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Abstract—This paper considers the relationship between
code-rate selection and queueing performance for communica-
tion systems subject to time-varying channel conditions. While
error-correcting codes offer protection against channel uncer-
tainties, there exists a natural tradeoff between the enhanced
protection of low-rate codes and the rate penalty imposed by
additional redundancy. In the limiting regime where codewords
are asymptotically long, this tradeoff is well understood and
characterized by the Shannon capacity. However, for delay-sensi-
tive communication systems and finite block lengths, a complete
characterization of this tradeoff is not fully developed. This
paper offers a new perspective on the queueing performance of
communication systems with finite block lengths operating over
correlated erasure channels. A rigorous framework that links code
rate to overall system performance for random codes is presented.
Guidelines for code-rate selection in delay-sensitive systems are
identified. These findings are supported by a numerical study.

Index Terms—Block codes, channel models, communication sys-
tems, data communication, queueing analysis, telecommunication
buffers, wireless communication.

I. INTRODUCTION

T HE transmission of digital information over noisy chan-
nels has become commonplace in modern communication

systems. The dependability of contemporary data links is due,
partly, to the many successes of information theory and error-
control coding [1]. In particular, the reliable transmission of dig-
ital information is possible at rates approaching the Shannon ca-
pacity using asymptotically long codewords [2]. Indeed, many
notable communication systems employ long codewords to pro-
vide high throughput and low error probabilities [3].
A scenario where the many insights offered by classical infor-

mation theory do not apply directly is the broad area of delay-
constrained communications [4]. Real-time traffic and live in-
teractive sessions are very sensitive to latency. Long codewords
are not particularly well suited for real-time applications be-
cause they entail lengthy encoding/decoding delays. In such in-
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stances, alternative engineering methods, including power con-
trol, automatic repeat-request, scheduling, and feedback, can be
leveraged to establish rapid end-to-end connections [5], [6]. Yet,
delay considerations often force systems to operate well below
their Shannon limits [7].
Several articles in information theory are focused on the

tradeoff between throughput and delay. Coding performance as
a function of delay has been assessed in the information theory
literature using the reliability function [2]. This performance
criterion identifies the error exponent of a code family as a
function of data rate. The notion of reliability function can be
extended to variable-length codes in the presence of feedback,
leading to the famous Burnashev error exponent [8]–[10].
While significant, these results remain asymptotic in nature and
do not capture the queueing aspect of many communication
systems.
Pertinent alternative approaches include effective capacity

[11], [12], outage capacity [13], [14], average delay character-
izations [15], fluid analysis [16], and heavy-traffic limits [17].
While these contributions also provide insights about the de-
sign of delay-sensitive systems, many such articles make ide-
alized assumptions about the behavior of coded transmissions.
For instance, some authors adopt the notion of instantaneous
capacity: individual data blocks are assumed, implicitly or ex-
plicitly, to possess enough degrees of freedom to support so-
phisticated coding schemes and thereby approach Shannon ca-
pacity within every time slot. Perhaps reasonable for long code-
words, such assumptions become more of a concern for short
data blocks. This is especially problematic for channels with
memory, where correlation over time promotes deviations from
expected behavior.
For a delay-constrained communication system that utilizes

short codewords, two competing goals affect the selection of an
error-correcting code. A low-rate code will, in general, result in
a small probability of decoding failure, whereas the same system
with a high-rate code is more prone to errors. Still, the successful
decoding of a codeword associated with a higher rate code leads
to the transmission of a larger number of information bits. This
tension has already been exposed for communication systems
with automatic repeat requests in the context of block-fading
channels [18]. For instance, the throughput-maximizing scheme
for a system with a short block code may only provision limited
resources against channel uncertainties. Indeed, the optimum
probability of decoding failure at the block level can remain
quite large.
Many previous inquiries in this area adopt a higher layer

viewpoint, using rudimentary models for the physical layer;
others embrace a channel-coding perspective, intentionally
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disregarding queueing aspects of the system. Herein, we seek
to bridge the gap between these extremes to address an impor-
tant question: What is the optimal code rate for a particular
implementation and traffic profile? Our approach in obtaining
an answer to this question differs from established work in that
we strive to provide exact solutions. To facilitate the type of
queueing analysis we wish to carry, we make the following
assumptions. The packet arrival process at the transmitter is
Bernoulli, and the packet length has a geometric distribution in
bits. The communication medium is a bit-erasure channel with
memory. Random codes, with maximum-likelihood decoding,
are employed to protect the transmitted data against erasures.
Collectively, these assumptions are sufficient to conduct a rig-

