
Latency Analysis for Distributed Storage
Parimal Parag∗, Archana Bura∗

∗Department of Electrical Communication Engineering
Indian Institute of Science, Bengaluru, KA 560012, India

{parimal, archanabura}@ece.iisc.ernet.in

Jean-Francois Chamberland†
†Department of Electrical and Computer Engineering

Texas A&M University, College Station, TX 77843-3128
chmbrlnd@tamu.edu

Abstract—Modern communication and computation systems
consist of large networks of unreliable nodes. Yet, it is well known
that such systems can provide aggregate reliability via informa-
tion redundancy, duplicating paths, or replicating computations.
While redundancy may increase the load on a system, it can also
lead to major performance improvements through the judicious
management of additional system resources. Two important
examples of this abstract paradigm are content access from
multiple caches in content delivery networks and master/slave
computations on compute clusters. Many recent articles in the
area have proposed bounds on the latency performance of re-
dundant systems, characterizing the latency-redundancy tradeoff
under specific load profiles. Following a similar line of research,
this article introduces new analytical bounds and approximation
techniques for the latency-redundancy tradeoff for a range of
system loads and two popular redundancy schemes. The proposed
framework allows for approximating the equilibrium latency
distribution, from which various metrics can be derived including
mean, variance, and the tail decay of stationary distributions.

Index Terms—Data storage, forward error correction, content
delivery networks, distributed storage systems, Markov processes,
queueing analysis, equilibrium distribution, waiting time.

I. INTRODUCTION

The data infrastructures that support our digitally connected
world must face the incessant demands of its billions of users.
This results in tens of terabytes of digital traffic traveling over
network subcomponents every second. Multimedia content
is the predominant source of Internet traffic, and a large
portion of this data is hosted on content delivery networks.
These networks store content redundantly at multiple servers
to ensure reliability and availability, despite the fact that
individual servers are failure prone.

Forward error correction and, more specifically, maximum
distance separable (MDS) codes have emerged as fundamental
means to enhance information storage and improve content
dissemination across networks. For instance, preserving data
over a collection of agents using MDS coding can increase
the reliability of a storage system, while limiting the amount
of redundancy necessary to achieve a prescribed performance
level [1]. Potential applications for such a technology range
from large data centers and cloud storage, to peer-to-peer
systems with ubiquitous access. Recent years have witnessed

This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. CCF-1619085 and by the Defence
Research and Development Organization (DRDO), Government of India
under Grant No. DRDO-0654. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of NSF or the DRDO.

intense investigation of several aspects of persistent storage
and advanced coding for distributed systems. These topics
include efficient erasure correcting codes [2], [3], recovery
schemes [4], repair traffic [5], [6] and security [7], [8].

Beyond reliability, latency is becoming a prime design
criterion for distributed systems. This emerging viewpoint on
overall performance has spurred several initiatives aimed at
better understanding the impact of coding on latency perfor-
mance of distributed storage systems [9]–[12]. In this context,
it is pertinent to note that the content access time in distributed
storage is related to the computation time of master/slave tasks
in compute clusters with job replication [13]–[17]. Since a
request queue for job completion is mathematically equivalent
to a request queue for content access, we restrict our treatment
of the problem to the latter scenario and, in particular, access
delay in distributed storage systems.

We consider two competing implementations for our study
of the latency-redundancy tradeoff. The first system is based
on file fragmentation and duplication, a version of repetition
coding. Under this scheme, a request is fulfilled by collecting
one information piece of every available kind. The original file
is subsequently reconstructed by appending the various pieces.
The second type of implementation we are interested in is a
more elaborate coded abstraction where a request is fulfilled
by gathering any k out of n pieces. Every combination of k
blocks is assumed to be linearly independent, and the original
file can therefore be recovered via a standard decoding process.
We will refer to this scheme as MDS coding. In this work,
we show that both the above schemes can be studied under
the same analytical framework of tandem queues with server
pooling.

A. Literature Survey

Recent advances in low complexity codes for distributed
storage that have low overhead for repair and regeneration
bandwidth [1], [4]–[6], [18] have fueled an interest in under-
standing the delay-redundancy tradeoff [9]–[17], [19], [20].
In distributed storage systems, incoming requests initiate the
acquisition of several chunks of files stored on multiple
servers. These incoming requests are queued until all the
necessary chunks are delivered. The request queue for multiple
chunks of a file in a distributed storage system can be modeled
by a multi-dimensional Markov chain, yet such chains often
remain hard to analyze. Consequently, a main approach to
understand these systems is to find systems that stochastically

dominate this multi-dimensional Markov chain, and are easier
to characterize. Authors in [10]–[12] find quasi birth-death
processes that can bound the performance of a request queue
modeled as a multi-dimensional Markov chain. Using matrix-
geometric methods, one can numerically evaluate performance
attributes of these quasi birth-death processes, thereby finding
numerical bounds on the performance of the actual queue.

