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ABSTRACT

Quantization is intrinsic to several data acquisition systems.
This process is especially important in distributed settings,
where observations must rst be compressed before they are
disseminated. There have been many practical successes in
the area of quantization, including the acclaimed Lloyd-Max
algorithm. This article adopts a different perspective and it
explores quantization at a fundamental level, seeking to iden-
tify classes of problems for which ef cient quantization is
possible. The focus is primarily on positive random vari-
ables of unbounded support, where severe degradation may
occur. Established properties of Banach spaces are exploited,
together with the boundedness of probability measures, to
prove that ef cient quantization schemes necessarily exist in
the ne-quantization regime. The results are algorithmic in
nature and provide bounds on the number of bits necessary to
achieve a desired level of performance.

Index Terms— Quantization, Norm

1. INTRODUCTION

Remote sensing and distributed information systems are
becoming increasingly popular as means of gathering perti-
nent data. Potential applications for these devices include de-
tection, estimation and control. Instrumental to the success
of such systems are ef cient methods to process, compress
and transmit information. In particular, quantization plays a
central role in the design of many information systems. The
literature on quantization is vast, and it contains a multitude
of schemes tailored to different application scenarios [1]. The
celebrated Lloyd-Max algorithm and its many variants point
to the importance of quantization in practical settings.

A prevalent approach in the design of quantizers is to be-
gin with a simple function and then improve performance
through a two-step iterative procedure, alternating between
quantization regions and their representatives. Another pos-
sible line of research is to study the properties of a class of
quantizers such as uniform quantizers [2]. Interesting results
have also been reported on the existence of universal quantiz-
ers for families of random variables with bounded support [3].

An important characteristic underlying many previous
contributions in this area is that, for problems of statistical
inference, most of the information present in an observation

This material is based upon work supported, in part, by the National Sci-
ence Foundation (NSF) under Grants No. 0747363. Any opinions, ndings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily re ect NSF’s views.

appears to be contained within the rst few bits of quan-
tized data [4]. In this article, we revisit scalar quantization
and focus on the basic properties of quantized signals. Our
goal is to offer new insights about the quantization process,
thereby providing further evidence that ef cient quantization
is possible for large classes of distributions. Furthermore, we
derive bounds on the number of quantization bits needed to
achieve a desired level of performance. We are especially
interested in the quantization of random variables with un-
bounded support, as it can lead to detrimental errors. Such
situations arise, for instance, in decentralized detection where
agents must transmit compressed versions of empirical log-
likelihood ratios.

The motivation for this article can be explained as fol-
lows. When considering distributed systems, analysis is often
greatly simpli ed by assuming that agents can exchange raw
observations. While this may not be true in practice, if ef -
cient quantization is possible then this approximation is justi-
ed. This is especially pertinent for packetized systems where
headers are substantial; in such situations, it is reasonable to
use a correspondingly large number of quantization bits per
observation in the payload.

2. QUANTIZATION AND SIMPLE FUNCTIONS

Suppose X is a non-negative random variable on space
(Ω,F , P ) and assume thatX is in L1. Then, we can write the
mean of X as

E[X] =

∫
Ω

X(ω)dP (ω) = ‖X‖1 < ∞.

Alternatively, let μ represent the probability measure induced
by X on R, with μ(S) = Pr(X−1(S)). We can express the
expected value of X as E[X] =

∫
xdμ(x) = ‖X‖1.

A standard argument from analysis states that X is the
pointwise limit of a monotonic increasing sequence of non-
negative simple functions [5]. One possible construction for
this argument is reviewed below. For b > 0, we can partition
the range of X into 22b intervals. The rst 22b − 1 intervals
have length 2−b and are given by

Ab,k =

{
ω ∈ Ω : X ∈

[
k − 1

2b
,

k

2b

)}
k =1, . . . , 22b − 1.

The last interval is Ab,2b =
{
ω ∈ Ω : X ∈ [

2b − 2−b,∞)}
.

Consider the functions de ned by

X2b(ω) =
2
2b∑

k=1

k − 1

2b
11Ab,k

(ω),
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then the sequence {X2b}∞b=1 converges pointwise to X as b
tends to in nity. IfX is bounded, the convergence is uniform.

Since X is in L1, we can applying Lebesgue’s domi-
nated convergence theorem [5] to the approximation error
(X − X2b); this yields

lim
b→∞

‖X − X2b‖1 = lim
b→∞

∫ ∞

0

|X(ω) − X2b(ω)|dP (ω)

=

∫ ∞

0

lim
b→∞

|X(ω) − X2b(ω)|dP (ω) = 0.

