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Abstract—Network coding has gained significant attention in re-
cent years as a means to improve throughput, especially in mul-
ticast scenarios. These capacity gains are achieved by combining
packets algebraically at various points in the network, thereby al-
leviating local congestion at the nodes. The benefits of network
coding are greatest when the network is heavily utilized or, equiva-
lently, when the sources are saturated so that there is data to send
at every scheduling opportunity. Yet, when a network supports
delay-sensitive applications, traffic is often bursty and congestion
becomes undesirable. The lighter loads typical of real-time traffic
with variable sources tend to reduce the returns of network coding.
This work seeks to identify the potential benefits of network coding
in the context of delay-sensitive applications. As a secondary objec-
tive, this paper also studies the cost of establishing network coding
in wireless environments. For a network topology to be suitable for
coding, links need to possess a proper structure. The cost of es-
tablishing this structure may require excessive radio resources in
terms of bandwidth and transmit power. Bursty traffic together
with structural cost tend to decrease the potential benefits of net-
work coding. This paper describes how, for real-time applications
over wireless networks, there exist network topologies for which it
may be best not to establish a network structure tailored to net-
work coding.

Index Terms—Butterfly network, communication system, delay,
quality of service (QoS), network coding, routing, tail asymptotics,
tandem queues, wireless networks, wireless systems.

I. INTRODUCTION

N ETWORK coding is a novel paradigm that has received
much attention in the literature recently [1]–[5]. It has

the potential to improve the throughput and robustness of
future communication networks. These performance gains
are achieved by relaxing the restriction that data belonging to
different information flows should remain separated. Indeed,
network coding is a transmission strategy where packets are
combined algebraically at intermediate nodes in the network.
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It can be viewed as an extension of traditional routing. In
certain circumstances, network coding helps improve overall
throughput; and it is known to achieve the min-cut flow in
multicast scenarios [6].

The research enthusiasm generated by network coding can
be explained, partly, by the ever expanding demand for Internet
access and fast connectivity. Not only is network coding math-
ematically elegant, but it also seeks to improve network perfor-
mance at a time when the number of data applications is rising
furiously. The growing demand for network connectivity is felt
both at the core of the Internet and at its periphery, where wire-
less systems are increasingly employed to provide flexibility
to mobile users. One class of data connections that is rapidly
gaining prominence on the Internet is the traffic generated by
real-time applications. Delay-sensitive services including voice
over Internet protocol (VoIP), video conferencing, gaming, and
electronic commerce are now commonly used by vanguardists
on both wired and wireless devices. Future communication in-
frastructures are expected to carry much larger volumes of data
with varying quality of service (QoS) requirements. As such,
this paper seeks to provide preliminary answers to two impor-
tant questions related to delay-sensitive traffic and the efficient
utilization of network coding.

First, are the potential benefits of network coding as substan-
tial in the context of delay-sensitive applications? It seems intu-
itively clear that the gains of network coding are maximal when
the links in the network are fully utilized. However, the bursty
nature of many data sources and the service quality required
of most real-time applications may force a network to operate
much below its maximum throughput. This phenomenon is cap-
tured by the concept of effective bandwidth, which identifies the
data rate needed by a source to fulfill its service requirement
[7], [8]. In general, the effective bandwidth of a source can be
much larger than the average throughput it produces. The bursty
traffic generated by delay-sensitive applications combined with
the gains associated with statistical multiplexing act to decrease
the benefits of network coding. Therefore, it is not clear how
much we gain by applying network coding in a communica-
tion system subject to QoS constraints. In this paper, we pro-
vide quantitative results on the benefits of network coding for a
simple butterfly network in the context of delay-sensitive appli-
cations.

Another pertinent observation about network coding is that
it often requires a structured network topology. Coding bene-
fits are optimum when the data rates of the various links are
integer multiples of one another. In a wireless environment,
physical-layer resources can be allocated progressively to the
different nodes. To maximize the coding gain, these resources
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must be assigned to create a suitable topology. While this en-
ables efficient coding, there may be a nonnegligible cost associ-
ated with creating such a structure. In other words, in a wire-
less environment, the performance of a system with network
coding should be compared to the operation of the equivalent
classic-routing system, with physical resources allocated opti-
mally in both cases. This leads us naturally to the second ques-
tion we seek to address. When is it relevant to create a topology
suitable for network coding in a wireless environment?

These two important questions are not only related through
the rising popularity of real-time applications and network
coding, but also by their answers necessitating the development
of analogous mathematical tools. This similarity motivates
our joint treatment of these related topics. More specifically,
we investigate the impact of network coding on the queueing
behavior of wireless communication systems.

We consider a simple scenario where two varying rate sources
communicate to multiple destinations through the notorious but-
terfly network, shown in Fig. 1. Every node is equipped with a
data buffer where packets are stored prior to transmission. We
analyze the performance of this system, and compute its achiev-
able rate region when the network operates under stringent ser-
vice constraints. Due to the time-varying nature of typical ar-
rival and service processes, it is difficult to provide determin-
istic delay guarantees for such systems. Accordingly, we adopt
a popular statistical QoS criterion that captures the asymptotic
decay rate in buffer occupancy

(1)

where has the equilibrium distribution of the buffer at the
transmitter. Parameter reflects the perceived quality of the cor-
responding communication link: a larger implies a lower prob-
ability of violating a queue-length restriction and a tighter QoS
constraint. This performance criterion is closely tied to large-de-
viations theory, and it forms a basis for the concept of effec-
tive bandwidth which has been studied extensively in the past
[9]–[14]. Given a specific arrival process, the effective band-
width characterizes the minimum constant service rate required
for a communication system to meet its QoS requirements. Pa-
rameter is also related to the dual concept of effective capacity
popularized by Guerin et al. [15], de Veciana et al. [16] and Wu
and Negi [17]. Unlike wired networks, wireless links frequently
feature time-varying service rates [18]. The effective capacity
characterizes the maximum constant arrival rate that a wireless
system can support, given a minimum buffer occupancy decay
rate . When the decay rate approaches zero, the effective
capacity converges to the maximum throughput supported by
the wireless channel.

To study the performance of a communication system subject
to a buffer occupancy constraint akin to (1), we need to charac-
terize the queueing performance of the network. In the math-
ematical framework under consideration, independent sources
sharing a same link can be studied separately. This is one of the
appealing properties of an analysis based on large deviations.
The main challenge, as we will see, is to characterize the per-
formance of the tandem network shown in Fig. 2. This network

Fig. 1. Directed butterfly network.

Fig. 2. Network with tandem queues.

Fig. 3. Butterfly network of interest with corresponding buffers.

consists of two successive nodes where the output of the first
node acts as an input to the second queue.