Similarly, in a compute cluster, a parallelizable job request
can be divided into smaller jobs that can be processed con-
currently at multiple servers. Jobs are queued until each of
the sub-tasks are completed. This queue can also be modeled
as a multi-dimensional Markov chain. In fact, the resulting
abstraction is equivalent to the request queue Markov chain
for a distributed storage system. Authors in [13]–[15] propose
fork-join queues that bound the performance of the job queue.
Implicitly, the authors are considering an MDS coding scheme
where any equal sized subset of servers can finish the job. This
methodology is employed to provide an upper bound on the
mean time for the job completion.

B. Main Contributions

In this article, we offer an alternative analytical approach to
study content access delay in distributed storage systems for
repetition and MDS codes. We provide a framework where the
model structure is independent of the coding scheme in that the
coding scheme solely affects the model specific parameters.
Hence, we can use the same analysis for replication and MDS
coding. We emphasize that this framework can equivalently
characterize job completion time when an incoming job is
subdivided into sub-tasks and sent to a constrained set of
servers.

We show that the request queue at a distributed storage sys-
tem can be regarded as a series of queues in tandem, pooling
their server resources. Under this viewpoint, the service of
tandem queues is coupled and state-dependent. We find two
simpler, analytically tractable tandem queues that dominate
the performance of the original tandem queue from above and
below. We completely characterize these dominating queues,
providing upper and lower bounds on latency performance of a
distributed storage system with redundant requests. The perfor-
mance criteria we examine, are derived from the equilibrium
distribution on the number of queued requests. We also find
bounds and approximations for the waiting time of a typical
request in the queue.

Our results answer open questions mentioned in [10]. For
example, we provide analytical characterization of latency-
redundancy tradeoff for a range of system loads. In addition,
our proposed framework allows for answering other open
questions such as quantification of redundancy-latency tradeoff
for different coding schemes, and it allows for bounds on
latency metrics more general than mean, such as variance and
the distribution tail.

II. CODING MODEL

We assume that a single content m consists of k pieces
(m1,m2, . . . ,mk) ∈ Fk

q for a sufficiently large finite field

Fq . These messages are stored redundantly at n servers.
We assume linear codes for erasure channels, with generator
matrix G ∈ Fk×n

q and parity check matrix H ∈ F(n−k)×n
q ,

such that GHT = 0. We will refer to these codes as (n, k)
linear codes.

For each message m ∈ Fk
q , we have a codeword x = mG.

We assume that a server j ∈ [n] stores the information symbol
xj . It can be shown that the message m can be decoded by
observing information symbols at a subset C of all servers,
where the columns of the parity check matrix H corresponding
to the unobserved servers are linearly independent. We assume
that the parity check matrix H has full rank of (n − k),
and hence the minimum size of a set C of servers required
to decode a message m is k. As mentioned above, we
consider two competing cases, repetition and MDS coding.
For simplicity, we take n/k to be an integer.

A. Repetition Coding

Under replication, each distinct piece mi is stored at n/k
servers. We denote the set of servers with message i as

Ci = {j ∈ [n] : xj = mi}.

Then, |Ci| = n/k and {Ci : i ∈ [k]} partitions the set of
servers [n]. Furthermore, we can decode message m as soon
as we observe the information pieces stored at a subset of
servers C ⊂ [n] such that |C| = k and |C ∩Ci| = 1 for every
i ∈ [k]. We emphasize that there are (n/k)

k such subsets.

B. MDS Coding

In the case of MDS coding, each server j ∈ [n] stores an
independent symbol xj , where x = mG. That is, the set of
servers with information symbol xj is Cj = {j}. For MDS
codes, any (n− k) columns of the parity check matrix H are
linearly independent. Hence, observing information symbols
stored at any size-k subset C of servers suffices to reconstruct
message m. There are

(
n
k

)
such subsets. Since

(
n
k

)
> (n

k)k,
it is clear that MDS coding offer a much larger number
of decodable subsets when compared to repetition coding.
Consequently, MDS coding should perform better.