By construction, X2b admits a 2b-bit representation. This
fact implies that a non-negative random variableX with nite
mean can be quantized to arbitrary precision with respect to
the L1-norm. This is very encouraging because it establishes
the existence of a good quantization scheme for random vari-
able X and distribution μ.

While we know that a sequence of simple quantization
schemes can lead to arbitrary small error, the mathematical
justi cation described above does not specify bounds on the
number of bits necessary to achieve a prescribed level of ac-
curacy. Indeed, for any given b, there exists a random variable
X that produces a large residual error. In this work, we wish
to derive a set of conditions that provides insight on how large
b should be to achieve a quantization performance of the form
‖X − X̃‖1 < δ, where X̃ is the quantized version of X . To
accomplish this task, we exploit relations between norms and
we construct an iterative, greedy quantization procedure.

Assume that X is a non-negative random variable in L2.
First, we note thatX is also inL1 becauseL1 ⊆ L2 for spaces
with bounded measures. Thus, we have

‖X‖1 = E[X] =

∫ ∞

0

xdμ(x) < ∞

‖X‖2
2 = E

[
X2

]
=

∫ ∞

0

x2dμ(x) < ∞.

An alternative expression for E[Xp] is presented below. This
latter expression is closely related to arguments found in the
subsequent sections of this article.

Lemma 2.1: Suppose X is a non-negative random vari-
able in Lp, where p > 1, then we can write

E [Xp] =

∫ ∞

0

pxp−1 Pr(X > x)dx.

Proof: We nd a characterization of E[Xp] in terms of the
complementary cumulative distribution function ofX ,

E [Xp] =

∫
Ω

XpdP =

∫
Ω

∫ X

0

pxp−1dxdP

=

∫
Ω

∫ ∞

0

pxp−111{X>x}dxdP

=

∫ ∞

0

∫
Ω

pxp−111{X>x}dPdx

=

∫ ∞

0

pxp−1 Pr(X > x)dx.

Under Fubini’s theorem, the non-negativity of X is suf cient
to warrant changing the order of integration.

Corollary 2.2: If X is a non-negative random variable in
L1, then ‖X‖1 =

∫
Pr(X > x)dx.

3. ONE-BIT QUANTIZATION

From this point forward, we assume that X is a non-
negative random variable in L2. Consider the quantization
function de ned by

Qc(X) =

{
c X > c

0 X ≤ c.

This scheme admits a one-bit representation. The residual
error associated with this function is

Y = X −Qc(X) = X − c11{X>c}
= X11{X≤c} + (X − c)11{X>c}.

We emphasize that error Y is non-negative and satis es

‖Y ‖1 = ‖X‖1 − cPr(X > c). (1)

Looking at this equation and the expression for ‖X‖1 given
in Corollary 2.2, it appears that cPr(X > c) is an important
quantity in bounding the difference between ‖X‖1 and ‖Y ‖1.

Using a parallel progression with respect to L2, we obtain

‖Y ‖2
2 = ‖X‖2

2 − c

∫ ∞

c

(2x − c)dμ(x)

≤ ‖X‖2
2 − c2 Pr(X > c).

In this case, the function c2 Pr(X > c) plays a major role in
establishing a relation between ‖X‖2

2 and ‖Y ‖2
2.

To obtain bounds on the L1-norm ofX , we introduce two
chief quantities,

s1 = sup
x>0

x Pr(X > x), s2 = sup
x>0

x2 Pr(X > x). (2)

It is valuable to rst study properties of s1 and s2.

Proposition 3.1: Suppose X is a random variable in L2

and let s1, s2 be as de ned above. The following inequalities
hold,

s1 ≤ min{‖X‖1, ‖X‖2}, s2 ≤ ‖X‖2
2.

Proof: We initiate this demonstration by examining the sim-
plest inequality. For any c ≥ 0, we have

cPr(X > c) = c

∫ ∞

c

dμ(x)

≤
∫ ∞

c

xdμ(x) ≤
∫ ∞

0

xdμ(x) = ‖X‖1.
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Thus s1 ≤ ‖X‖1, as desired. A similar derivation leads to the
second inequality. For any c ≥ 0, we can write

c2 Pr(X > c) = c2

∫ ∞

c

dμ(x)

≤
∫ ∞

c

x2dμ(x) ≤
∫ ∞

0

x2dμ(x) = ‖X‖2
2.

Therefore, we gather that s2 ≤ ‖X‖2
2.