orous analysis of the probability of block decoding failure at the
receiver, which leads to a complete characterization of the en-
suing queueing behavior at the source. Implicit in our system
model is the ability to acknowledge the reception of packets
through instantaneous feedback.We emphasize that model com-
ponents are selected with the intent to keep analysis manage-
able. The focus is on developing tools and techniques that can
be used to bridge communication, coding, and queueing. Still,
our framework admits several extensions beyond the formula-
tion presented in this paper; some of these extensions are dis-
cussed alongside the main results wherever appropriate.
The remainder of this paper is organized as follows. The

system model is introduced in Section II, with the probability
of block decoding failure being derived in Section II-C. Packet
arrivals and departures form the main topic of Section III.
Together, they dictate the queueing behavior of the packetized
system, which is analyzed in Section IV. Numerical results
are contained in Section V. Finally, new insights, concluding
remarks and avenues of future research, are discussed in
Section VI.

II. SYSTEM MODEL

We initiate our exposition of the systemwewish to study with
a description of the underlying communication channel. Bits are
sent from a source to a destination over a Gilbert–Elliott era-
sure channel. The channel can be in one of two states, which
we denote by integers . In state 1, every transmitted bit
is erased with probability independently of other bits. Simi-
larly, in state 2, every bit is lost with probability . Throughout,
we assume that . Transitions between channel
states occur according to a Markov process. The probability of
jumping to state 2 given that the Markov chain is currently in
state 1 is denoted by . The reverse transition probability from
state 2 to state 1 is written as . The parameters of this Markov
chain can be expressed in the form of a transition probability
matrix

(1)

A graphical interpretation of this communication channel ap-
pears in Fig. 1. We note that the methodology adopted in this
paper admits a larger number of channel states and can be ap-
plied to more intricate physical links. A differentiating aspect
of the Gilbert–Elliott channel is that it represents the simplest
nontrivial instance of a finite-state channel with memory, which
leads to a more accessible treatment of the problem. Markov
models have been employed to capture the behavior of com-

Fig. 1. Gilbert–Elliott bit erasure channel is employed to model the operation
of a communication link with memory. This model captures both the uncertainty
associated with transmitting bits over a noisy channel and the correlation over
time typical of several communication channels.

munication channels in the past, and several studies point to
methods of selecting parameters to best match the profiles of
communication links at the physical layer [19], [20]. In our
framework, the marginal distribution of fades is determined by
the stationary distribution of the channel, whereas correlation
over time is captured through the spectral gap of the transition
probability matrix. At this point, we leave the channel parame-
ters in an abstract form, seeking general solutions.
The channel state at instant is a random variable, which

we label . With this notation, one can write the progression
of the Markov chain over time as . Finding
the conditional probability , where
, , amounts to selecting an entry in . Likewise,

corresponds to an entry in , where

This decomposition shows how this Markov chain converges to
its stationary distribution at an exponential rate that depends on
the second largest eigenvalue of , which is . This
quantity can then be employed to quantify channel memory.

A. Segments, Block Length, and Code Rate

To transmit information over the erasure channel, data bits
must first be processed and encoded. In our framework, a packet
of length is sectioned into data segments, each containing
information bits. Packing loss is accounted for implicitly as

the last data segment of a packet is zero-padded to bits. Thus,
the number of segments within a packet of length is equal to

. Data are stored in a queue and every segment is
encoded separately into a codeword of length , which is even-
tually sent over the Gilbert–Elliott erasure channel. The trans-
mission of a codeword, thus, requires successive uses of the
channel. We assume that decoding failures are handled through
immediate retransmission of the missing data. The block length
remains fixed throughout; it is determined by system require-

ments and the availability of physical resources. On the other
hand, the size of a data segment (and, therefore, the code rate

) is a parameter that should be optimized.

B. Distribution of Erasures

A quantity that is of fundamental importance in our analysis
is the probability of decoding failure at the destination. An inter-
mediate step in identifying this probability is to derive expres-
sions for the distributions of the number of erasures within a
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codeword. This, in turn, depends on the number of visits to each
state within consecutive realizations of the channel. Specifi-
cally, we are interested in conditional probabilities of the form

(2)

where , . The generating functions for these con-
ditional probabilities can be derived based on generalizing the
entries of to the vector space of real polynomials in

Proposition 2.1: Let be the linear functional that maps
a polynomial in to the coefficient of . The conditional prob-
ability is given by

(3)

where is the matrix defined previously.
Proof: This result can be shown using mathematical induc-

tion. Let denote the number of channel erasures occurring
between times and , inclusively. By construction, the propo-
sition holds for . As an inductive step, assume that (3) is
satisfied for . Then, one can write

That is, (3) also holds for . Since both the basis and the
inductive step have been verified, we conclude that the propo-
sition is true for all integers .

