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Abstract—This paper considers the relationship between code-
rate selection and queueing performance for communication
systems with time-varying parameters. While error-correcting
codes offer protection against channel unreliability, there is a
tradeoff between the enhanced protection of low-rate codes and
the increased information transfer of high-rate codes. Hence,
there exists a natural compromise between packet-level error pro-
tection and information rate. In the limiting regime where code-
words are asymptotically long, this tradeoff is well-understood
and characterized by the Shannon capacity. However, for delay-
sensitive communication systems and finite code-lengths, a com-
plete characterization of this tradeoff is still not fully developed.
This paper offers a new perspective on the queueing performance
of communication systems with finite block-lengths operating
over correlated erasure channels. A rigorous framework that
links code rate to overall system performance for random codes
is presented. Guidelines for code rate selection in delay-sensitive
systems are identified.

I. INTRODUCTION
The transmission of digital information over noisy channels

has become commonplace in modern communication systems.
The high reliability of contemporary data links is due, partly,
to the many successes of information theory and error-control
coding [1]. In particular, the reliable transmission of digital
information is possible at rates approaching Shannon capac-
ity using asymptotically long codewords [2]. Indeed, many
notable communication systems employ long codewords to
provide high throughput and low probabilities of error [3].
One context where the insights offered by classical infor-

mation theory do not necessarily apply directly is the broad
area of delay-constrained communications and networks [4].
Real-time traffic and live interactive sessions are very sensitive
to latency. Long codewords are therefore not particularly well-
suited for real-time communication because they entail lengthy
encoding/decoding delays. Alternative engineering methods,
including power control, automatic repeat-request, scheduling
and feedback, can be leveraged to establish rapid end-to-
end connections [5], [6]. Moreover, delay considerations often
force a system to operate below its maximum throughput [7].
Several recent articles in information theory focus on the

tradeoff between throughput and delay. Popular approaches
include effective capacity [8], outage capacity [9], [10], aver-
age delay characterizations [11], fluid analysis [12] and heavy-
traffic limits [13]. While these contributions provide valuable
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insights about the design of delay-sensitive systems, many
such articles make idealized assumptions about the behavior of
coded transmissions. In particular, various authors adopt the
notion of instantaneous capacity: individual data blocks are
assumed, implicitly or explicitly, to possess enough degrees of
freedom to support sophisticated coding schemes and thereby
approach Shannon capacity within every time-slot. While
reasonable for long codewords, such assumptions become
somewhat of a concern for short data blocks. This is especially
problematic for channels with memory, where correlation over
time promotes deviations from typical behavior.
For delay-constrained communication systems that utilize

short codewords, two opposite considerations underlie the
selection of an error-correcting code. A low-rate code will,
in general, result in a small probability of decoding failure;
whereas the same system with a high-rate code is more prone
to errors. Still, the successful decoding of a codeword associ-
ated with a high-rate code leads to the transmission of a larger
number of information bits. In the limit of asymptotically long
codewords, it is clear that code rate should only be slightly
below Shannon capacity. However, the optimal operating point
for systems with short block lengths is not so obvious. It may
depend on the physical resources available and the service
constraints imposed on the system.
Previous work in this area has either taken a higher-

layer perspective, using a simplistic model of the physical
layer; or adopted a channel-coding perspective, intentionally
neglecting queueing considerations. Herein, we attempt to
bridge the gap between these extremes in order to address
two important questions. What is the optimal code rate for a
particular implementation? What arrival rates can a system
support under specific service requirements? Our approach
in obtaining partial answers to these questions differ from
previous work in that we strive to provide exact solutions. To
facilitate the type of queueing analysis we wish to carry, we
make the following assumptions. The packet arrival process
at the transmitter is Bernoulli, with packet length having a
geometric distribution at the bit level. The communication
channel is a bit erasure channel with memory. Random codes,
with maximum likelihood decoding, are employed to protect
the sent information against erasures. Collectively, these as-
sumptions are sufficient to conduct a rigorous analysis of the
probability of block decoding failure at the receiver as well as
a complete characterization of the ensuing queueing behavior.
Implicit to our system model is the ability to acknowledge the
reception of packets through instantaneous feedback.