The last inequality is slightly more involved. First, we
nd an upper bound for ‖X‖1. For any z > 0, we can write

‖X‖1 =

∫ ∞

0

Pr(X > x)dx

=

∫ z

0

Pr(X > x)dx +

∫ ∞

z

Pr(X > x)dx

≤
∫ z

0

Pr(X > x)dx +
1

z

∫ ∞

z

x Pr(X > x)dx

=

∫ z

0

(
1 − x

z

)
Pr(X > x)dx +

1

z

∫ ∞

0

x Pr(X > x)dx

≤
∫ z

0

(
1 − x

z

)
min

{
1,

s1

x

}
dx +

1

2z
‖X‖2

2.

Suppose s1 > ‖X‖2. Choosing z = ‖X‖2 above, we get

‖X‖1 ≤
∫ z

0

(
1 − x

z

)
dx +

1

2z
‖X‖2

2 = ‖X‖2.

However, this leads to a contradiction because we have al-
ready established that s1 ≤ ‖X‖1. As such, we conclude that
s1 ≤ ‖X‖2. This completes the proof of the proposition.

As a simple corollary to this proof, we obtain the follow-
ing bound on the L1-norm of X . In particular, if ‖X‖2 and
s1 are small, then ‖X‖1 must also be small.

Corollary 3.2: If X is a non-negative random variable in
L2, then the L1-norm of X is bounded by

‖X‖1 ≤ s1 log

(
s2
1 + ‖X‖2

2

2s2
1

)
+ s1.

Proof: From our previous derivation, we have

‖X‖1 ≤
∫ z

0

(
1 − x

z

)
min

{
1,

s1

x

}
dx +

1

2z
‖X‖2

2.

and s1 ≤ ‖X‖2. Then, for z ≥ s1, we get

‖X‖1 ≤
∫ s1

0

(
1 − x

z

)
dx +

∫ z

s1

(
1 − x

z

) s1

x
dx +

‖X‖2
2

2z

= s1 log z − s1 log s1 +
s2
1 + ‖X‖2

2

2z
.

This bounding family is parametrized by z and it is valid over
[s1,∞). It therefore holds for z = (s2

1 + ‖X‖2
2)/2s1. The

corollary is obtained by substituting this optimal value for z
in the expression above.

The next set of results presented below hints at the fact
that quantization offers diminishing returns as the number of
levels increases.

Lemma 3.3: Suppose X is a non-negative random vari-
able in L2. Let Y = X − c11{X>c} for some c > 0. Then,
s1 ≥ t1 and s2 ≥ t2, where

t1 = sup
x>0

x Pr(Y > x), t2 = sup
x>0

x2 Pr(Y > x)

and s1, s2 are as de ned in (2).
Proof: For any ω ∈ Ω, we have X(ω) ≥ Y (ω). This implies
that Pr(X > x) ≥ Pr(Y > x) and, consequently,

x Pr(X > x) ≥ x Pr(Y > x)

x2 Pr(X > x) ≥ x2 Pr(Y > x).

We immediately conclude that s1 ≥ t1 and s2 ≥ t2.
We pursue our analysis by deriving various bounds for

‖X‖1 in terms of s1, s2 and ‖X‖2. These upper bounds can
subsequently be employed to provide performance guarantees
in terms of the number of bits required to achieve a certain
performance. The rst step in establishing these results is to
provide a bound for Pr(X > x).

Lemma 3.4: Assume X is non-negative and in L2. Let
s1, s2 be as de ned above. For any x > 0, we can write

Pr(X > x) ≤ min
{

1,
s1

x
,
s2

x2

}
. (3)

Proof: The rst component of the inequality is trivial, as
Pr(X > x) ≤ 1. To obtain the second component, it suf ces
to notice that x Pr(X > x) ≤ s1 for any x > 0. Dividing
both sides of this inequality by x leads to the desired result.
The third component is obtained in a similar manner. Since
x2 Pr(X > x) ≤ s2, we gather that Pr(X > x) ≤ s2/x2 for
any x > 0. Collecting these results, we get (3).

Proposition 3.5: If X is a non-negative random variable
in L2, then ‖X‖1 ≤ 2

√
s2.

Proof: Using Lemma 2.1 and Lemma 3.4, we can write

‖X‖1 =

∫ ∞

0

Pr(X > x)dx ≤
∫ ∞

0

min
{

1,
s2

x2

}
dx

=

∫ √
s2

0

dx +

∫ ∞

√
s2

s2

x2
dx = 2

√
s2.

The inequality holds because neglecting one of the arguments
of the minimization can only lead to a looser upper bound.

A different bound can be derived by accounting for the
third argument in (3). This, on the other hand, leads to an
additional constraint.

Proposition 3.6: If X is a non-negative random variable
in L2 and s2

1 < s2, then

‖X‖1 ≤ 2s1 − 2s1 log s1 + s1 log(s2).