We note that one can employ this method or alternative com-
binatorial means to obtain closed-form expressions for the de-
sired conditional probabilities [21], [22].

C. Probability of Decoding Failure

At the onset of every transmission attempt, a new code is cre-
ated to encode information bits. The code is defined by a
random parity-check matrix of size . The en-
tries of are selected independently and uniformly over .
This scheme assumes shared randomness between the source
and its destination. Maximum-likelihood decoding is used at the
destination to decode the received messages. Consequently, the
probability of decoding failure becomes a function only of the
number of erasures contained within a block. Once the value of
is known, one can compute the probability of decoding failure

using the following result.

Proposition 2.2: The probability of decoding failure, given
erasures within a codeword of length , is equal to

Proof: Conditioned on , decoding at the destina-
tion will succeed if and only if the submatrix of formed by
choosing the erased columns has rank . Furthermore, the
probability that a random matrix over has rank is
equal to [23, p. 73]. Collecting these two re-
sults, we obtain the probability of a successful transmission,
which implicitly determines the conditional probability of de-
coding failure given .

The unconditioned probability of decoding failure at the des-
tination is equal to

where the distribution of accounts for all the possible channel
realizations within a block. While the probability of decoding
failure represents an important performance criterion, it alone
does not capture the queueing behavior of the system. Time de-
pendencies among decoding failures may also influence the be-
havior of the queue at the source. Having introduced a mathe-
matical model for the physical channel, we turn to the descrip-
tion of the arrival and departure processes.

III. ARRIVAL AND DEPARTURE PROCESSES

Data packets enter the queue according to a discrete-time
Bernoulli process whose clock is synchronized with codeword
transmission intervals. During every codeword transmission at-
tempt, a new packet arrives at the source with probability , in-
dependently of other time instants. The number of bits in every
data packet is random, with packet sizes forming a sequence of
independent and identically distributed random variables. The
marginal distribution of a packet size is geometric with param-
eter . In other words, the probability that a packet contains ex-
actly bits is given by

where . The arrival process and the packet-length
distribution have been selected, partly, to facilitate the anal-
ysis we wish to carry. In particular, the memoryless property
of the geometric distribution and the independence over time of
the Bernoulli process make for a tractable characterization of
queueing behavior. Adopting an intricate arrival process more
in tune with a specific application can easily render analysis
intractable. This explains why our arrival process conforms to
models commonly found in the queueing literature.
Departures from the queue are governed by the underlying

Gilbert–Elliott channel and the selected number of parity bits,
, of our random code. The probability of decoding failure

is increasing in code rate, given a fixed block length . Still, the
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successful decoding of a high-rate codeword leads to the trans-
mission of a larger number of information bits. As mentioned
before, these competing considerations create a natural tradeoff
between data content and probability of decoding failure. Ac-
cordingly, the code rate , or equivalently the number
of information bits per data segment , is a parameter that
should be optimized.
Once the code rate is specified, the number of successfully

decoded codewords needed to complete a packet transmission
is random with . We note that being a geometric
random variable with parameter implies that is also geo-
metric with parameter

Thus, the probability that a data packet requires the successful
transmission of exactly codewords becomes

We emphasize that, in the current setting, the number of coded
blocks per data packet retains the memoryless property.
In our formulation, we assume that is independent of

channel state, which simplifies analysis. When side information
is present at the transmitter, one can enhance performance by
picking as a function of the current state. Furthermore, even
without explicit state knowledge, it is possible to estimate the
channel state through available feedback, i.e., the automatic re-
peat-request sequence. In the latter scenario, the selection of
as a function of state estimates becomes a partially observable
Markov decision process. Such problems can be computa-
tionally challenging or intractable, and they often necessitate
careful consideration. Accounting for the presence of partial
state information at the transmitter is an interesting question
that is beyond the scope of this paper; we leave this matter as a
possible future endeavor. This completes the description of the
communication system under study. We proceed below with
the characterization of overall performance.