C. Example

For illustration, we compare the performance of fragmenta-
tion and duplication against that of an MDS coded system. We
consider the simple scenario where k = 2, n = 4 and message
m consists of two parts A and B. We call this example a
(4, 2) linear code with message m = (A,B). In the repetition
case, the original file is split into two components, labeled A
and B, and the messages are stored on two distinct servers.
In this scenario, a request is completed when the user is
successfully served by a cache containing A and another one
holding B. On the other hand, in the MDS coding paradigm,
a file is partitioned into two pieces and independent linear
combinations of these blocks are created. This latter strategy
necessitates that packets be long enough to support encoding
in a high-order field, a requirement easily met in practice.
Every encoded message is then stored on a single server. For

A

A

B

B

Figure 1. This figure depicts a distribution network with four caches. Two
servers are storing message A, and the other two servers host message B.
Under this divide and duplicate paradigm, a user must obtain piece A and
piece B to reconstruct the original media object.

A

B

A + B

A + 2B

Figure 2. In a more elaborate coded system, the various caches store
independent messages. The original media object can therefore be recovered
by decoding the content of any two distinct data blocks.

instance, when four caches are present, candidate messages
could be A, B, A + B, A + 2B. The original media object can
then be recovered by successfully contacting any two servers,
a slightly more flexible stipulation than before. The operations
of these alternate infrastructures for systems with four servers
are depicted in Figure 1 and Figure 2, respectively.

III. QUEUEING MODEL

Requests for the stored object are queued at a central
location with arbitrarily large waiting room. These requests
are subsequently served by the servers that have the necessary
content. Again, consider the (4, 2) linear coding case with
message m = (A,B). In the replication coding case, if a
request already has message A, then it can only be served
by the two servers that have message B. Contrastingly, in the
MDS coding case, if a request has information symbol A, then
it can be served by any of the remaining three servers with
symbols B, A + B, or A + 2B.

We assume that each incoming request needs all k different
pieces of the content, and the inter-arrival time between the
requests is exponentially distributed with mean 1/λ. Each
server supplies one piece of information, which can ultimately
be combined with the other pieces to recover the desired file.
We adopt a push model for service. Under this framework,
each server works for a random amount of time and then
instantaneously serves the head waiting request that needs its
content. We call this server waiting time as the service time or
waiting time by the server for each data block. We assume that
service times at each server form a sequence of independent
and identically distributed exponential random variables, each
with rate µ = k/n. Notice that we have scaled the service rate
proportional to the number of pieces. This is motivated by the

fact that, if the mean time to serve a k length file is n, then
the mean time to serve a unit length file should be n/k. This
random process is independent of the service times of other
servers.

This service model is different from the usual pull service
model. In a pull service model, a request is tied to a particular
server during its random service time. Contrastingly, in the
push model, a request can be served by any of the competing
servers that finish waiting first. This is equivalent to all the
servers serving the request in parallel, and as soon as one
of them finishes, the rest of them drop serving this request.
As such, if a request can be served by n available servers,
the service time for this request is the minimum among the
service times of the n servers. Although the pull model is
more common in the literature, the push model is amenable
to mathematical analysis, as evinced below.

A. Scheduling Model

We assume a work conserving policy under our push service
model. That is, when a server becomes available after its
random waiting time, it can choose to serve any of the requests
that do not have its content. Upon taking this decision, the
server will instantaneously transfer its content to a device
that needs it, if there exists such a request. The selection of
requests among all those that need the content from the server
is referred to as scheduling in the present context.

Consider one sample path for the evolution of the request
queue with (4, 2) linear coding and message m = (A,B). We
assume that the system is initially empty, and four requests
arrive before any of the servers become available. Suppose
that the first available server has content A. All four waiting
requests have no piece; this server can then select any of
the waiting requests for an instant transfer of content A. The
first scheduling decision therefore consists in selecting one
destination among those four requests to transmit A.

Once the server selects one of the waiting requests and
transfers piece A, there remain three requests with no piece
and one partially fulfilled request with piece A. Suppose that
the next server becomes available before any further arrival,
and this server possesses content B. This content is useful to
both types of requests; the single request with piece A, and
the three requests with no piece. Thus, the second and more
important scheduling decision is the request selection among
those with different set of information symbols.

Scheduling policies greatly affect system performance. In
this article, we assume that the scheduler employs a short-
est expected remaining processing time policy with preemp-
tion [21]. All the requests with an identical number of data
blocks have the same expected remaining processing time.
Among all such requests, a server selects the request that
arrived first. However, among all the requests with different
subsets of information symbols, the request with the largest
number of information symbols has the shortest expected
remaining processing time and is therefore given priority.

The authors in [20] show that this scheduling policy mini-
mizes mean latency among all on-line scheduling algorithms.

