by N , remains fixed throughout and every codeword
transmission requires N consecutive uses of the channel.
Each data packet is broken into length-K data segments
that are separately encoded into blocks. In terms of system
characterization, N is fundamental in that it determines the
sampling period of our Markov chain.

We assume that the packet arrival process is i.i.d. Bernoulli
with parameter γ. This implies that, during each codeword
transmission interval, a new packet arrives at the source
with probability γ. The number of bits in each data packet
is assumed to be an i.i.d. random process whose marginal
distribution is geometric with parameter ρ. Therefore, the
probability that a packet contains exactly � bits becomes

Pr(L = �) = (1 − ρ)�−1ρ � = 1, 2, . . .

where ρ ∈ (0, 1). These assumptions on the structure of the
arrival process and the packet-length distribution are crucial
for the construction of a tractable Markov model for our
communication system. They enable a rigorous analysis of the
queue and lead to meaningful guidelines for system design and
optimization.

Departures from the queue are governed by the underlying
Gilbert-Elliot channel and the design-rate r = K/N of our
random linear code. The number of information bits contained
in every codeword is therefore K = rN . A low-rate code will,
in general, have a smaller probability of decoding failure than
the same system with a higher rate code. Still, the successful
decoding of a codeword associated with a high-rate code
leads to the transmission of a larger amount of data bits.
These competing considerations create a natural tradeoff be-
tween information content and probability of decoding failure.
Accordingly, the code-rate r, or equivalently the number of
information bits K, is a parameter that should be optimized.

Once a code rate is selected, the number of successfully
decoded codewords needed to complete the transmission of a
given packet is M = �L/rN�. Since L is geometric, we find
that M also has a geometric distribution, albeit with parameter

ρr =
rN∑
�=1

(1 − ρ)�−1ρ = 1 − (1 − ρ)rN .

The probability that a data packet requires the successful
transmission of m data segments of size rN is equal to

Pr(M = m) = (1 − ρr)
m−1

ρr m = 1, 2, . . .

For a head packet to depart from the queue, the destination
must successfully decode the most recent codeword it received,
and this codeword must carry the final segment of information
corresponding to this packet. Implicit to our system model is
the ability of the destination to acknowledge the reception of a
codeword through instantaneous feedback. Based on this side
information, the transmitter is able to remove data segments
and packets from the queue after successful transmission.

IV. QUEUEING BEHAVIOR

The number of data packets in the queue at the onset of
block s is denoted by Qs. The state of the Gilbert-Elliot
channel at this same instant is represented by CsN+1. Together,
these two quantities form the state of our Markov process,
Us = (CsN+1, Qs). We emphasize that the cardinality of this
state space is countable, with Us belonging to {b, g} × N0.
Furthermore, the Markov chain underlying the evolution of
our system possesses a special structure; it forms an instance
of a discrete-time quasi-birth-death process. Fortunately, there
are many established techniques to study such mathematical
objects. We present one possible approach in Section IV-A.

The transition probability from Us to Us+1 is given by

Pr(Us+1 = (d, qs+1)|Us = (c, qs))

=
∑
e∈N0

Pr (Qs+1 = qs+1|E = e,Qs = qs)×

Pr
(
E = e, C(s+1)N+1 = d|CsN+1 = c

)
.

(3)

Recall that a methodology was introduced in Section II-A to
derive the distribution of

(
E,C(s+1)N+1

)
conditioned on the

value of CsN+1. Obtaining expressions for probabilities of the
type Pr (Qs+1 = qs+1|E = e,Qs = qs) remains.

We first consider conditional events {Qs = qs} for which
qs > 0; admissible values for Qs+1 are then limited to values
in {qs − 1, qs, qs + 1}. Two factors can affect the length of
the queue, the arrival of a new data packet and the completion
of a packet transmission. The latter occurrence will only take
place if a codeword is successfully decoded at the destination
and the head packet has no additional data segment left at the
source. Keeping these facts in mind, we get

Pr (Qs+1 = qs + 1|E = e,Qs = qs)

= γ
(
Pf(N−K, e) + (1 − Pf(N−K, e))(1 − ρr)

)
Pr (Qs+1 = qs|E = e,Qs = qs) = γ (1 − Pf(N−K, e)) ρr

+ (1 − γ)
(
Pf(N−K, e) + (1 − Pf(N−K, e))(1 − ρr)

)
Pr(Qs+1 = qs − 1|E = e,Qs = qs)

= (1 − γ) (1 − Pf(N−K, e)) ρr.