A. Contributions

Fig. 3 shows the butterfly network we want to study. For a
multicast scenario, where stochastic sources A and B wish to
communicate to destinations C and D, node 3 has the oppor-
tunity to employ packet combining. We consider two distinct
versions of this simple butterfly network. First, we analyze a
noise-limited network with constant and identical link capaci-
ties. This configuration is suitable for network coding and is the
basis for our initial queueing comparison. Then, we examine a
wireless network under a broadcast paradigm. In the latter sce-
nario, we assume that physical resources can be allocated freely
among the various nodes to create nonidentical links, thereby
enabling optimal operation within each configuration.

To compare the queueing performance of network coding
versus classic routing, we characterize the achievable rate re-
gions for both these cases under a QoS guarantee on the tail-
asymptotics of the buffer-content distributions. Not too surpris-
ingly, network coding outperforms classic routing for a net-
work with identical link capacities. Although statistical mul-
tiplexing had the potential to offset some of the coding gain,
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TABLE I
COMPARING OUR WORK WITH THE LITERATURE

classic routing remains a distant second to network coding for
all QoS requirements. More interesting results come from the
analysis of wireless butterfly network. Combining packets at
an intermediate wireless relay does not necessarily yield per-
formance gains, and may even be detrimental in some cases.
This behavior depends on the topology of the butterfly network
and the physical locations of the nodes. This peculiarity fol-
lows from the fact that network coding needs symmetric links
between the sources and their destinations for maximal coding
gains to be realized. If the link capacities are not identical, then
packet combining entails delay and inefficiencies. These results
are detailed below, and they may be employed to provide guide-
lines on when to form a network suitable for combining packets
algebraically at intermediate nodes. Analysis is limited to the
simple butterfly network under consideration. However, the fea-
tured approach can be generalized to topologies with constant
service rates, using the same queueing methods employed in this
paper. In fact, our methodology for networks with two queues
in tandem can be applied to several queues in cascade. Still,
an exact analysis would get increasingly complex for large net-
works and these techniques may not lead to tractable expres-
sions. In more complex topologies, it may be necessary to use
approximation methods, which is a different topic altogether.

We would like to emphasize that our contribution is twofold.
We provide a quantitative analysis of the tradeoff between the
cost of establishing a structure suitable for network coding and
the ensuing returns associated with algebraic packet combining.
Second, we offer an alternate proof for deriving the tail-expo-
nent of the second buffer in a tandem queue.

B. Relevant Work

There have been many recent contributions on queueing be-
havior when network coding is employed at the transmitter.
We compare and contrast our work with the available literature
below and summarize this discussion in Table I.

The random linear combining of data packets is considered in
[19]–[23]. The authors focus on coding delay in [20], whereas
decoding delay is studied in the remaining contributions. In
[19], QoS is defined in terms of packet drop probability, and
multiple flows are considered over an arbitrary network. In
[20], the authors compare the performance of network coding
versus scheduling for broadcast and multiple unicast scenarios;
their work is based on average delay performance. In [21] and
[22], the authors explore the throughput-delay tradeoff with
and without network coding. In [21], the coding scheme adapts
to the underlying traffic conditions. Stability and delay perfor-
mance of a multicast erasure channel with stochastic arrivals are
studied in [22]. In [23], the authors propose a coding and queue

management algorithm. Note that the random linear combining
of packet transmissions is in effect a coding scheme which
trades off delay and throughput over a single flow. In our work,
we study the achievable rate region over a butterfly network
when one employs either network coding or classic routing at
the intermediate node, a distinct framework altogether.

Previous contributions differ from the framework presented
below in many more respects. First, we are comparing network
coding to routing at a given node in a simple butterfly net-
work. We consider a multicast scenario with two transmitters
and two receivers. Second, we disregard coding/decoding delay
and focus on the equilibrium queue-length buildup due to sto-
chastic arrivals, limited service rate and feedback from the re-
ceiver. Third, we use preselected codes with fixed rates for reli-
able communication over the links. Furthermore, our QoS con-
straint on tail-asymptotics deviates significantly from average
delay constraints, thereby offering better insights for delay-sen-
sitive traffic. This methodology can be utilized to provide dif-
ferent QoS guarantees to flows with various requirements. In
addition, we take into consideration the stochastic nature of ar-
rivals, which may reduce the gains of network coding due to
statistical multiplexing.

A two-way relay channel is considered in [24]–[27]. Note that
two-way relays can be modeled as a butterfly network where
sources are also destinations. However, this is not an equiva-
lence relation. In the two-way relay model, direct links are ab-
sent and side information about the received data is available at
the destination, an advantage that is not present in our network
of interest. In [25], the authors characterize the end-to-end rate
regions for MAC-XOR and PHY-XOR operations for two-way
relay channel. They also present an opportunistic scheduling al-
gorithm to show that the system can be stabilized for any bit-ar-
rival rate pair within the Shannon rate region. In [26], the au-
thors study the energy-delay tradeoff when network coding is
used at the relay node. The energy is measured in terms of code
rates and channel conditions. In [27], authors show that, for
asymmetric traffic, one needs to perform time sharing between
traditional slotted multihopping and network coding. In [28],
the authors characterize the stability region for bursty traffic at
multiple sources with and without network coding in the wire-
less network. In [24], the authors propose a framework to de-
velop adaptive joint network coding and scheduling schemes.
The authors show that, for asymmetric traffic, scheduling and
network coding need to be combined to maximize supportable
throughputs over this network. In [29], the authors propose a dy-
namic routing-scheduling-coding strategy based on queue-state
information for serving multiple unicast sessions. The authors
study queues over a butterfly network for a discrete-time packet
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model, and they use fluid approximations to show the stability
of the system for their proposed algorithm.

Again, we emphasize that the wireless butterfly network con-
sidered in our article is not equivalent to two-way relaying. We
assume adaptive network coding in the sense that every time
there is an opportunity to do network coding, the relay node
combines packets algebraically. The servicing policy adopted
throughout is taken to be first-come first-served. A fluid as-
sumption allows us to bypass the scheduling problem. It is clear
that, given a suitable network topology, the flexibility to switch
between network coding and classical routing, when the need
arises, is better than always using classical routing. What sets
our work apart is accounting for the cost associated with making
a network suitable for network coding. We study whether coding
gains can offset the cost of facilitating a proper network struc-
ture. The rate regions achieved in [25] and [27]–[29] correspond
to the cases where the queue is stable for stochastic arrivals.
There is no explicit guarantee on the buffer distribution. In our
work, we find the achievable rate region under a tail-asymptote
requirement on the decay rate of the queue distribution. There-
fore, the conclusions by the authors in the aforementioned pa-
pers would not necessarily apply in a framework akin to ours.