IV. QUEUEING BEHAVIOR

Packets are stored in the queue upon generation by the source,
and they remain in this buffer until the corresponding data seg-
ments are decoded successfully at the destination. We assume
that there are no packet losses and, as such, the transmit buffer
has no hard limit. When discussing the size of the queue at the
source, two distinct characterizations are possible. The first op-
tion is to keep track of the number of packets contained in the
queue. The second choice is to track the amount of data awaiting
transmission. Although the latter alternative provides a more
accurate representation of buffer occupancy in bits, the former
option is closely related to the concept of packet delay and it
is simpler to analyze. For these reasons, we elect to define the
state of the queue as the number of data packets in the queue, as
is customary in classical queueing literature [24]–[26].
Recall that, in the proposed setting, a packet of length is

first subdivided into data segments. Each segment is encoded

separately into a codeword of length , and the resulting mes-
sage is subsequently sent over the communication channel. Suc-
cessful receptions are acknowledged instantaneously through
feedback, whereas decoding failures trigger immediate retrans-
missions of the missing blocks. Upon confirmation of an accu-
rate transfer, a data segment is marked as delivered and trans-
mission of the next data block begins. Though the presence
of instantaneous feedback is assumed for mathematical conve-
nience, it may also be approximated in practice using high-speed
decoders and high-power reverse-link communication.
For the head packet to depart from the queue, the destina-

tion must successfully decode the received message and this
codeword must be carrying the final parcel of information per-
taining to this head packet. Specifically, a packet composed of
bits will require the successful reception of code-

words before it is removed from the queue. The length of the
queue at the onset of block is denoted by . The state of the
Gilbert–Elliott channel at this instant is represented by .
Together, these two quantities form the state of our Markov
process, . We emphasize that this state space
is countable, with belonging to . Furthermore,
the Markov chain underlying the evolution of our system pos-
sesses a special structure. It forms an instance of a discrete-time
quasi-birth-death process. Luckily, there are many established
techniques to analyze such mathematical objects [27]–[29].
Our next step is to examine the transition probabilities of this

augmented Markov chain. The probability of jumping from
to is given by

(4)

We have already introduced, in Section II-B, an efficient
methodology to compute conditional probabilities of the form

. Accordingly, it
suffices to focus on the other component of each summand,

, to characterize (4).
We first consider conditional events for which

. In this case, admissible values for are given by
. Two factors can affect the length of the

queue: the arrival of a new data packet and the completion of a
packet transmission. The latter occurrence will only take place
if a codeword is successfully decoded at the destination and the
corresponding data block is the last segment of the head packet.
Keeping this fact in mind and using independence between ar-
rivals and departures, we get

(5)

(6)

(7)
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Fig. 2. State space and transition diagram for the aggregate queueing process
; self-transitions are intentionally omitted.

When the queue is empty, no packet can depart. As a result, only
two possibilities remain

(8)

(9)

Assembling these results and using (4), we obtain the proba-
bility transition matrix of the Markov process . A graphical
representation of possible state transitions appears in Fig. 2.
To proceed with the analysis of our queueing system, a com-

pact representation of the conditional probabilities defined in (4)
is apropos. For and , , we introduce the fol-
lowing convenient notation:

(10)

(11)

(12)

Similarly, when the queue is empty, we use

Collectively, these labels define the 12 transition probabilities
associated with a nonempty queue, and the 8 transition proba-
bilities subject to the nonnegativity constraint at zero.
At last, we are ready to derive the equilibrium distribution of

our aggregate system. We note that this system is stable when
the mean arrival rate is less than the expected service rate over
a codeword transmission period [30], i.e.,

Under this stability condition, Markov chain is positive
recurrent and possesses a unique stationary distribution [31].
Assuming that the system is stable, let be a random
vector with the aforementioned limiting probability distribution

We employ the semi-infinite vector to represent the equilib-
rium distribution of our system, with

if
if .

The states are known as the th level of the chain
and is the stationary distribution asso-
ciated with this level.

Using this compact notation, one can express the
Chapman–Kolmogorov equations for the queued system
as , where denotes the transition probabilities asso-
ciated with the aggregate Markov chain . We can represent
the transition probability operator as a semi-infinite matrix
of the form

...
...

...
...

. . .