II. SYSTEM MODEL

We initiate our study of the system we wish to consider
with a description of the underlying communication channel.
Bits are sent from the transmitter to the destination over an
erasure channel with memory. The channel can be in one of
two states, a good state g in which bits arrive unaltered at the
destination, and a bad state e under which information is lost.
The transitions of the channel over time follow a discrete-time
Markov model, where the probability of transitioning from e
to g is represented by α and the transition probability in the
reverse direction is denoted by β. Using lexicographical state
ordering, we can express the probability transition matrix as

Pt =

[

1 − α α
β 1 − β

]

.

This bit erasure channel is illustrated in Fig. 1. Correlation
over time is captured through the probability transition matrix
of the channel. We denote the state of the erasure channel
at time t by ct. The evolution of the channel over time then
becomes a discrete random process, which we write {ct}.
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Fig. 1. A discrete-time Markov erasure channel is employed to model the
operation of a communication link with memory.

In this study, we assume that the communication system
employs an error correcting code with block length T . That
is, every codeword is sent over T consecutive realizations
of the erasure channel. Parameter T is determined by the
requirements and specifications of the system. Ultimately,
block length affects decoding delay and the amount of physical
resources needed for feedback. In our analysis, T remains
fixed throughout. The code rate r, however, is a parameter that
can be optimized. For a particular code rate, the corresponding
number of information bits per codeword is given by rT .
Having specified the channel structure, we turn to the

definition of the arrival process. Data packets enter the queue
according to a discrete-time process synchronized with the
codeword transmission cycle. During every codeword trans-
mission event, a data packet arrives at the queue with probabil-
ity γ, else the queue remains unchanged. Arrivals are taken to
be independent over time, hence forming a standard Bernoulli
process. The length of a data packet is also random, following
a geometric distribution. The probability that a packet contains
exactly $ bits is given by

Pr(L = $) = (1 − ρ)!−1ρ $ = 1, 2, . . .

where ρ ∈ (0, 1). The arrival process and the packet length
distribution have been selected, partly, to facilitate the analysis

we wish to carry below. In particular, the memoryless property
of the geometric distribution and the independence over time
of the Bernoulli process are crucial properties that make for a
tractable characterization of queueing behavior.
Once a code rate is specified, the number of successfully

decoded codewords needed to complete a packet transmission
is equal toM = #L/rT $. We note that L being geometric with
parameter ρ implies that M is also geometric with parameter

ρr =
rT
∑

!=1

(1 − ρ)!−1ρ = 1 − (1 − ρ)rT .

Thus, the probability that a data packet requires the successful
transmission of exactly m codewords is equal to

Pr(M = m) = (1 − ρr)
m−1 ρr m = 1, 2, . . .

Key to our mathematical analysis is that the number of coded
blocks per data packet, M , retains the memoryless property.
When discussing the size of the queue at the transmitter,

two distinct characterizations are possible. A first option is to
keep track of the number of packets present in the queue. The
second choice is to count the number of data blocks of length
rT remaining in the queue. Although the latter alternative
provides a more accurate representation of the actual queue
length in bits, the former option is much simpler to analyze
and is more closely related to the concept of packet delay. For
these reasons, we elect to define the state of the queue as the
number of data packets awaiting transmission, as is customary
in the classical queueing literature [14], [15].
The final building block of our system model is a coding

strategy employed to correct transmission errors due to channel
uncertainty. As mentioned above, our system utilizes random
binary codes to provide protection against erasures. Maximum
likelihood decoding is used at the destination to decode the
received information. This completes the description of the
communication system under study. We are now ready to
conduct the performance analysis of this system, a task we
initiate in the following section.

III. PROBABILITY OF DECODING FAILURE

A first step in analyzing the performance of our system is to
derive expressions for the probabilities of decoding failure at
the receiver. To compute these probabilities, we need to obtain
the distribution of the number of erasures within a codeword.
Let ct ∈ {e, g} be the state of the erasure channel at time t,
and define an aggregate state for block s by

Bs =
(

csT+1, c(s+1)T

)

where csT+1 is the state of the channel at the beginning of
block s and c(s+1)T is the channel state at the very end
of the same block. We use Ns to represent the number of
erasures during block Bs. Note that, because of the Markov
property, random variable Ns is conditionally independent of
Bs̃, given Bs, whenever s̃ %= s. Finding the joint distribution



of (Ns, c(s+1)T ) conditioned on the value of csT+1 is a
straightforward problem of combinatorics. For 2 ≤ n < T ,

Pr
(

Ns = n, c(s+1)T = e|csT+1 = e
)

=
jmax
∑

j=1

(

n − 1

j

)(

T − n − 1

j − 1

)