C. Organization

The remainder of this paper is organized as follows. We in-
troduce the system model in Section II. We list pertinent results
on the performance of tandem queues in Section III. These tools
are used to analyze symmetric butterfly networks in Section IV.
Wireless butterfly networks are studied in Section V. Key
queueing results about the second buffer of a tandem network
are established in Section VI. A complete characterization
of the departure process at the output of a single queue with
constant service and Markov-modulated arrivals is presented in
Section VI-A. An expression for the equilibrium distribution
of the buffer-occupancy is derived in Section VI-B. This en-
ables us to obtain the corresponding asymptotic decay rate of
buffer-occupancy in Section VII. In Section VIII, we determine
the maximum achievable rate for the second buffer in the QoS
constrained tandem network under consideration. Finally, we
conclude with some relevant remarks and future directions in
Section IX.

II. PROBLEM STATEMENT

We study a communication system where two independent
users wish to send their messages to two common destinations
over a butterfly network, as shown in Fig. 3. A multicast sce-
nario is considered where independent sources A and B store
their respective information in buffers at nodes 1 and 2, and must
transmit their data to both destinations C and D. To facilitate this
process, node 1 sends its packets to nodes 3 and 5. Similarly,
node 2 forwards its packets to nodes 3 and 6. Node 3 can take
two courses of action; either it stores the received packets from
the sources in a queue and then forwards them individually to
node 4, or it combines the packets algebraically before transmit-
ting the data.

The first setting will be called the classic routing case. In this
scenario, node 4 duplicates the received packets from node 3

and forwards copies to nodes 5 and 6. These destination nodes
disregard redundant information (they could potentially take ad-
vantage of redundancy to improve the reliability of previously
received messages, but this is beyond the scope of this article)
and retain new data. For the second scenario, we consider the
network coding scheme where node 3 adds the two streams of
packets over GF(2) and relays the coded messages to node 4 [6].
The latter duplicates the received packets and transmits them to
nodes 5 and 6. Node 5 can resolve the information received from
node 2 by adding the packets obtained from node 1 to the cor-
responding packets received from node 4. In a similar fashion,
node 6 can decode the information originating from node 1 by
adding packets from node 2 to the corresponding packets from
node 4. Service quality is captured by a global QoS constraint

on the system. That is, the asymptotic decay rate of buffer
occupancy must be greater than or equal to for all the queues
in the system.

For the sake of analysis, we assume that packets are infinitely
divisible and hence the arrival and service processes are fluid
in nature. Thus, it becomes possible to define instantaneous ar-
rival and service rates. Under this assumption, every node in the
network is equipped with a single fluid queue served by an in-
dividual transmitter. We also take the buffers in the system to
be arbitrary large. A similar approach applies to the finite buffer
case, albeit with additional boundary conditions on the buffer
occupancy.

A. Source Model

Many real-time traffic sources can be accurately represented
by on-off models [30]. This motivates our assumption of arrivals
being two-state Markov-modulated fluid processes. In addition,
there is a vast amount of literature available on the queueing be-
haviors of Markov-modulated fluid processes for wire-line net-
works [8], [9], [31]. We postulate that sources A and B are in-
dependent, and that they both satisfy the following assumption.

Assumption 1: During an on period, the source emits packets
at a constant peak rate into its buffer; it remains idle otherwise.
Moreover, the on and off times are independent and exponen-
tially distributed.

Mathematically, the sources are defined through their under-
lying Markov chains. Let and

be independent two-state continuous-time
Markov chains (CTMC) modulating on-off sources A and B,
respectively. State zero represents the off state and state one de-
notes the on state. Suppose that the peak rate for the source at
node is taken as . With a slight abuse of notation,
we can write the arrival process at buffer as

where represents the standard set indicator function. We
denote the mean off and on times by and , respectively.
The generator matrix for the modulating two-state Markov
process can then be written as
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B. Queueing Model

We denote the capacity of link – by . This capacity effec-
tively limits the offered service rate at node for transmission to
node . In particular, if there exists a link between nodes and
and the buffer associated with node is nonempty, then node
can transmit to node at a maximum rate . For simplicity, we
assume that . The offered service rates on
links 4–5 and 4–6 are then equal to the maximum arrival rate at
node 4. As such, node 4 does not need to store data. It only facil-
itates the duplication and the forwarding of its received packets
to nodes 5 and 6. In other words, the buffer associated with node
4 is always empty.

Node 1 sends the same information to both nodes 3 and 5,
and therefore retains data in its buffer until both receiving nodes
have acquired the corresponding packet. Accordingly, the ser-
vice rate at node 1 is . Similarly, the service
offered to the buffer at node 2 is . Alto-
gether, nodes 1, 2, and 3 transmit packets at rates , , and ,
respectively, whenever their own buffers are nonempty. Observe
that, by construction, congestion can only occur at these three
nodes. We can therefore safely assume that there are no queues
at the other nodes. We have depicted the fluid model of interest
in Fig. 3 for the butterfly network under consideration. We rep-
resent the fluid level in the buffer at node and time by .
The stochastic evolution of depends on whether one opts
for network coding or classic routing.

C. Network Coding

For network coding, packets originating from links 1–3 and
2–3 are combined algebraically over GF(2) and then stored in
the buffer at node 3. From a fluid perspective, this is equivalent
to both flows entering buffer 3 oblivious of each other. Buffer
3 can be serviced at a maximum rate . However, to prevent
decoding delays at the destinations, the service rates offered at
nodes 1, 2, and 3 are made equal to

and . In this scenario, there is
no congestion at node 3 and hence for all times .
Furthermore, for the nontrivial case where , we can write
the stochastic evolution of as

(2)

where . When the buffer at node 1 is nonempty, the net
rate of fluid input is ; this is called the drift rate. For

, we can define a drift matrix
for the buffer at node , whose diagonal entries are the drift rates
corresponding to the state of the arrival process. In matrix form,
we have

D. Classic Routing

For the case of classic routing, the service rate offered at node
is . The evolution of for the nontrivial case of

is then governed by

(3)

where . It will be shown in the later sections that the
departure process at the output of buffer is a two-state on-off
process modulated by a countable-state Markov process .
The departure process at node can be represented as

The buffer at node 3 is fed by the aggregation of these two in-
dependent arrival processes, and it is serviced at a constant rate

. To initiate the analysis of this more complicated scenario,
we study the simple case where the resources at buffer 3 are
split between the flows of sources A and B. Consider two par-
allel buffers at node 3 with positive constant service rates and