As we will see, this scheduling policy greatly simplifies our
analysis of the system, making the evolution of the underlying
Markov process tractable.

B. Reduction of State Space

We can label requests according to the information they
have already accumulated. Let YS(t) denote the number of
requests with subset S ⊂ x of information symbols. Then,
under Poisson arrivals and the exponential push service model,
the collection

Ỹ (t) = {YS(t) ∈ N0 : S ⊂ x = {x1, . . . , xn}}

forms a Markov chain. For repetition coding, there are k
distinct information symbols corresponding to the disjoint
segments of message m. Thus, the state of the request queue
for replication coding becomes

Ỹ (t) = {YS(t) ∈ N0 : S ⊂ m = {m1, . . . ,mk}, |S| < k}.

The dimension of this Markov chain is 2k − 1, and we note
that it grows exponentially in the number of pieces.

Contrastingly, there are n independent information symbols
for the MDS coding scheme, with symbol xj stored at
server j ∈ [n]. The state of the request queue for MDS coding
with a general scheduling policy is

Ỹ (t) = {YS(t) ∈ N0 : S ⊂ x, |S| < k}.

This request queue has a Markov chain of dimension∑k−1
j=0

(
n
j

)
. Since

(
k
j

)
≤
(
n
j

)
, we note that the dimension of

the request queue for MDS coding can be significantly larger
than the corresponding value for repetition coding. Yet, under
priority scheduling and homogeneous servers, the dimension
of the request queue reduces significantly for these two coding
schemes. To formalize this result, we must first introduce a
notation to keep track of the number of information labels for
which YS(t) is non-zero.

Definition 1. The collection of information labels associated
with active requests at time t is defined as

S(t) = {S ⊂ x : YS(t) > 0}.

In words, set S(t) represents the collection of information
subsets accumulated by active requests at time t. We will
show that, under a priority scheduling policy, the collection
S(t) maintains a particular structure that reduces the effective
dimension of the Markov chain.

Lemma 2. For a linear code, under priority scheduling and
the push service model, the collection of information subsets
S(t) is totally ordered, where the order is defined in terms of
set inclusion.

Proof: We assume that the queueing system starts de-
void of requests at time zero. We wish to prove Lemma 2
using mathematical induction on certain events. First, we note
that the arrival events in this continuous-time Markov chain
translate into an increase of Y∅, thereby trivially maintaining
set ordering. Thus, we only need to consider the time instants

corresponding to the expiration of waiting times at the servers.
We identify such time-instants chronologically by tp.

Suppose that the inductive hypothesis is true at time tp, i.e.,
after exactly p service events. Specifically, the collection of in-
formation subsets S(tp) is totally ordered by set inclusion. At
the next service instant tp+1, a symbol xj becomes available.
We can assume that there exists S ∈ S(t) such that xj /∈ S
without loss of generality; otherwise the state of the system
will remain unchanged. Since S(tp) is a chain, we can find
the maximal set T such that

T = max{S ∈ S(tp) : xj /∈ S}.

By the definition of the priority schedule, the head of the line
request with the set of messages T gets xj . It follows that,

YS(tp+1)− YS(tp) =

0, S ∈ S(tp) \ {T, T ∪ {xj}}
−1, S = T

1, S = T ∪ {xj}.

It remains to show that S(tp+1) is too a chain. This is
immediate when T∪{xj} already belongs to S(tp). Therefore,
it suffices to consider the case when YT∪{xj}(tp) = 0. In
this case, all the subsets of T are necessarily subsets of
T ∪ {xj}. Furthermore, all the sets including T must also
include T ∪ {xj} because T was the maximal set without xj
in S(tp). Thus, set ordering ensues and the lemma holds.

Corollary 3. For a linear code, under priority schedule and
push service,

Y (t) = (Y0(t), Y1(t), . . . , Yk−1(t))

is a Markov chain where Yi(t) denotes the number of requests
that have exactly i information symbols at time t.

Proof: Recall that YS(t) is a continuous-time Markov
chain for any S. From Lemma 2, we know that, at any
given time, there cannot be two distinct information subsets
of equal size among active requests. Using the chain property,
we can uniquely relabel existing subsets by their cardinality.
Recognizing this structure and the symmetric nature of the
system, we deduce that Y (t) = {Yi−1(t) : i ∈ [k]} is a
Markov chain, where Yi(t) = YS(t) whenever YS(t) > 0
and |S| = i.