αj(1 − α)n−j−1βj(1 − β)T−n−j

where jmax = min{n − 1, T − n} and j denotes the number
of transitions from e to g in block s; for 0 < n ≤ T − 2,

Pr
(

Ns = n, c(s+1)T = g|csT+1 = g
)

=
jmax
∑

j=1

(

n − 1

j − 1

)(

T − n − 1

j

)

αj(1 − α)n−jβj(1 − β)T−n−j−1

where jmax = min{n, T −n−1} and j represents the number
of transitions from g to e in block s; for 0 < n < T ,

Pr
(

Ns = n, c(s+1)T = g|csT+1 = e
)

=
jmax
∑

j=1

(

n − 1

j − 1

)(

T − n − 1

j − 1

)

αj(1 − α)n−jβj−1(1 − β)T−n−j

where jmax = min{n, T − n} and j stands for the number of
transitions from e to g in block s; finally, for 0 < n < T ,

Pr
(

Ns = n, c(s+1)T = e|csT+1 = g
)

=
jmax
∑

j=1

(

n − 1

j − 1

)(

T − n − 1

j − 1

)

αj−1(1 − α)n−jβj(1 − β)T−n−j

where jmax = min{n, T −n} and j designates the number of
transitions from g to e in block s. From these equations, we
can easily compute the distribution of Ns conditioned on the
value of the aggregate state Bs, Pr (Ns|Bs).
Suppose that a random binary code of length T provides

forward error correction to each transmitted block. The code is
chosen by generating a random parity-check matrix H of size
(T−k)×T , where each entry is independent and equiprobable
{0, 1}. Given Ns = n, it is possible to find the probability of
decoding failure at the destination in closed form; decoding
will succeed if and only if the submatrix of H formed by
choosing the n erased columns has rank n [16].
The probability that a random n× p matrix over F2, where

p = T − k is the number of parity bits, has rank n is given
by the product

n−1
∏

i=0

(

1 − 2i−p
)

.

We can then conclude that, given n erasures, the probability
of decoding failure becomes

Pf(n) = 1 −
n−1
∏

i=0

(

1 − 2i−p
)

.

The average probability of decoding failure at the receiver is
given by E [Pf (Ns)], where the expectation is over possible
channel realizations within a block. We emphasize that this
quantity alone is not sufficient to describe the queueing
behavior of the system, as memory in the erasure channel

will induce time-dependencies from block to block. This is
detailed below, where queueing aspects of the communication
systems are investigated.

IV. QUEUEING BEHAVIOR

Recall that a packet of length L is divided into M data
segments, each of which is encoded separately into a code-
word of length T and subsequently sent over the channel.
A feedback mechanism informs the transmitter of reception
status. When successful, the corresponding data segment is
marked as delivered and transmission of the next data segment
begins. In case of a decoding failure, the original data segment
remains in-line for immediate retransmission. Data packets are
stored in the queue upon arrival at the transmitter, and they
remain in the queue until the corresponding data segments
are successfully decoded at the destination. In other words,
a packet composed of L bits will require the successful
transmission of M codewords before it is removed from the
queue. We use qs to symbolize the length of the queue at the
onset of block s. We also define an aggregate state

Qs = (csT+1, qs) ,

composed of the first channel state and the queue length. We
stress that Qs ∈ {e, g}× N0, a countable space.
We begin our analysis of queueing behavior by noticing

that the sequence {Qs} forms a Markov chain. Furthermore,
we can obtain the invariant distribution of the queue by
determining the equilibrium distribution of the augmented
process {Qs}. We can write the transition probability from
Qs to Qs+1 as follows,

Pr(Qs+1|Qs) = Pr
(

c(s+1)T+1, qs+1|csT+1, qs

)

=
∑

c(s+1)T ∈{e,g}

Pr
(

c(s+1)T+1, c(s+1)T , qs+1|csT+1, qs

)

=
∑

c(s+1)T ∈{e,g}

Pr
(

c(s+1)T , qs+1|csT+1, qs

)

× Pr
(

c(s+1)T+1|c(s+1)T

)

.

Recall that Pr
(

c(s+1)T+1|c(s+1)T

)

can be obtained directly
from the definition of the erasure channel. More specifically,
finding this probability amounts to locating an entry in Pt.
Similarly, Pr(ci+j |ci) is given by the corresponding entry in
P j

t , where the jth power of Pt can be computed as

P j
t =

[

β+α(1−α−β)j

α+β
α−α(1−α−β)j

α+β
β−β(1−α−β)j

α+β
α+β(1−α−β)j

α+β

]

.