, respectively. We assume that the flow from node 1 goes to
the first parallel buffer; and the flow from node 2, to the second
one. The aggregate fluid in both the buffers will be greater than
or equal to the fluid level of a single-buffer system with in-
coming data from nodes 1 and 2 and service rate . Thus, the
decay rate of buffer occupancy for a system with a single buffer
at node 3 must be no less than the exponential decay rate of
the corresponding system with parallel buffers and partitioned
service. Yet, it can be shown that these asymptotic values are
equal for independent flows and optimal splitting rate [11], [13],
[14], [32]. The two independent flows can therefore be decou-
pled and studied separately. If the shared buffer is constrained
by a requirement on the decay rate of buffer occupancy, the
queues in the decoupled system are constrained by the same pa-
rameter as well. We denote by the fluid level in the
buffer of the decoupled system holding data from node . We
can write the stochastic evolution of for the nontrivial
case of , as

III. KEY RESULTS

In this section, we list the mathematical results needed to
compute the achievable rate regions for data multicast through
the butterfly network, under specific QoS requirements. Let

be the amount of fluid at time in a queue being fed
by an on-off source satisfying Assumption 1, and serviced at
a constant rate . Let denote the arrival rate into this buffer
when the source is on. The mean off and on times of the source
are denoted by and , respectively. Furthermore, the
output of this queue (also called departure process) is fed into
another arbitrary large reservoir. This second queue is being
serviced at a constant rate . The amount of fluid in the latter
buffer at time is denoted by .

We wish to find the maximum peak rate , such that the QoS
criterion of (1) is no less than for both queues. Let and

be the asymptotic buffer decay rates governing the first and
second queues in the tandem network, i.e.,

(4)
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where is the steady-state queue-length of buffer . More
specifically, we wish to identify set (as a function of , ,
and ) defined by

(5)

If , the first buffer always remains empty and the behavior
of the tandem queue reduces to that of a system with a single
queue. We therefore focus on the nontrivial case where .
Under this condition, Theorem 1 in Section VI asserts that if

then

(6)

The lower bound on ensures stability of the queue. This for-
mula implicitly determines the maximum peak rate such that
a QoS constraint of is satisfied at buffer 1. We define

(7)

where we define . The second buffer
always remains empty if . Thus, we consider the situation
where . We identify the range of allowable rates such that
buffer 2 satisfies QoS constraint (see Section VIII) as

(8)

where the function is given by

.

Here, is as defined above and is given by the
expression

with parameter determined implicitly by

Collecting these results, we obtain
. That is, is admissible if and

only if with

.
(9)

An intuitive explanation for the behavior of this tandem net-
work is as follows. Buildups in the system can occur at buffers
1 and 2. When the service rate of the second buffer is small

Fig. 4. Maximum supportable peak rate of the on-off source ��� � �� �
������ � �� �� versus � under various values of QoS requirement � for a
tandem queue. The first queue is serviced by a fixed constant service rate � �
1 Mb/s and the second queue is serviced by a rate � � ��� �	 Mb/s. Parameter
� denotes the target asymptotic exponential decay rate of the tail buffer
occupancy.

, the behavior of the system is dominated solely by
the action of the second queue. On the other hand, when

, deviations are caused by the combined behavior of the two
queues with large buildups occurring in the first queue when

, and in the second queue otherwise.
The more complicated expression corresponding to this latter
case follows from the fact that, altered by the first buffer, the
structure of the arrival process feeding the second buffer is more
intricate. We plot the boundary of with increasing

in Fig. 4 for various values of QoS constraint . It is
clear from the figure that the achievable rate region
shrinks with QoS constraint , as one would expect. The system
parameters used in this example are 0.65 s, 0.352
s, and 1 Mb/s.

Before we apply these results to compute achievable rate
regions for the butterfly network, we point out that there
are at least three different ways of obtaining the tail expo-
nents of tandem queues. First, there is the transform method
studied in [33]–[35]. Under this approach, the authors find the
Laplace–Stieltjes transform of the desired distributions [34],
[35]; still, these transforms are not straightforward to invert. A
much stronger result, the joint distribution for tandem queues,
is obtained in [33]. However, for our purposes it suffices to
know the marginal content distributions of the two buffers.
Furthermore, the marginal distribution for the second buffer in
[33] is not expressed in its convenient reduced form.

A second approach would be to use sample-path large devia-
tions as in the seminal paper by Chang–Zajic [11], [13], [14].
One can use the Lindley recursion and inverses of counting
processes (Galois connections) to construct a discrete-time em-
bedded process that would be closely related to the continuous-
time process at hand. Thus, one can employ this methodology to
study stationary random variables such as buffer content. How-
ever, to use these results [11], [13], [14], one needs to verify the
general mixing conditions for the sample-path large deviations
of the departure process. These conditions are highly technical
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and, to show they are satisfied, one requires expertise in proba-
bility theory and filtrations; this would lead to a more contrived
exposition.

The third approach, which we adhere to in this paper, can
also be found in previous literature [36]–[38]. One can study
two queues separately by first characterizing the stationary de-
parture process from the first queue, and using it as an arrival
process for the second queue. This gives us an explicit distribu-
tion for the marginal content of the second buffer in a tandem
network. That is, we provide an alternate proof for the tail-ex-
ponent of the second buffer in a tandem queue (though it is
a specialized result, it gives us the desired form) utilizing the
Anick–Mitra–Sondhi approach [36]–[38] together with a char-
acterization of the departure process by Aalto [39], [40].

IV. ACHIEVABLE RATE REGIONS

The results listed above can be employed to identify achiev-
able rate regions for the butterfly network under consideration.
With a slight abuse of notation, we let be the asymptotic decay
rate of buffer-occupancy for the queue at nodes in
Fig. 3, for a pair of peak-arrival rates at sources A and
B. We need to find the set of all two-tuples such that
the global QoS constraint is satisfied, i.e.,

1) Network Coding: As mentioned earlier, the effective
service rates offered at nodes 1, 2, and 3 are ,

, and . This prevents undue
decoding delays at the destinations. Using the notation of the
previous section, we can write the achievable rate region for
this system as

where is the set defined in (7).
2) Classic Routing: For classic routing, consider two par-

allel buffers at node 3 with constant service rates and ,
respectively. Assume that the flow from node 1 goes to the first
buffer; and the flow from node 2, to the second one. Again,
we emphasize that the aggregate fluid in both the buffers will
be greater than or equal to the level of fluid in a single-buffer
system with combined arrivals from nodes 1 and 2 and serviced
at rate . Using the aforementioned splitting property, the two
independent flows can be decoupled and studied separately. If
the shared buffer is constrained by a QoS requirement , the
queues in the decoupled system are subject to the same crite-
rion. For a fixed , there exists a unique peak rate pair

such that the QoS constraint is satisfied by the system
if the achievable rate region is

. Accordingly, the achievable rate region is equal
to the union of the regions corresponding to all the possible
values of . That is

(10)

where is the achievable rate region of (5).