In some sense, Markov chain Ỹ (t) contains more informa-
tion than its close relative Y (t). The former keeps track of
the information pieces collected by partially fulfilled requests,
whereas the latter only records the number of pieces possessed
by partially fulfilled requests. Yet, in view of Corollary 3, the
more compact version retains the Markov property and it is
much simpler to analyze. This step is crucial in our impending
derivations. One advantage of the compact representation is the
fact that the dimension of this reduced Markov chain Y (t) is
k, which grows linearly in the number of pieces. An example
may help clarify the discussion.

For illustration purposes, we return to the (4, 2) linear
coding schemes with message m = (A,B). Suppose that
we start with an empty system using replication coding. We

consider the case where there are two arrivals in the system
before a server becomes available. This event results in the
number of requests with zero pieces increasing to two, with
no partially fulfilled requests. When a server with content
A becomes available, it transfers its content to the older
request, resulting in one request with content A and one
request with no accumulated content. Suppose that a second
server with content B becomes available next, before any other
arrival. Under priority scheduling, content B is transferred
to the request that already possesses A and, thence, this
request leaves the system. From this example, we gather that,
regardless of the order of the server availability and arrivals,
all partially fulfilled requests would have the same piece of
information. That is, under no circumstance would we see
partially fulfilled requests with content A and other partially
fulfilled requests with content B concurrently. Similarly, for
the (4, 2) MDS coding scheme, we can argue that all partially
fulfilled requests would have exactly one of the four possible
contents A, B, A + B, or A + 2B.

Since the exact identity of the messages obtained by the
requests is irrelevant for the performance analysis of the
symmetric system, we focus on compact Markov chain Y (t)
as it is much simpler to analyze. We observe that the state
space of the continuous-time Markov chains corresponding
to repetition coding and MDS coding are identical. However,
their rate matrices differs, as seen below.

C. State Transitions

Let ei ∈ Nk
0 denote the k-dimensional unit vector, with

a one in the ith location. Consider a request queue state
Y (t) = y = (y0, y1, . . . , yk−1) ∈ Nk

0 at some instant t, where
yi denotes the number of requests with i information symbols.
In general, two types of events can occur, namely the arrival of
a request or the emergence of a service event. Under Poisson
arrivals and exponential service, at most one such event can
occur within an infinitesimal amount of time.

Upon arrival into the system, a request has no information
symbols. Hence, a new request always increases Y∅(t); that is,
the state y transitions to state e0(y) , y + e0. For i < k, the
transfer of a new content by an available server to a request
with i − 1 pieces leads to a unit decrease in the number of
requests with i− 1 pieces, and a corresponding unit increase
in the number of requests with i pieces. This leads to a state
transition from state y to state ei(y) , y− ei−1 + ei. Finally,
a request leaves the system after reception of k information
symbols, denoted by the transition from state y to state
ek(y) , y − ek−1. In summary, we have shown that, in case
of an arrival or a server availability, the state of the request
queue transitions from the current state y to the next state
ei(y) whenever yi−1 > 0, where the state ei(y) is defined by

ei(y) =

y + e0, i = 0

y − ei−1 + ei, i ∈ [k − 1]

y − ek−1, i = k.

We can alternatively think of the number of requests y as
customers that want k different services, with yi being the

number of customers waiting for service i. Once, a customer
receives service i, it joins the queue for service (i+ 1). Then,
we can think of this multi-dimensional Markov chain as a
sequence of k queues in tandem, with an external arrival
process. These queues are being served by a pool of servers.
In this setting, the next state ei(y) denotes an arrival of a
customer in queue i due to a departure from queue i− 1.

D. Rate Matrix

In this section, we specify the transition rates of continuous-
time process Y (t). We denote the rate from current state y
to state ei(y) by Q(y, ei(y)). It follows from the Poisson
model that arrivals in the request queue occurs at a rate λ.
That is, transitions from state y to state e0(y) happen at rate
Q(y, e0(y)) = λ, irrespective of state y.

Under the push service model where servers have inde-
pendent exponential service, each with rate k

n , the aggregate
service rate is k. The emergence of a service event can lead
to three distinct possibilities. First, a request with k−1 pieces
gets the final piece it needs and, subsequently, exits the system.
Second, a request with i − 1 pieces is promoted to a request
with i pieces. Third, all the requests in the system already have
the content available at the server, and this service opportunity
is lost.

The jump rates for Y (t) associated with service events can
be somewhat challenging to describe. One possible approach
to characterize these rates leverages the chain property of
Lemma 2. To this end, we first define information level i
to contain all those requests which have acquired exactly i
symbols. Specifically, we can identify the amount of resources
devoted to serving requests at information level i, a task which
can be accomplished in a straightforward manner. Then, we
obtain the exact service rates for particular system states based
on the fact that, when some information levels are devoid of
requests, the corresponding resources cascade down to the next
occupied state in the chain.