(13)

where the submatrices , , , , and are 2 2 real
matrices. Specifically, we have

When the queue is empty, the relevant submatrices become

When is irreducible, this quasi-birth-
death process is recurrent if and only if ,
where is the stationary probability distribution of [30].
One possible approach to identify the stationary distribution of
the Markov chain is to employ spectral representations
and ordinary generating functions. This technique is described
in Section IV-A. An alternate numerical means for computing
the stationary distribution is the matrix-geometric method dis-
cussed in Section IV-B. As we will see, both approaches have
their advantages and drawbacks.

A. Transform Method

The first approach we present makes use of generating func-
tions [26], [22]. Let be the transform vector defined by

(14)

Theorem 4.1: The invariant distribution of the Markov chain
can be derived from the recurrence relation induced by .
Finding the stationary distribution of the augmented Markov
chain is equivalent to solving a matrix equation of the form

(15)

where the entries in matrices and are quadratic
polynomials

(16)

(17)

The elements of can be determined from the requirements
imposed by stability and normalization.

Proof: We begin this demonstration by writing the bal-
ance equations governing the Markov chain . From the
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Chapman–Kolmogorov equations and the form of
given in (13), we obtain

(18)

(19)

(20)

Next, we multiply (18) by and sum over all to get

Leveraging boundary conditions (19) and (20), the aforemen-
tioned equation reduces to (15).

Using the results of Theorem 4.1, one can write

where is a matrix whose entries are rational functions
of . Note that one can express the inverse of in terms of
its adjugate matrix and determinant [32]:

Moreover, the entries of are rational functions
where polynomial numerators have at most degree 3 and the
common polynomial denominator is of degree 4.
Through careful inspection, we find that is a factor
common to all numerator and denominator polynomials. After
cancellation, the entries of can be expressed
as quadratic polynomials over a common cubic polynomial.
Using the general formula for the roots of cubic polynomials,
it is then possible to carry partial fraction expansion for the
entries of and thereby obtain an expression for

, which is invertible in closed form. The coefficients of
at level zero are obtained using stability and the fact that

(21)

Although a closed-form parametric solution for the stationary
distribution of this system exists and can be obtained using sym-
bolic equation solvers, it is unfortunately too cumbersome to
be included in this paper. Still, we emphasize that existence of
such a solution provides an efficient means to conduct numer-
ical studies. A downside to the approach outlined previously lies
in the fact that it does not scale well with the number of states in
the channel, thereby precluding straightforward generalizations
to alternate environments. This is due to the difficulty associated
with finding the roots of high-degree polynomials. This imped-
iment is addressed in Section IV.B.

B. Matrix-Geometric Method

The Markov chain associated with operator (13) belongs to
the class of random processes with repetitive structures. As
such, one can apply standard techniques from the rich literature
on matrix-analytic methods and quasi-birth-death processes
[33]–[36]. The essence of the approach we adopt is to take
advantage of the symmetric interactions among different levels

of the Markov chain. For , the recursive structure of our
system is captured by the formula

In finding a solution to this matrix equation, it seems that the
general form of the embedded Markov structure and, specifi-
cally, its block partitioning are far more important than the pre-
cise values of each submatrix. The stationary distribution of the
queue, in matrix-geometric form, is characterized in the fol-
lowing theorem.

Theorem 4.2: Consider a positive recurrent and irreducible
Markov chain on a countable state space with transition proba-
bilities given by (13). Let the matrix be defined such that the

entry is the probability that, starting from state , the
Markov chain first re-enters level 1 by visiting and
does so without visiting any state at level 0. The substochastic
matrix may be computed as the limit, starting from ,
of the sequence defined by

(22)

Let matrix be given by

(23)

where . Then, is a stochastic matrix as-
sociated with an irreducible, finite Markov chain. If we denote
the invariant distribution associated with by , then the
stationary distribution associated with can be expressed as

(24)

where .
Proof: See the Appendix.

Corollary 4.3: When the appropriate inverse matrices exist,
one can write the first two levels of the stationary distribution
associated with (13) as

and . The remaining levels are obtained
through the recursion where .

Proof: The coefficients of can be derived from the
channel equilibrium condition

Given that an inverse exists, one can solve for in terms of the
invariant distribution of the channel. From there, the distribution
at other levels is obtained in a straightforward manner.

In summary, we have presented an algorithmic method to de-
rive the stationary distribution of and, concurrently, obtain
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the stationary distribution of the queue, .
It is instructive to note that the matrix is closely related to
the probability that the number of packets in the queue exceeds
a prescribed threshold; it ultimately determines the asymptotic
behavior of the complementary cumulative distribution function
of the queue.