Fig. 5. Wireless butterfly network with two sources, two destinations and a
relay node.

V. WIRELESS BUTTERFLY NETWORK

In this section, we study a wireless butterfly network under
a broadcast paradigm. We assume that the system operates in
frequency division multiplexing (FDM) mode. We should point
out that FDM operation is not necessarily optimal in terms of
achievable rates or delays. More complex schemes provide fu-
ture avenues of research. It is not clear though that a similar
analytical framework can be used while considering alternative
multiple-access schemes.

Consider the multicast scenario where two sources wish to
communicate with two destinations. An additional node that
acts as a relay is present to facilitate communication over the
network. All the nodes have an identical power budget , and
the total spectral bandwidth available to the system is limited.
The source nodes produce independent on-off traffic, as in our
previous setting. The total available spectral bandwidth is di-
vided to make three noninterfering frequency bands.

Node 1 broadcasts its messages to nodes 3 and 5, and node
2 does the same to nodes 3 and 6 (see Fig. 5). Node 3 sends its
messages to nodes 5 and 6 simultaneously. The packets trans-
mitted by node 3 can be either multiplexed messages from nodes
1 and 2, or algebraic sums thereof. Again, we call these modes of
operation classic routing and network coding, respectively. We
note that this setup is closer to the practical mesh networks being
deployed today than it is to an information theoretic perspective
seeking to identify fundamental limits of wireless systems.

For simplicity, we assume that all the transmission links
are time-invariant. We consider two cases: the additive white
Gaussian noise (AWGN) case, and a scenario where the wire-
less channels are subject to path loss. Again, we suppose that
every node is equipped with an arbitrary large buffer to store
data packets that are awaiting transmission through the wireless
medium. We also assume that a simple link layer acknowledg-
ment scheme is present, so that data can be flushed out of the
corresponding buffer once reception is confirmed.

A. Channel Model

For an AWGN channel, the maximum rate at which error-free
data transfer is possible is given by

(11)
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where represents the expected power of the signal, is
the double-sided power spectral density of the noise process,
and is the spectral bandwidth. Recent developments in error-
control coding allow operation near Shannon capacity with min-
imal error rates and small delays. Therefore, the channel ca-
pacity expression of (11) can be viewed as an optimistic ap-
proximation of code performance. We assume that codes are
designed to operate at a fixed rate, which is the constant ser-
vice rate offered by the channel. In the case where all the links
are AWGN limited, we allocate equal spectral bandwidth to the
three nodes, and hence they become of equal capacity. We de-
note the constant service rate offered by each connection as

, where is the ob-
served signal-to-noise ratio (SNR).

In the second case, we assume that the received power decays
exponentially in distance with exponential factor . That is, the
ratio of the transmit power to the received power is . Given a
spectral bandwidth allocation of and a distance of meters,
the capacity of the corresponding connection becomes

b/second (12)

Once the spectral bandwidth allocation is completed, the ca-
pacity of each link stays fixed. We choose a code rate to operate
close to capacity, and this rate becomes the maximum allowable
constant service rate for the corresponding queue.

B. AWGN Links

We begin the wireless analysis with the scenario where node
3 utilizes network coding. In this case, the data rate to be trans-
mitted out of node 3 is the maximum of the rates from nodes
1 and 2, which is . Therefore, there is no congestion at this
node and the achievable rate region is limited by the QoS con-
straint at nodes 1 and 2. Under a QoS constraint , the max-
imum possible rate received by destinations C and D have iden-
tical functional form and are equal to from source A and
from source B, where

That is, the achievable rate region for the source rate pair
is .

Next, we consider the situation where node 3 simply forwards
packets from nodes 1 and 2 to the destinations. In this case,
source rate pairs are also limited by the congestion at
node 3; and, for all , we have .
The total achievable rate region for classic routing thus becomes

The results for a specific value of are shown in Fig. 6. The
system parameters selected for this numerical study appear in
Table II. Additionally, we chose a mean received power equal
to 100 mW.

Fig. 6. Boundaries of achievable peak rate regions for on-off sources when (a)
classical routing or (b) network coding is employed at intermediate node 3 for
the QoS constrained communication over butterfly network of Fig. 5, where
each link is additive white Gaussian noise limited. The asymptotic exponential
decay rate of the buffer-occupancy is bounded below by � � ���.

TABLE II
SYSTEM PARAMETERS

C. Links With Path Loss

To illustrate the effects of path attenuation, we consider an
example where the sources and destinations are located on the
vertices of a perfect square of side length . The relay node lies
on the perpendicular bisector of the edges connecting the two
sources at a distance from the top of the square. The distance
from the two sources to the relay node being identical, we as-
sume that a fraction of the total bandwidth is allocated to
each source; and the remaining , to the relay node.

To maximize the gains of network coding, we need to
make the link capacities identical. The capacity of the
link between a source and the relay is , where

. Similarly, the capacity of the
link between the relay and a destination can be written as

, where the distance from the relay to a desti-
nation is . Since the service
rate available to the source is limited by the minimum of the
direct-link and relay-link capacities, we allocate bandwidth
parameter in the following fashion:

(13)

We denote this optimal bandwidth allocation parameter by ,
which is evaluated numerically. We would like to point out
that this is unique, which follows from the monotonicity of

in [see (12)].

Proposition 1: The optimal bandwidth allocation parameter
that satisfies (13) is unique.

Proof: It is easy to see that is continuous and
even differentiable in the range . We will quickly show
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Fig. 7. Boundaries of achievable peak rate regions for on-off sources
when (a) classical routing (denoted by dashed lines for values of fraction
� � ������ �����) and (b) network coding (denoted by the solid line) are
employed at the intermediate node 3 for the QoS constrained communication
over butterfly network of Fig. 5 where each link is limited by path loss. The
asymptotic exponential decay rate of the buffer occupancy is bounded below
by � � ��� and the relay node is at distance � � 9 m.

that is strictly increasing in . Then, it will follow
that is continuous and decreasing in and
hence is unique since for any
finite . To that end, it suffices to show that
for all . From (12), it is straightforward to verify
that is decreasing in ; hence we only need to check

that is greater

than zero. Here, we are denoting by . Clearly, if
for all , we are done.

This is easy to verify since and .