Consider an information chain, ordered by set inclusion,
tailored to S(t) and that contains k elements. Let Ni be the
number of servers that can supply requests at information
level i. Since the number of information symbols gathered
by devices increases with i, the number of servers that can
offer additional symbols to these devices decreases with i;
that is, N0 ≥ N1 ≥ · · · ≥ Nk−1. Moreover, owing to our
priority scheme, the number of servers devoted to requests at
information level i is given by the number of server that can
serve level i but not level i+ 1. Mathematically, this number
is equal to Ni − Ni+1 for 0 ≤ i < k − 1. Under the push
model with exponential waiting times, the nominal service rate
attributed to information level i is equal to

γi =
k

n
(Ni −Ni+1) . (1)

We note that, although S(t) can change over time, rate γi
associated with information level i only depends on the coding
scheme, and is independent of time. Of course, the packets
depart when the entire message is recovered, that is Nk = 0.

For repetition coding, the number of servers that can provide
messages to requests at information level i is Ni = (k−i)n/k.
This yields nominal jump rates

γrepi =
k

n
(Ni −Ni+1) = 1 i = 0, . . . , k − 1.

On the other hand, the number of servers that can serve re-
quests at information level i under MDS coding is Ni = (n−i)
for i ≤ k− 1. Altogether, this produces nominal service rates

γmds
i =

k

n
(Ni −Ni+1) =

{
k
n , i < k − 1
k
n (n− k + 1), i = k.

As mentioned above, the rates defined in (1) are nominal
information level rates. Yet, when some information levels are
devoid of requests, their resources dynamically cascade down
to the next occupied information level. Accordingly, to find
the instantaneous rate at level i, assuming Yi(t) > 0, we must
keep track of its inherited resources. Define

li(t) = k ∧min{l > i : Yl(t) > 0}.

In words, li(t) is the next occupied information level above
i at time t and, hence, the first level whose resources will
not trickle down to information level i. Consequently, the
instantaneous rate at level i or, equivalently, the transition rate
into level i+ 1 can be written as

Q(y, ei+1(y)) =

li(t)−1∑
j=i

γj , (2)

whenever Yi(t) > 0. Of course, when Yi(t) = 0, no resources
can be used at information level i. Moreover, Q(y, e0(y)) = λ,
as mentioned earlier. We emphasize that rate operator Q(·, ·)
depends on the state of the system. However, to avoid an overly
cluttered notation, we leave this dependence implicit in (2).
Altogether, these equations capture all the non-zero transition
rates for this continuous-time Markov chain.

We observe that the k-dimensional Markov chain Y (t) is
a sequence of k queues in tandem, with an external Poisson
arrival at rate λ and service rate γi at ith queue. These servers
are coupled in the following sense. When one of the queue is
empty, its associated server can pool its resources to the first
non-empty queue preceding it. We have depicted this tandem
queue in Figure 3.

λ
Y0(t) γ0 Y1(t) γ1

Figure 3. This block diagram displays two queues in tandem with external
arrival rate λ and service rates γ0 and γ1 = 2 − γ0, respectively. The ith
queue length is denoted by Yi(t) for i ∈ {0, 1}. The dashed line from the
server at queue 1 to the server at queue 0 represents the fact that server 1
pools with server 0 whenever queue 1 is empty.

IV. PERFORMANCE ANALYSIS

In general, a coupled k-dimensional queue such as Y (t)
is difficult to analyze. However, we can take advantage of
the fact that it is equivalent to a series of k-tandem queues.
Below, we find two stochastic systems that are respectively
better and worse than these pooled tandem queues, in a
sample-path sense. Specifically, we find uncoupled tandem
queues that bound the performance of the actual tandem
queues with server pooling. Series of queues in tandem with
Poisson external arrival and independent exponential service
rates are well studied objects. It turns out that even though the
departures from one queue act as arrivals to the next queue,
the queue distributions are statistically independent [22]. In
Lemma 4, we provide uniform bounds for the service rate at
each queue, independent of the states of other queues.

Lemma 4. The transition rate Q(y, ei+1(y)) is bounded below
and above by

γi ≤
li(t)−1∑
j=i

γj ≤
k−1∑
j=i

γj , Γi,

where equality holds for i = k − 1.

Proof: This follows from the fact that rates are non-
negative and i < li(t) ≤ k.

Since, the service rate Γi upper bounds the service rate of
queue i in our original coupled tandem queue, we have the
following lower bound on performance.