Corollary 4.4: The decay rate of the complementary cumu-
lative distribution function of the queue satisfies

where is the spectral radius of .
Proof: See the Appendix.

C. Establishing a Link Between Generating Functions and
the Matrix-Geometric Method

We presented two approaches to compute the stationary
distribution of the aggregate Markov process. Naturally, these
methods must be related. In this section, we explore their
connection and we link the generating function procured by
first principles to the matrix-geometric method. First, we note
that satisfies the implicit equation

(25)

Using the relation and rearranging terms in
(25), we get . Substituting this into
(16), we obtain

The third equality follows from (25), with .
Because the determinant of a matrix product is the product
of the individual determinants, we gather that the roots of

are simply given by the roots of its factors. The stable
modes of correspond to the roots of . Since

is a stochastic matrix, the Perron–Frobenius
theorem asserts that

has a root at unity, with any other root having a magnitude
smaller than 1. These remaining roots correspond to unstable
modes of . Under partial fraction expansion, the stability
constraint forces the coefficients associated with these latter
roots to vanish. The remaining unknown is resolved through
the normalization axiom of probability laws. This reconciles

the two approaches, which necessarily lead to the same solu-
tion. The generating function method can give closed-form ex-
pressions if the channel has only two states, whereas the ma-
trix-geometric method gives rise to a numerical procedure that
works well for any finite-state channel.

V. PERFORMANCE EVALUATION

The detailed characterization presented in the previous sec-
tions makes it possible to compute a number of performance
criteria for the system under consideration, including the
probability of decoding failure, average throughput, and mean
delay. In this paper, we focus on two additional performance
measures relevant to delay-sensitive communications. We con-
sider the probability that the queue occupancy exceeds a certain
threshold, . Furthermore, we examine the decay rate
of the complementary cumulative distribution function of the
queue, as presented in Corollary 4.4.
Throughout this numerical study, unless stated otherwise, we

employ the following system parameters. The Gilbert–Elliott
erasure channel is defined by , , ,
and . This yields an average bit-erasure proba-
bility of and the channel memory decays at an expo-
nential rate of . During every codeword
transmission attempt, a new packet arrives at the source with
probability , and the expected packet length is set to

. The block length is fixed at symbols.
If codewords are transmitted every 4.615 ms, then this corre-
sponds to a mean arrival rate of roughly 10.6 kb/s and an ergodic
channel capacity of roughly 22.2 kb/s. These quantities are se-
lected to loosely reflect the operation of a wireless GSM-based
relay link. Collectively, these parameters dictate the evolution
of the Markov process governing the queue.
The Shannon capacity for the Gilbert–Elliott erasure channel

is per channel use. This limit can be achieved using
a sequence of independent and uniformly distributed random
variables. In fact, this statement remains true for an arbitrary
(ergodic) binary erasure channel where the expected number of
erasures is independent of the input sequence. Suppose and
denote the input and output vectors of an erasure channel,

respectively. Let be a vector that indicates the observed (i.e.,
not erased) positions at the destination. Then, we can write

where is the subvector of that contains the value of every
observed symbol. The second equality follows from the fact
that there is a natural bijection between the set of possible out-
come vectors and admissible pairs of the form . The
conditional entropy is uniformly maximized by
drawing input from a uniform distribution. Consequently, the
mutual information is also maximized by choosing according
to a uniform distribution. Hence, themaximummutual-informa-
tion rate is equal to the average number of unerased positions.
We continue our analysis with simple performance criteria

that are based solely on the evolution of the channel. They do
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Fig. 3. Probability of decoding failure, , as a function of the number
of information bits per codeword. The conditional probabilities of decoding
failure for various values of are also included.

not take into consideration the behavior of the queue at the trans-
mitter. One such criterion is the probability of decoding failure
at the receiver, which is equal to

A closely related measure of performance is the average
throughput associated with a saturated source. In the present
setting, this is given by

The probability of decoding failure as a function of appears
in Fig. 3. The average throughput associated with a saturated
source is plotted as a function of the number of information
bits per codeword in Fig. 4. These two figures illustrate well the
tradeoff between data content and error protection. In particular,
these competing considerations lead to the unimodal throughput
function of Fig. 4, where optimal performance is achieved at