For the classic routing case, each source broadcasts its
packets to the relay node where information is stored. The
relay then forwards the received messages to the destina-
tions using a first-come-first-serve service policy. The links
from the sources to the relay node have identical capacity

. Similarly, the link from the relay
node to the destinations have capacity . Using
the same queueing performance analysis as before and for a
fixed , we can obtain the achievable rate region under QoS
constraint for network coding and classic routing (for dif-
ferent values of in the latter case). The two regions are shown
in Fig. 7 for a transmit power of 40 W and the system
parameters of Table II. In this example, we have taken
15 m and (typical values of range from 1.6 to 1.8
for line-of-sight communication in buildings [41, p. 139, Table
4.2]). The region enclosed by the thick solid line represents
the achievable rate region achieved by network coding. The
thin dashed lines characterize the regions corresponding to
classic routing for different values of . Clearly, classic routing
outperforms network coding in this case. This is a scenario
where the cost of establishing a network topology suitable for
network coding exceeds the benefits of packet combining.

VI. QUEUEING RESULTS

Below, we list and derive queueing results related to the anal-
ysis of the tandem network introduced in Section III. Recall that
the arrival process feeding the first queue is a Markov-modu-
lated fluid process with on rate . This queue is serviced at a
constant rate , whereas the second queue is served at a rate .
When , the first buffer in the system remains empty at all
times, and the analysis of the tandem network degenerates into
a single-queue scenario. We therefore assume that , which
is the more interesting case. For this situation, the following the-
orem enables us to obtain the tail-asymptotics of the first buffer
in a tandem network. The corresponding rate region is governed
by (4) and (6).

Theorem 1 (Mitra [36], [42], [9]): Let be the amount of
fluid in an arbitrary large reservoir being fed by an on-off source
satisfying Assumption 1, and serviced at a constant rate . The
off and on times of the source are exponentially distributed with
means and , respectively. If the constant arrival rate
of the fluid in the on state is such that

then the limit exists for all .
The corresponding asymptotic decay rate of buffer occupancy
can be identified by looking at the largest negative eigenvalue

that satisfies the matrix equation . Here, is the
generator matrix for the modulating Markov chain and is the
drift matrix corresponding to the arrival process. More precisely,
we have

where is a random variable whose distribution coincides with
the equilibrium distribution of the queue.

This is a standard result and, as such, we state it without
proof. For alternate treatments of this theorem and other per-
tinent queueing results on the decay rate of buffer-occupancy
under various conditions, see [7]–[11], [13], [14], [18], [31], and
[37].

A. Departure Process of a Fluid Buffer

We next consider the case where there are two queues in
tandem and the departure process of the first queue serves as the
input to the second buffer. The departure process at the output
of the first buffer is characterized using a theorem first proved
by Aalto [39], [40].

Theorem 2 (Aalto): For the fluid queue described in Theorem
1, the departure process can be viewed as an on-off source where
packets are emitted at a constant rate during an on period, and
the source is idle otherwise. The off times are exponentially dis-
tributed with mean ; while the on times have the same dis-
tribution as the duration of a busy period in an M/M/1 queue
with arrival rate and service rate . Furthermore,
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Fig. 8. Graphical representation of the modulating birth-death process.

the departure rate is when the queue is nonempty. Mathemat-
ically, this departure process is modulated by a countable state
birth-death process with given transition rates

(14)

(15)

(16)

The modulating birth-death process is depicted in Fig. 8. The
departure process is off, when and it is on otherwise.
That is, the departure rate is given by

.
(17)

Having characterized the departure process of the queue, we
next present an expression for the equilibrium distribution of

. Let

and define . Then, the stationary distribution of
is given by [43]

B. Distribution of the Tandem Queue

For the tandem network described in Section III, we wish to
find the equilibrium distribution of the second buffer. Note that
we already have similar results for the first queue based on The-
orem 1. We also have knowledge of the departure process from
the first queue, as afforded by Theorem 2. The properties of the
second queue can therefore be studied based on this departure
process alone.

Consider a buffer that is being fed by a Markov modulated
on-off source generating fluid at a rate , where
is the departure function of (17) and is the modulating
Markov process described in Theorem 2. The arrival rate in the
queue is when , and it is zero otherwise. Fluid
is removed from the queue at constant rate , provided that it
is nonempty. Paralleling the approach of Virtamo and Norros

[38], we derive necessary and sufficient conditions for a non-
trivial stationary probability distribution to exist. Then, we find
the spectrum of the operator that governs the equilibrium dis-
tribution of the buffer. This allows us to present an explicit ex-
pression for the distribution of the queue.

Clearly, if , there is no congestion in this buffer. We
therefore examine the case where . Writing the stochastic
evolution equation for the buffer of interest, we get

It can be shown that the stochastic process governing the evo-
lution of this buffer is positive recurrent if and
only if [31], [44]

That is, there exists a stationary probability distribution for the
buffer provided that the stability condition mentioned above is
satisfied. Applying standard queueing arguments, we can derive
the Chapman–Kolmogorov equations for the probability distri-
bution of stationary buffer occupancy as follows. We use

to denote the probability that exceeds while the
underlying birth-death process is in state , i.e.,

The corresponding Chapman–Kolmogorov equations become

(18)

for The constants
are the transition rates of the modulating process defined in
(14)–(16). Additionally, we employ the convention that

. With some abuse of notation, we define the sequence
as

Let denote the Hilbert space of square summable sequences
indexed by , and let be the space of bounded linear
operators from to itself. For sequence , we define
operators and in by

(19)

(20)

where are defined in (14)–(16). It is straightforward
to check continuity of these two operators. In particular, for any

, we have
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For the aforementioned system, we can rewrite (18) in a com-
pact form in terms of the sequence and the bounded linear
transformations and

(21)

The transformation can be expressed in terms of the identity
operator and the standard projection operator . For any

, we have and . We can then write

The linear transformation can be described in matrix form as

where we have defined the operators

and

...
...

...
...

. . .

We emphasize that is a symmetric matrix, which makes it
very convenient for the spectral analysis carried out below. Note
also that , , and are diagonal and hence commutative
operators.

It is easy to see that and belong to , and that
is invertible. It follows that . Since

, we can represent using a countable state
matrix as

...
...

...
...

. . .

(22)

It should also be apparent from the Chapman–Kolmogorov
equation of (21) that

(23)

To evaluate , we need to identify boundary condition
and find a spectral representation for the operator

(24)

The equilibrium distribution can be obtained from the nat-
ural boundary conditions on the buffer occupancy for a stable
system; this is accomplished later. Rather, we begin by deriving
an expression for (24) through a two-step approach: first we
compute the spectrum of , and then we obtain an equiv-
alent representation for in terms of the associated eigenfunc-
tions.

1) Spectrum of Bounded Linear Operator: In general,
finding the spectrum of a noncompact bounded linear operator
is a difficult task. However, in the present case, the relevant
operator is a compact perturbation of a linear combination of
standard shift operators. It is well known in the literature that
the continuous spectrum of a self-adjoint operator remains
invariant under compact perturbations [45], [46]. We present
relevant results formally in the following theorem, which will
be used to obtain a spectral representation for the operator of
(24).