When the queue is empty, {Qs = 0}, only two possibilities
can occur,

Pr(Qs+1 = 1|E = e,Qs = 0) = γ

Pr(Qs+1 = 0|E = e,Qs = 0) = 1 − γ.

Collecting these findings and using (3), we get the probability
transition matrix of the Markov process {Us}. A graphical
rendition of the state transitions appears in Fig. 2.

To proceed with the analysis of our queued system, a
compact representation of the conditional probabilities defined
in (3) is apropos. For q ∈ N and c, d ∈ {b, g}, we introduce
the following mathematical notation,

μcd = Pr(Us+1 = (d, q − 1)|Us = (c, q))

κcd = Pr(Us+1 = (d, q)|Us = (c, q))

λcd = Pr(Us+1 = (d, q + 1)|Us = (c, q)).
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Fig. 2. State space and transition diagram for the aggregate queued process
{Us}; self-transitions are intentionally omitted.

Similarly, when the queue is empty, we use κ0
cd = Pr(Us+1 =

(d, 0)|Us = (c, 0)) and λ0
cd = Pr(Us+1 = (d, 1)|Us = (c, 0)).

Collectively, these labels define the 12 transition probabilities
associated with a non-empty queue, and the 8 transition
probabilities subject to the non-negativity constraint at zero.

We are ready to derive the equilibrium distribution of our
system. We note that, if the channel state is ergodic and
the queue is stable, then the Markov chain {Us} is positive
recurrent and possesses a unique stationary distribution [13].
Let U = (C,Q) be a random vector with the following
probability distribution,

Pr(U = (c, q)) = lim
s→∞

Pr(Us = (c, q)).

We employ the semi-infinite vector π as a convenient notation
for the equilibrium distribution of our system, with

π(2q + i) =

{
Pr(C = b,Q = q) if i = 1

Pr(C = g,Q = q) if i = 2,

for i ∈ {1, 2} and q ∈ N0. The states {(b, q), (g, q)} are
known as the qth level of the Markov chain and πq �

[π(2q + 1) π(2q + 2)] is the stationary distribution associated
with the qth level.

Using this compact notation, we can write the Chapman-
Kolmogorov equations as πT = π, where T is the probability
transition matrix associated with {Us}. One possible approach
to solve for the stationary distribution of our Markov model
is to employ spectral representation and ordinary generating
functions [10]. In this article, we adopt an alternate means and
apply the matrix geometric method [14], [15].

A. Matrix Geometric Method

We can represent the probability transition matrix T as a
semi-infinite matrix of the form

T =

⎛
⎜⎜⎜⎜⎜⎝

C1 C0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
0 0 A2 A1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ (4)

where the submatrices C1, C0, A2, A1, and A0 are 2 × 2
real matrices. More specifically, we have

A0 =

[
λbb λbg

λgb λgg

]
A1 =

[
κbb κbg

κgb κgg

]

A2 =

[
μbb μbg

μgb μgg

]
.

When the queue is empty, the relevant submatrices become

C0 =

[
λ0

bb λ0
bg

λ0
gb λ0

gg

]
C1 =

[
κ0

bb κ0
bg

κ0
gb κ0

gg

]
.

Note that the Markov chain associated with (4) belongs to
the class of processes with repetitive structure. The following
theorem characterizes its stationary distribution.

Theorem 4.1: Consider a positive recurrent Markov chain
on a countable state space with transition matrix T given by
(4). Let the positive matrix R be defined as the limit, starting
from R0 = 0, of the matrix recursion

Rj+1 = (A0 + R
2
jA2)(I − A1)

−1.