Theorem 5 (Lower Bound). Consider a continuous-time
Markov chain X(t) ∈ Nk

0 with rate transition matrix Q, where

Q(y, ei(y)) =

{
λ, i = 0,

Γi−11{yi−1>0}, i ∈ [k].

For all arrival rates λ such that the request queue Markov
chain Y (t) ∈ Nk

0 is positive recurrent, the tandem queue
X(t) is path-wise less congested than Y (t). Furthermore, the
equilibrium distribution of X(t) is given by

π(y) =

k−1∏
i=0

(
1− λ

Γi

)(
λ

Γi

)yi

, (3)

and the mean sojourn time in the system is equal to

W =

k−1∑
i=0

1

Γi − λ
.

Proof: Stochastic dominance is a consequence of the fact
that Markov process X(t) is derived from process Y (t) by
adding extra servers for requests at information level i. To
find the equilibrium distribution of X(t), we take advantage
of its tandem structure. Each queue i has Poisson arrivals
at rate λ and independent random service times distributed
exponentially with mean 1/Γi. Therefore, the joint distribution
of X(t) is the product of the marginal distribution of each
queue Xi(t), yielding (3).

A corresponding tandem queue is depicted in Figure 4.

λ
X0(t) Γ0 X1(t) Γ1

Figure 4. This block diagram displays two queues in tandem with external
arrival rate λ and service rates Γ0 = 2 and Γ1 = 2− γ0, respectively. This
choice of the rate parameters leads to a lower bound on the queue congestion.

Similarly, we can find an upper bound on the performance of
the actual system, by looking at a series of uncoupled queues
with exponential service rates γi at queue i.

Theorem 6 (Upper Bound). Consider a continuous-time
Markov chain X(t) ∈ Nk

0 with rate transition matrix Q, where

Q(y, ei(y)) =

{
λ, i = 0,

γi−11{yi−1>0}, i ∈ [k].

For all arrival rates λ such that the request queue Markov
chain X(t) ∈ Nk

0 is positive recurrent, the tandem queue X(t)
is sample path-wise more congested than Y (t). Furthermore,
the equilibrium distribution of X(t) is given by

π(y) =

k−1∏
i=0

(
1− λ

γi

)(
λ

γi

)yi

, (4)

and the mean sojourn time in the system is equal to

W =

k−1∑
i=0

1

γi − λ
.

Proof: Stochastic dominance follows from the fact that
the Markov process X(t) is derived from the process Y (t),
by letting the servers be idle when their respective queues are
empty, rather than cascading their resources. Notice that, in
the original formulation, available servers can transfer their
content to any request at a lower information level; whereas
in the current setting, servers only provide messages at their
current information level. To find the equilibrium distribution
of X(t), we again embrace the tandem structure. Each queue
i has Poisson arrivals at rate λ and independent random
service times distributed exponentially with mean 1/γi. Hence,
the joint distribution of X(t) is the product of the marginal
distribution of each queue Xi(t), as seen in (4).

This tandem queue is depicted in Figure 5.

λ
X0(t) γ0 X1(t) γ1

Figure 5. This block diagram displays two queues in tandem with external
arrival rate λ and service rates γ0 and γ1 = 2− γ0, respectively.

This upper bound is only valid for λ < mini∈[k] γi−1.
Although this bound is tight for repetition codes, it is some-
what loose for MDS coding, especially when the arrival rate
λ approaches k

n . This is due to the fact that MDS coding
prioritizes the service for request with k − 1 pieces, and
allocates a large service rate of k

n (n − k + 1) at that level.
Contrastingly, requests with smaller number of pieces get

significantly smaller service rate of k
n when the system is

congested. This bounding technique suggests that MDS coding
may not perform as well as repetition coding due to unequal
allocation. However, in reality, MDS coding scheme performs
very well. This enhanced performance is attributable to the
fact that, the extra service available to the request with k − 1
pieces is transferred to other requests when Yk−1(t) = 0.
This mechanism is not reflected in the derivation of the upper
bound. We use it as the basis for the following approximation.

Approximation 7. We can approximate the original queue
with a series of uncoupled queues in tandem

X(t) = (X0(t), . . . , Xk−1(t)),

with external Poisson arrivals at rate λ and independent
random service times distributed exponentially with rates γ̄i
for queue i ∈ {0, 1, . . . , k − 1}. We denote the equilibrium
distribution of this approximate system by π. For this approx-
imate system, the average service rate γ̄i to queue i is its
dedicated service rate γi plus the rate available from queue
i+ 1, when it’s empty. That is,

γ̄i−1 =

{
γk−1, i = k,

γi−1 + γ̄iπi(0), i ∈ [k − 1].