Let us denote the spectrum of an operator by

is not invertible in

This spectrum is composed of two parts. First, there is the dis-
crete spectrum of , also called the set of eigenvalues of ,
which is defined as is not injective .
That is, is an eigenvalue of if and only if there exists a se-
quence such that . On the other hand,
the values of for which the operator is in-
jective but not surjective belong to the continuous spectrum of

. If there exists such that , yet the
range of operator is dense in , then .

Theorem 3: Let operators be as defined in
(19)–(20). Then, the continuous spectrum of is

(25)

and has a discrete eigenvalue . Furthermore, if

then there is an additional eigenvalue located at .
In this latter case, we have .

Let be such that, for some , we have

(26)

Then, belongs to the spectrum of the linear operator .
Substituting and , we obtain

(27)

There is a one-to-one correspondence between the eigen-
values and eigenfunctions of (26) and (27). Therefore, it
suffices to show that spectrum of has a continuous part

and an eigenvalue . In

addition, we need to show that operator also has an
additional eigenvalue when .
Here we have implicitly defined . We show in
Appendix I that this is indeed true. We choose to solve (27) due
to its symmetric structure and greater simplicity.
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2) Spectral Representation of Identity: For further analysis,
we introduce variable and constants and in the following
way:

We emphasize that there is a one-to-one correspondence be-
tween and ; we can therefore express as a function of ,
and as a function of unambiguously. Hence, we use
and interchangeably depending on the context. We define

and for eigenvalues and . In ad-
dition, we assume without loss of generality that for
eigensequence corresponding to . For
convenience, we make the dependence of on (and hence
) explicit hereafter. For eigenvalues and , we gather from

Appendix I that the corresponding eigensequences are

This leads to their -transforms being

We can also find by substituting in
(34). Furthermore, we can write the -transform of the eigense-
quence corresponding to by substituting , ,
and in (33) to obtain

We notice that is independent

of for , and .

For any eigensequence and corresponding ,
we have , which in turn implies

(28)

Moreover, for and , we have
. Note that ; however, and

(see Appendix I). Therefore, the usual inner
product on (sum of pointwise product of sequences) is well
defined for and . Hence, using (28) and the eigenre-
lationship, we get ,
which in turn yields

Thus, we obtain

(29)

It is equally straightforward to see that

(30)

Below, we use these orthogonal properties to derive the desired
spectral representation of the identity operator.

Theorem 4: Let denote the weights corresponding to
eigenvalues and , and let be the weighting function
associated with the continuous spectrum of . Define these
quantities as follows:

Then, the identity operator can be expressed in terms of as

(31)

A proof for this result is contained in Appendix II.
We are now ready to characterize the equilibrium distribu-

tion of the buffer overflow probability for the second buffer in a
tandem network.

Theorem 5: For the system described in Theorem 1, let the
departure process of the first queue serve as an input to the
second buffer. The latter queue is assumed to be served at con-
stant rate and its occupancy is denoted by . If

then we can express the equilibrium probability distribution of
exceeding a threshold as

where is a constant.

This result is proved in Appendix III.

VII. TAIL ASYMPTOTICS FOR BUFFER OCCUPANCY

In this section, we characterize the exponential decay rate
of the complementary cumulative distribution function (also re-
ferred to as tail-asymptote) of the equilibrium buffer-occupancy
random variable of the second buffer in a tandem queue. We em-
phasize that finding this tail-asymptote is essentially the same
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as obtaining the effective bandwidth of the departure process
discussed in Section VI-A (see also [39] and [40]). From the
buffer distribution derived above, we can obtain the dominant
exponential decay rate. An alternate way of finding the effec-
tive bandwidth of the departure process would be to first com-
pute the moment generating function of the busy period of the
fluid queue [47]–[49], and then use the method proposed in [50].
There is also literature available on finding tail-asymptote of the
departure process in a discrete-time queue [11], [13], [14].

Recall that for all , whenever
. That is, if the discrete eigenvalue exists, then it

is larger than the supremum of the continuous spectrum. We
characterize the tail-asymptote in the following theorem.

Theorem 6: For described in Theorem 5, the exponen-
tial decay rate associated with the steady-state probability of the
buffer exceeding a threshold is given by , where

(32)

Proof: We use the fact that is nonnegative, bounded
and integrable. For , the desired result follows from

On the other hand, for the case where and for some
, we have

Taking logarithms on both sides, dividing by , and taking
limits, we get

Finally, letting and using the continuity of , we obtain
the desired result.

VIII. MAXIMUM ACHIEVABLE RATE FOR DEPARTURE PROCESS

In Theorem 6, we found the tail-asymptote of the second
buffer in a tandem queue as described in Theorem 1. In this
section, we find the achievable rate region for the
tandem queue considered in Section III. While establishing this
region, several cases must be considered. These cases are not in-
dividually difficult, but they are collectively tedious. Therefore,
the proof appears in Appendix IV. We have tried to make the
presentation as clear and concise as possible.

Theorem 7: For exponential-decay rate described in The-
orem 6, we define

where the function is given by

.

The first component is equal to

and the second component is given by the expression

with parameter determined implicitly by

IX. CONCLUSION

We compared network coding to classic routing for a QoS
constrained communication system, and computed the achiev-
able rate regions for both scenarios. For an AWGN model with
identical link capacities, network coding significantly outper-
forms classic routing. This essentially implies that the benefits
associated with network coding are far more important than the
multiplexing gains achieved by routing for symmetric networks.
However, we obtained more interesting results for the wireless
butterfly network. In this case, allocating resources to form a
network topology suitable for packet combining at intermediate
nodes does not always offer gains and may even be detrimental
at times. These results depend on the topology of the butterfly
network. For network coding to be useful, we need symmetric
direct links. It turns out that it is often better to route packets
rather than trying to establish a direct link to the destination
using excessive amounts of physical resources. A possible av-
enue of future research is to study networks with varying service
rates.

APPENDIX I
PROOF OF THEOREM 3

From (22), it follows that
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Taking the -transform, , we get

(33)

We define to be the roots of the characteristic poly-
nomial .

To solve for from its -transform, we break the problem
into two separate cases. First, assume that . Then

are two different roots, and the -transform can be
written as

(34)

where we have implicitly defined

From this decomposition, we gather that

where . Note that only when is or since
(see [38]). The corresponding eigenvalues are

and . Since , zero
is always an eigenvalue of (27). However, which
implies that is an eigenvalue only when .