. A naïve conjecture would place close to the
rate implied by the Shannon limit

, but this is much larger than the throughput-maximizing
value of . This observation reinforces the claim that
insights gained from information theory must be modified for
communication systems subject to stringent delay restrictions.
When using a short block length, two factors affect the op-

timal code rate for a prescribed queueing performance. The
block length may be too small to ensure convergence of the
empirical average number of erasures within a block. In ad-
dition, dependencies from block to block may not be negli-
gible. Although the probability of decoding failure and the av-
erage throughput account for channel correlation within a block,
they do not capture dependencies from block to block. This is
a subtle yet important observation, especially for delay-sensi-
tive traffic. The impact of these factors becomes more severe

Fig. 4. Average throughput for a saturated source as a function of , the
number of information bits per codeword. The maximum throughput is
obtained at .

with increasing channel memory. This consideration underlies
much of the queueing analysis presented in this paper. Time de-
pendencies in the service process of a queue can alter system
performance dramatically. We, thus, turn to queue-based per-
formance criteria.
Fig. 5 depicts the complementary cumulative distribu-

tion function of the queue, , as a function of
. Each curve represents the probability that, in steady

state, buffer occupancy exceeds a certain threshold , where
. The low threshold values reflect the in-

tended use of this methodology in the context of delay-sensitive
applications. As expected, the probability of the queue being
greater than a prescribed threshold decreases as increases.
More interestingly, we note that appears uniformly
optimal for all values of . That is, the best code rate seems
impervious to the choice of threshold value . This robustness
property remains present for the other system parameters we
tested. Further supporting evidence for this observation is of-
fered by looking at the asymptotic decay rate in tail occupancy,
displayed in Fig. 6. When the arrival rate is between 47.5
and 60, one finds that is also optimal in terms of tail
decay. The true optimum is closer to the throughput
maximizing code rate than to the naïve conjecture.
We explore the impact of channel correlation on optimal code

rate in our next set of results. We fix at a ratio of one
to four, and vary the memory factor . When the
channel is memoryless, the optimal is 93. For comparison,
the capacity is , which yields of roughly 103. As
correlation increases, the optimal value of initially decreases,
thereby offering more protection against erasures. Yet, when the
coherence time of the channel starts to approach the length of
a codeword, , the error-correcting code becomes inef-
fective as it fails to handle the increasingly likely long sequences
of successive erasures. The optimal strategy then progressively
shifts to including more information bits in every packet, and
hoping that the channel remains in its good state. In the limiting
regime where approaches 1, the optimal strategy
is to transmit uncoded data, i.e., . Indeed, strong corre-
lation is characterized by long strings of erasures followed by
longer strings of reliable bits, and the best strategy is to send as
many information bits as possible when the channel is good. At
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Fig. 5. Tail probabilities in the equilibrium packet distribution of the queue
, for threshold values , as functions of the

number of information bits per codeword. The minimums occur uniformly
at for all threshold values.

Fig. 6. Tail decay rate, , as a function of the
number of information bits per codeword and the average arrival rate
in bits per codeword transmission interval.

TABLE I
OPTIMAL NUMBER OF INFORMATION BITS PER CODEWORD AND THRESHOLD
VIOLATION PROBABILITY AS FUNCTIONS OF THE CHANNEL MEMORY

PARAMETER

this point, the bit erasure channel essentially becomes a corre-
lated packet erasure channel. Numerical results are summarized
in Table I.

VI. DISCUSSION AND CONCLUDING REMARKS

This paper presents a new framework to analyze the rela-
tion between code rate and queueing behavior for communica-
tions over channels with memory. The simplicity of the erasure
channel and its closed-form characterization of error events are
instrumental in conducting our analysis. For short block length
and channels with memory, the optimal code rate appears to be
linked to the relative size of a codeword compared to the coher-
ence time of the channel. In certain circumstances, it is benefi-
cial to provide significant protection against erasures. However,
as channel memory increases, performance may be improved
by incorporating more data bits in every codeword. In this latter

case, the transmitter resorts to a strategy where information is
successfully sent when the channel starts in a good state, and it is
lost otherwise. This is in stark contrast to information-theoretic
results obtained through asymptotically long codewords. Once
the block length is selected, the optimal code rate seems rather
insensitive to the queue occupancy threshold. This observation
considerably simplifies system design because an optimal code
rate can be selected irrespective of the target queue length. The
set of admissible arrival rates, on the other hand, will depend
heavily on the queueing objective.
A distinguishing feature of this work is that it provides a rig-

orous approach linking queueing performance to the operation
of a communication system at the physical layer. The method-
ology and results are developed for the Gilbert–Elliott erasure
channel, but can be generalized to more intricate finite-state
channels with memory. For example, the simple performance
characterization of random codes over erasure channels may ex-
tend to hard-decision decoding of BCH codes over Gilbert–El-
liott error channels. Possible avenues of future research include
the study of alternative arrival processes, the ability to vary the
rate and the length of codewords dynamically, and exploring
pragmatic feedback schemes.