Then, the qth-level stationary distribution πq satisfies πq+1 =
πqR for q ≥ 1 with π1 = π0Z and

Z = (I − C1)A
−1
2

π0 =
[

β
α+β

α
α+β

] (
I + Z(I − R)−1

)−1
.

Corollary 4.2: The decay rate of the complementary cumu-
lative distribution function of the queue satisfies

lim
τ→∞

τ−1 log Pr(Q ≥ τ) = log �(R),

where �(R) is the spectral radius of R.

V. PERFORMANCE EVALUATION

This mathematical characterization makes it possible to
compute a wide range of advanced performance criteria for
the system under consideration, including average packet error
rate and outage capacity. Herein, we focus on two measures
that are most relevant to delay-sensitive communications. First,
we look at the probability that the queue exceeds a threshold,
Pr(Q > τ), where τ is relatively small. Second, we examine
the decay rate of the complementary cumulative distribution
function, as discussed in Corollary 4.2. Again, we emphasize
that the tail decay in buffer occupancy is given by the dominant
eigenvalue of R.

For illustrative purposes, we select the following parameters.
The Gilbert-Elliot erasure channel is defined by α = 0.02, β =
0.005, εb = 0.49, and εg = 0.0025. This generates an average
erasure probability of 0.1. The channel memory decays at an
exponential rate of (1 − α − β) = 0.975. The blocklength
is fixed at N = 114 and the arrival process is defined by
the arrival probability γ = 0.25 and average packet length
ρ−1 = 195. If codewords are transmitted every 4.615 ms, then
this corresponds to an arrival rate of roughly 10.6 Kbits/sec
and an ergodic channel capacity of roughly 22.2 Kbits/sec.
These parameters are selected to loosely match the operation
of a wireless GSM relay link.

System performance as a function of the number of infor-
mation bits per codeword, K, is shown in Fig. 3. Each curve
represents the complementary cumulative distribution function
evaluated at a different threshold value, Pr(Q > τ).

As expected, the probability of the queue exceeding a pre-
scribed threshold decreases as τ increases. More interestingly,
it is instructive to notice that K = 83 appears uniformly
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Fig. 3. This figure shows tail probabilities in the equilibrium packet distribu-
tion of the queue, Pr(Q > τ), for threshold values τ ∈ {5, 10, 15, 20, 25}.
The minimums occur uniformly at rN = 83 for all threshold values.

optimal for all values of τ . Further supporting evidence for
this observation is offered by looking at the asymptotic decay
rate in tail occupancy, displayed in Fig. 4. When the arrival
rate γρ−1

r is between 47.5 and 60, one finds that K = 83 is
also optimal in terms of tail decay. This robustness property
is very encouraging, as it simplifies system design.

An important observation that does not appear on these two
figures is the fact that, for short block lengths, the optimal
value of K depends heavily on the channel parameters α, β, εg

and εb. A naive conjecture would place K = rN close to the
Shannon limit 0.9×114 = 102.6, but this is much larger than
the optimal value of K = 83. A more sophisticated approach
is to maximize the throughput of a system with an infinite-
backlog. After some calculation, one finds that this leads to
K = 87, which is much closer to the true optimum. But, as
the channel memory parameter (1−α−β) varies, the optimal
value of K changes substantially. In fact, as (1−α−β) → 1,
K approaches N .
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Fig. 4. This figure shows tail decay rate, − limτ→∞ τ−1 log Pr(Q ≥ τ),
as a function of the number of information bits rN and the average arrival
rate γ/ρr in bits per cycle.

VI. CONCLUSIONS

This work provides a unified approach that links queueing
performance with the operation of a communication system at
the physical layer. The methodology and results are developed
for the Gilbert-Elliot erasure channel, but can be generalized to
more intricate finite-state channels with memory. For example,
the simple performance characterization of random codes over
erasure channels extends naturally to hard-decision decoding
of BCH codes over Gilbert-Elliot error channels. For fixed
parameters, the optimal code rate appears relatively insensitive
to target threshold τ in the queue. Still, channel memory and
cross-over probabilities can affect this optimal operating point.
More generally, the optimal code rate seems to be linked to
ratio between the codeword time and the coherence time of
the channel.
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