We note that channel memory is a function of 1−α−β. Find-
ing an expression for Pr

(

c(s+1)T , qs+1|csT+1, qs

)

remains.
First, we assume that qs > 0; admissible values for qs+1 are

then contained in {qs − 1, qs, qs + 1}. Recall that two factors
can affect the length of the queue, the arrival of a new data
packet and the completion of a packet transmission. The latter
will only occur if a codeword is successfully decoded at the



destination and the head packet has no additional data segment
left to send. Keeping these factors in mind, we get

Pr(qs+1 = qs + 1, c(s+1)T |csT+1, qs)

=
T

∑

n=0

γ
(

Pf(n) + (1 − Pf(n))(1 − ρr)
)

× Pr(Ns = n, c(s+1)T |csT+1),

Pr(qs+1 = qs, c(s+1)T |csT+1, qs)

=
T

∑

n=0

(

(1 − γ)
(

Pf(n) + (1 − Pf(n))(1 − ρr)
)

+ γ (1 − Pf(n)) ρr

)

Pr(Ns = n, c(s+1)T |csT+1),

Pr(qs+1 = qs − 1, c(s+1)T |, csT+1, qs)

=
T

∑

n=0

(1 − γ) (1 − Pf(n)) ρr Pr(Ns = n, c(s+1)T |csT+1),

When the queue is empty, only two possibilities can occur,

Pr(qs+1 = 1, c(s+1)T |csT+1, qs = 0)

= γ Pr(c(s+1)T |csT+1)

Pr(qs+1 = 0, c(s+1)T |csT+1), qs = 0)

= (1 − γ) Pr(c(s+1)T |csT+1).

Collecting these results together, we get the probability transi-
tion matrix of the Markov process {Qs}. A compact graphical
representation of the state transitions appears in Fig. 2.

e, 0 e, 1 e, 2

g, 0 g, 1 g, 2

Fig. 2. State space and transition diagram for the aggregate queued process
{Qs}; self-transitions are intentionally omitted.

The transition probabilities being identified, we next analyze
queueing behavior. For convenience, we define the following
mathematical notation. For k ∈ N and c, d ∈ {e, g}, let

κcd = Pr(Qs+1 = (d, k)|Qs = (c, k))

λcd = Pr(Qs+1 = (d, k + 1)|Qs = (c, k))

µcd = Pr(Qs+1 = (d, k − 1)|Qs = (c, k));

and, similarly, when the queue is empty, define

κ0
cd = Pr(Qs+1 = (d, 0)|Qs = (c, 0))

λ0
cd = Pr(Qs+1 = (d, 1)|Qs = (c, 0)).

Together, these equations define the 12 transition probabilities
associated with a non-empty queue, and the 8 transition
probabilities subject to the non-negativity constraint at zero.
For stable systems, performance is assessed using the equi-

librium distribution of the queue, lims→∞ Pr(Qs = (c, k)).

We represent the probabilities of the different states with
a letter for the channel state and a number subscript for
the queue occupancy. Accordingly, we can write the balance
equations governing our Markov chain for k ≥ 2 as

(µgg + µge + κge + λge + λgg)gk

= λgggk−1 + λegek−1 + κegek + µegek+1 + µgggk+1

(µee + µeg + κeg + λeg + λee)ek

= λeeek−1 + λgegk−1 + κgegk + µgegk+1 + µeeek+1.

For k = 1, these equations become

(µgg + µge + κge + λge + λgg)gk

= λ0
gggk−1 + λ0

egek−1 + κegek + µegek+1 + µgggk+1

(µee + µeg + κeg + λeg + λee)ek

= λ0
eeek−1 + λ0

gegk−1 + κgegk + µgegk+1 + µeeek+1,

and, at zero, they reduce to

(κ0
ge + λ0

ge + λ0
gg)g0 = κ0

ege0 + µege1 + µggg1

(κ0
eg + λ0

eg + λ0
ee)e0 = κ0

geg0 + µgeg1 + µeee1.

The invariant distribution of the Markov chain can be derived
from these recurrence relations using transform methods [15].
In particular, if we define the generating functions

E(z) =
∞
∑

z=0

ekzk G(z) =
∞
∑

z=0

gkzk,

then finding the stationary distribution of our Markov system
is equivalent to solving a matrix equation of the form

A(z)

[

E(z)
G(z)

]

= B(z)

[

e0

g0

]

,

where the entries in A(z) and B(z) are quadratic polynomials.
The coefficients e0, g0 can be determined from the require-
ments imposed by stability (i.e., cancellation of unstable poles)
and using the fact that

E(1) =
β

α+ β
, G(1) =

α

α+ β
.