APPENDIX

This appendix contains demonstrations for Theorem 4.2 and
Corollary 4.4.

A. Proof of Theorem 4.2

For completeness, we provide a succinct outline of a proof
to this theorem; our arguments are motivated, partly, by the
derivation presented by Latouche and Ramaswami [34]. For
quasi-birth-death processes, several authors have reported sim-
ilar results [27], [37], [29].
The transitions of the Markov chain , excluding states at

level zero, are governed by the substochastic matrix

...
...

...
...

. . .

(26)

We note that the transitions of levels in , excluding levels
0 and 1, are dictated by the same semi-infinite matrix (26). Ex-
ploiting this symmetry and the fact that can only jump to
neighboring levels, one can use the definition of to obtain the
following implicit equation:

(27)

This is equivalent to a quadratic matrix equation and it
can be solved efficiently using numerical methods. For in-
stance, multiplying both sides of (27) by , substituting

, and rearranging terms, we obtain

(28)
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We proceed to show that the iterative algorithm of (22) is one
possible method to obtain . Consider the probability space of
paths on with the measure induced byMarkov chain

. Let be the event such that, starting from state
, the Markov chain first re-enters level 1 by visiting
andwith the excursions constrained to lie between levels 1

and . It follows from this definition that
and, therefore

Utilizing the monotone convergence theorem, we gather that

By construction, . To complete

the proof, it remains to show that , as defined in (22), is
the probability of event .
Formally, this is equivalent to the mathematical statement

for all , which we verify
using induction. From the definition of , we imme-
diately obtain and, consequently,

because . To continue, we
assume this proposition holds for all integers less than or equal
to and show this implies that it holds for . First, we note
that is the event such that, starting from state ,
the Markov chain first re-enters level 1 by visiting
and with the excursions constrained to lie between levels 1 and

. The elements in can be partitioned into sets
according to their number of visits to level 2. In particular, the
Markov chain remains at level 1 with probability .
Alternatively, it can immediately transition to level 2, revisit
this level a number of times while remaining between levels 2
and , and then jump back down to level 1.
Key to the proof is the symmetric nature of the chain: the

probability that, starting from state , the Markov chain
first re-enters level 2 by visiting and with the excur-

sions constrained to lie between levels 2 and is equal to
. Indeed, there is a natural, probability-preserving

bijection between paths in and paths from that
first re-enter level 2 at and remain between levels 2 and

. By the Markov property and our inductive hypothesis, we
can write the probability that, starting from , the Markov
chain immediately goes up to level 2, and visits this level ex-
actly times before it first re-enters level 1 at as

. The proposed partition of is a count-
able union of disjoint events, where each set accounts for a dis-
tinct number of visits to level 2. It follows from the renewal
property of Markov chains and the symmetry of the problem
that

where the second equality follows from the Neumann expan-
sion and the third equality is an application of definition (22).
Hence, for every , we have . This

establishes that the iterative algorithm of (22) converges to ,
as desired.
To complete the proof, it remains to show that the candidate

distribution specified in Theorem 4.2 is indeed the invariant dis-
tribution of . Notice that (28) immediately ensures that

(29)

for . Consider the finite matrix with nonnegative entries
introduced in (23). We wish to prove that this is a stochastic
matrix. Since represents a probability transition matrix, we
already have . To establish the second equality,
we examine the following progression:

where the first step relies on the identity
and the second step follows from (28). Since the matrix is
invertible, one canmove all terms to the left-hand side to see that

and therefore
. That is, (23) is a stochastic matrix. This implies that it admits
an invariant distribution, whichmust satisfy
and . Then, for the distribution
defined in (24), we get

These equations, together with (29), imply that the distribution
defined in (24) is invariant under , as desired.

B. Proof of Corollary 4.4

Since is a positive matrix, the Perron–Frobenius theorem
implies that has a unique positive eigenvalue of
maximum modulus [32]. Furthermore, this eigenvalue is asso-
ciated with a positive left eigenvector , and a positive right
eigenvector . It follows that

for any nonnegative, nonzero vector . For any integer , the
tail probability of the queue is consequently governed by

Taking the normalized limit of the logarithm completes the
proof.
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