On the other hand, we claim that belongs to the continuous
spectrum if and only if ; this is equivalent to

. To prove the claim, we note that

can be equivalently expressed in terms of the right shift
operator , the left shift operator , a compact perturbation ,
and the identity operator . In particular, we can write

(35)

where , , and

It is immediate that is self-adjoint with real continuous
spectrum , and . Also, it is a
well-known result by Weyl that the continuous spectrum (plus

limit points of point spectrum if any) of a self-adjoint oper-
ator remains unchanged under compact perturbations [45], [46].
This fact, along with (35), gives us

Next, we show that . Since , it
is clear that [51, Prop. 7.19]. To establish
set equality, we use [51, Prop. 7.39] which states that

We choose the following sequence param-
etrized by

otherwise.

Clearly, . Furthermore, taking , we
get

This shows that . As a consequence, we
have

and hence (25) follows. We now show that
. It suffices to show that

. Substituting the expressions for
and ,

and canceling common terms on both sides, we need to show
that

This holds because . This completes the proof.

APPENDIX II
PROOF OF THEOREM 4

It is easy to compute and using orthogonality by post-
multiplying both sides of (31) by . The proper weights
are then obtained through (29) and (30). Getting is slightly
more involved. First, we right multiply (31) by , and then
take the double -transform of both sides. After rearranging
terms, we deduce that it is equivalent to show that

(36)
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where we know from the definition of that

It can be shown that the right-hand side of (36) is the contour in-
tegral of a complex integrand over the unit circle [52]. To prove
this, we denote the right-hand side of (36) by and sub-
stitute to get

The last equality follows from and

being respectively, even

and odd in . Substituting in the equation above, we get

(37)
where we have used

We need to show that is identical to the left-hand
side of (36). To do so, we employ complex integration, residue
theory, and the fact that

We find the residues pertinent to the integrand as

From the residue theorem, we obtain

We can verify through algebraic manipulation that

and, as such, the desired result follows. That is, (36) holds and
hence the identity expression of (31) is valid.

APPENDIX III
PROOF OF THEOREM 5

Using the Chapman–Kolmogorov equation given in (21) and
the identity expression of (31), we can rewrite (23) as

For this system to be stable, we need and
for , since at steady state the probability of

the buffer being empty is zero for the states where the input rate
exceeds the service rate . These boundary conditions imply

that , which can be employed to obtain

Since is almost a geometric sequence, the ex-
pression is closely related to the -trans-
form of . In view of the discussion at the beginning
of Section VI-B2, it is not too surprising to find that

is constant for all ;
and it is equal to
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This, along with the fact that , implies

We can get an expression for the probability of the buffer ex-
ceeding a fixed threshold , using the relationship

. Noting that

for all , we obtain

This is the desired expression.

APPENDIX IV
PROOF OF THEOREM 7

If the second buffer in the tandem queue described in The-
orem 5 has a QoS constraint on the asymptotic decay rate of
buffer-occupancy, then we must have

This condition enables us to determine the set of
on-time arrival rates that can be supported by this queue under
QoS constraint , and for a given service rate .

First, we gather that, for
. This fact follows directly from stochastic

majorization of the buffer-content processes. Second, if the
constant service rate of the second queue is greater than or
equal to the constant service rate of the first queue, then the
second queue always remains empty (equivalently, ).
Under such circumstances, the second queue does not limit
peak rate . We therefore focus on the case where .
If , then both queues stay empty with ;
thus, we have for all and all

.
Let us define . Note that

is increasing in . Let be the service rate such
that . For , we can show that

. When ,
the first queue remains empty and the arrival processes at the
first and second buffers are pathwise identical. Therefore, by
Theorem 1, we get . Since , it
follows that and hence . It
is clear that for any finite , . We can explicitly write

as

.

Next, we consider the case where . In this scenario,
the arrival rate at the second queue is , as described in
Section VI-A. In the previous section, we obtained the expo-
nential decay rate governing the queue distribution for this
system

.

We note that denotes the maximum supportable rate
when the discrete eigenvalue of governs the decay
rate of the buffer overflow probability, i.e., when

. Furthermore, the condition is equivalent to the
quadratic expression . This equation
specifies upper and lower bounds on the existence of . That
is, exists only when

We call the endpoints of the interval and , respectively.
We have , which gives upper and lower bounds

and in terms of
and , respectively. Thus, when lies between
these two bounds, the supremum of the continuous spectrum
dominates the tail-asymptotics and the discrete eigenvalue
disappears. We can write and explicitly

(38)

(39)

For the real interval to exist, the discriminant in (38)
and (39) must be nonnegative. Defining

we deduce that and are well-defined real numbers pro-
vided that . That is, discrete eigenvalue exists for all

. In this case, the achievable rate region is limited by
. Note that . Clearly

is an increasing function that maps to . There-
fore, is an increasing function of . Furthermore, because

is a decreasing function of , it follows
that is a decreasing function of in . Since and
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are both nonnegative in this interval, it follows that mono-
tonically increases and ranges over ,

whereas decreases and ranges over .

When , the continuous spectrum domi-
nates the tail asymptotics. This implies

Therefore, since , we know that belongs to the in-
terval

when ; and it belongs to the set

when . We emphasize that we require
in the first case for a nonnegative to exist. Furthermore,

we need for a real to exist. For the second
queue to be stable, we must have , which implies

where

It is clear from the explicit form of that it is
increasing in . We can write the achievable rate region

in terms of , , and as

Let be the value of where intersects or .
In other words, if we substitute for in the expression for ,
the value of that equates and is . It can be seen that

by substituting and

to obtain

where . The value can be
written as the positive root of the following equation in the in-
terval :

The left-hand side is continuous and monotonically decreasing
for and ranges over , whereas the right-hand
side is continuous and monotonically increasing in the same in-
terval and ranges over . It is clear from the con-
tinuity and the monotonicity of these functions that there ex-
ists a unique real for all values of , , , .
Furthermore, since for and to exist, we have

. In addition, since
is decreasing in , we can prove that it is less than or equal to
for all by showing it to be less than or equal to at

. This is equivalent to showing .
Therefore, we only need to show that equation

is valid, which is equivalent to and ob-
viously true. Hence, the result holds. We know from Theorem 3
that discrete eigenvalue is always greater than the supremum
of the continuous spectrum of , whenever it exists. There-
fore

which in turn implies .
If intersects and at , then for

all . Since, is decreasing, we have for
as well. Also, since and intersect uniquely

at in and are both increasing, within this
interval. Thus, we have

Otherwise, when intersects and at ,
for all because is increasing in . Since is

decreasing, for . In this interval, and
do not intersect and are both increasing with . We

conclude that
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From the discussion above, it is clear that we have
for . Also, it was

shown that , and therefore we con-
clude that where the maximum
achievable rate is continuous in . This rate can
therefore be characterized completely for all as

.

This is the desired result.
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