Although a closed-form solution exists and can be obtained
using symbolic equation solvers, its form is too convoluted to
be included in this publication. Still, we emphasize that this
solution can be calculated efficiently using numerical methods.
We include below an example to show how the methodology
developed above can be applied to real-world systems.

V. NUMERICAL RESULTS
We present numerical results for a system with the following

parameters. Codewords each span T = 114 code bits, and
are transmitted every 4.615 ms. The probability that a new
packet arrives at the source during a codeword transmission
cycle is γ = 0.25. The expected size of a packet is 175
bits, which implies that ρ = 1/175. This leads to an average
arrival rate of roughly 9.48 Kbps. Recall that, for every packet,
the number of successfully decoded codewords needed to
complete transmission is equal to #L/rT $, where rT is the



number of information bits contained in a codeword. The
erasure parameters are given by α = 0.08 and β = 0.02.
This implies that the expected bit-erasure probability is 0.2,
and the memory of the channel decays exponentially at rate
(1 − α − β) = 0.9. A situation where these values offer
a realistic assessment of system operation is the scenario
where a pico-cell aggregator collects data from a sensor
network and relays this information to a fusion center through
a wireless GSM connection. Collectively, these parameters
define the evolution of the Markov process governing the
queue. System performance as a function of rT appears in
Fig. 3. Each curve represents the tail probabilities in the

60 65 70 75 80 8510−2

10−1

100

Information Bits per Block, rT

Ta
il
Pr
ob
ab
ili
tie
s,

P
r(

Q
>
τ
)

Fig. 3. This figure shows tail probabilities in the equilibrium packet distribu-
tion of the queue, Pr(Q > τ), for threshold values τ ∈ {5, 10, 15, 20, 25}.
These probabilities are plotted as a function of the number of information
bits, rT , per codeword. The minimum on each curves represents an optimal
operating point, and they are achieved uniformly at rT = 71.

equilibrium packet distribution of the queue, Pr(Q > τ), for
a specific threshold level, τ ∈ {5, 10, . . . , 25}. Low threshold
values are selected to reflect delay-sensitive applications. In
this figure, the optimal code rate (r = 71/114) appears robust
to the choice of threshold value τ . The robustness property
remains true for all the system parameters tested.
The optimal number of information bits per codeword, on

the other hand, depends heavily on the channel memory factor.
In our numerical study, we fixed the ratio β : α at one
quarter, and varied the memory factor. When the channel
is memoryless, the optimal rT is 80. For comparison, the
capacity is 0.8 and gives an rT of roughly 91. As correlation
increases, the optimal value of rT initially decreases, thereby
improving protection against erasures. Still, at some point, the
coherence time of the channel starts to approach the length of a
codeword, T = 114. Under such condition, the code becomes
ineffective at correcting long sequence of successive erasures.
The optimal strategy progressively changes to including more
information bits in every packet, and hoping that the channel
remains in its good state. In the limit where the channel is
very correlated, (1 − α − β) → 1, the optimal strategy is to
transmit uncoded data bits, rT = T . Indeed, strong correlation
is characterized by long strings of erasures followed by longer
strings of reliable bits, and the best strategy is to send as many

TABLE I
OPTIMAL NUMBER OF INFORMATION BITS AND TAIL PROBABILITY

Pr(Q > 5) AS A FUNCTION OF CHANNEL MEMORY FACTOR 1 − α − β .

1 − α − β Optimal rT min Pr(Q > 5)
0 80 0.049
0.5 76 0.085
0.9 71 0.368
0.98 87 0.598
0.99 114 0.246

information bits as possible when the channel is good. At this
point, the bit erasure channel essentially becomes a packet
erasure channel. This is summarized in Table I.

VI. DISCUSSION AND CONCLUDING REMARKS
This article presents a new framework to analyze the relation

between code rate and queueing behavior. The simplicity of
the erasure channel and its closed-form characterization of
error events are instrumental in conducting this analysis. For
short block lengths and correlated channels, the optimal code
rate appears to be linked to the relative size of a codeword
compared to the coherence time. In some circumstances, it is
better to adopt a rate beyond Shannon capacity.
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