Proof: Applying Lemma 2.1 and Lemma 3.4, we have

‖X‖1 =

∫ ∞

0

Pr(X > x)dx ≤
∫ ∞

0

min
{

1,
s1

x
,
s2

x2

}
dx

=

∫ s1

0

dx +

∫ s2/s1

s1

s1

x
dx +

∫ ∞

s2/s1

s2

x2
dx

= 2s1 − 2s1 log s1 + s1 log s2.
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We note that, when s2
1 < s2, this bound is tighter than the one

contained in Proposition 3.5.

4. GREEDY QUANTIZATION PROCEDURE

In this section, we seek to derive a bound on the num-
ber of bits necessary to approximate random variableX such
that the L1-norm of the residual quantization error is less than
δ > 0. To achieve this goal, we employ an iterative, greedy
algorithm that reduces the norm of the quantization error at
every step.

Consider the following procedure. First, we let ε1 > 0
and ε2 = δ2/4. We initialize the algorithm with X0 = X .
At time instant i, if supx Pr(Xi > x) > ε1, then we select
a value of ci such that ci Pr(Xi > ci) > ε1. Also, we de ne
the binary random variable bi by

bi = 11{Xi>ci}. (4)

We can write the residual quantization error recursively,

Xi+1 = Xi − ci11{Xi>ci} = Xi − bici. (5)

From (1), we gather that ‖Xi+1‖1 ≤ ‖Xi‖1 − ε1. When
either ‖Xi‖1 < δ or supx Pr(Xi > x) ≤ ε1, this phase of
the iteration process is terminated.

At this point, two cases are possible. If ‖Xi‖1 < δ,
then we have achieved our objective. On the other hand, if
‖Xi‖1 ≥ δ, then we start choosing thresholds as to reduce
the L2-norm of Xi. Speci cally, if supx2 Pr(Xi > x) > ε2,
then we pick a value of ci such that c2

i Pr(Xi > ci) > ε2. For
these steps, the binary digit bi is still de ned through (4) and
the residual error is given by (5). This second phase of the
iterative algorithm stops when ‖Xi‖1 < δ.

Theorem 4.1: The algorithm described above will termi-
nate in at mostM + N steps, where

M =

⌊‖X‖1

ε1

⌋
, N =

⌊‖X‖2
2

ε2

⌋
.

Proof: This result is somewhat straightforward, in view of
our previous discussion. At every step during the rst phase
of this iteration procedure, the reduction inL1-norm is at least
ε1. It follows that the maximum number of steps for this phase
of the algorithm is M . Similarly, the second phase will end
in at most N iterations, as the L2-norm of the residual error
decreases by at least ε2 with every additional step. Note that
if, at any point, there does not exist a value of ci such that
c2
i Pr(Xi > ci) > ε2 then

s2 = sup
x>0

x2 Pr(X > x) ≤ δ2/4

and ‖Xi‖ < δ by Proposition 3.5. Implicit to this argument is
the fact that s1 and s2 are non-increasing over time. Collect-
ing these facts, we conclude that the overall procedure must
end in at mostM + N steps.

One of the irony associated with this procedure is that our
bound is tightest when ε1 is large. In the limit, as ε1 tends to
in nity, the upper bound simply becomes

N =

⌊‖X‖2
2

ε2

⌋
.

Yet from an engineering point of view, it makes sense to rst
try to quantize with respect to the L1-norm; minimizing the
L1-norm of the quantization error is the intended goal of the
algorithm. Unfortunately, we have very little insight to share
on how to resolve this apparent dichotomy.

On the positive side, having a universal bound on the num-
ber of bits required to achieve a certain performance is a very
valuable result. For completeness, we note that the value of
the quantized observation is given by X̃ =

∑
i bici. Also, we

emphasize that the proposed quantization procedure relies on
perfect knowledge of the distribution of X . Obtaining an ac-
curate distribution for X may be a monumental undertaking.
This task is intimately linked to system modeling [6], a topic
beyond the scope of this article.

5. DISCUSSION

Quantization can be especially dif cult for distributions
with unbounded support, as this process may lead to very
large quantization errors. However, we showed that if a non-
negative random variable belongs to L2, then the L1-norm of
the quantization error is bounded. Furthermore, we proved
that, under these circumstances, ef cient quantization is pos-
sible; the number of bits required to achieved a desired level
of performance is nite. Thus, this study promotes analysis
frameworks where agents are theoretically able to exchange
raw observations. This is especially tting for problems
where the objective criterion is continuous with respect to the
topology induced by the L1-norm and where data is transmit-
ted using a packetized infrastructure. In this sense, this article
provides new supporting evidence for a popular assumption
that is often found in the literature.
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