For each i, we can find the probability πi(0) of queue i
being empty, and recursively compute the total service rate
γ̄i−1 available to the queue i − 1. This is formalized in the
following theorem.

Theorem 8 (Approximation). Consider a continuous-time
Markov chain X(t) ∈ Nk

0 with transition matrix Q, where

Q(y, ei(y)) =

{
λ, i = 0,

γ̄i−11{yi−1>0}, i ∈ [k].

This Markov chain X(t) is positive recurrent when

λ < min
i

{
Γi

(k − i)

}
.

The equilibrium distribution of X(t) is given by

π(y) =

k−1∏
i=0

(
1− λ

γ̄i

)(
λ

γ̄i

)yi

,

and the mean sojourn time in the system is equal to

W =

k−1∑
i=0

1

γ̄i − λ
=

k−1∑
i=0

1

Γi − (k − i)λ
.

Proof: We observe that Markov process X(t) forms a
series of uncoupled queues in tandem. We know that the joint
distribution of the process X(t) is the product of the marginal
distribution of each queue Xi(t). For all values of arrival
rate λ such that X(t) is positive recurrent, each queue i has
Poisson arrivals with rate λ and independent random service

times distributed exponentially with rate γ̄i. Thus, the marginal
distribution πi of queue i is

πi(yi) =

(
1− λ

γ̄i

)(
λ

γ̄i

)yi

.

We can inductively find the total service rate to queue i as

γ̄i = Γi − (k − i− 1)λ, i ∈ {0, 1, . . . , k − 1}.

The stability region for queue i is λ < γ̄i. Therefore, the
stability region for the process X(t) is λ < mini {Γi/(k − i)}.

V. NUMERICAL STUDIES

We examine a (4, 2) linear code for four servers and two
message pieces. One of our objectives in this work is to
come up with analytical bounds and approximations to be able
to quantify the latency gains obtained by various distributed
storage codes. We see in Figure 6 that the analytical bounds
for repetition code are quite tight, uniformly across a range
of system loads. This is due to the symmetry of the service
available to all partially fulfilled requests. Contrastingly, we
see in Figure 7 that the upper bound is not as tight for
MDS code. The lower bound also becomes loose as the load
increases. Yet, the proposed approximations work well for both
coding schemes.

0.1 0.2 0.4 0.6 0.8 0.95
0

10

20

30

40

Arrival Rate λ

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (4, 2) Repetition Code

Upper Bound
Simulation
Approximation
Lower Bound

Figure 6. This plot depicts the simulated mean sojourn time W as a function
of arrival rate λ for a (4, 2) repetition code, along with the corresponding
upper and lower bounds, and the proposed approximation.

Figure 8 displays the mean sojourn time of the requests in
the actual system under repetition and MDS coding, as a func-
tion of system load. As expected, MDS coding significantly
outperforms repetition coding. Consider the case, where we
increase the number of servers while maintaining the code
rate at n/k = 2 for a fixed arrival rate λ = 0.3. We can see
in Figure 9 that the mean delay for MDS coding does not
vary greatly with the number of servers n, while it increases
for repetition code. Thus, MDS coding is more amenable to
scaling than repetition coding.

0.1 0.2 0.4 0.6 0.8 0.95
0

5

10

15

Arrival Rate λ

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (4, 2) MDS Code

Upper Bound
Simulation
Approximation
Lower Bound

Figure 7. This plot depicts the simulated mean sojourn time W as a function
of arrival rate λ for a (4, 2) MDS code, along with the corresponding upper
and lower bounds, and the proposed approximation.

0.1 0.2 0.4 0.6 0.8 0.95
0

10

20

30

Arrival Rate λ

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (4, 2) Repetition and MDS codes

Repetition Simulation
Repetition Approximation
MDS Simulation
MDS Approximation

Figure 8. This figure focuses on a distributed storage system with n servers,
where server i stores information symbol xi associated with an (n, k) linear
code. The plot depicts the mean delay to acquire the k coded symbols required
to reconstruct the original message m under repetition and MDS coding.
Approximated curves are also included for the sake of completeness.

In Figure 10, we vary k, the total length of the message,
for both repetition and MDS codes. For arrival rate λ = 0.45
and n = 24 servers, we observe that the mean delay increases
with reduced redundancy for repetition code, whereas it has
a unique minimum for the MDS code. Furthermore, we see
that MDS coding is robust to redundancy reduction, and this
code can be utilized for efficient storage without significantly
impacting the latency performance.

VI. CONCLUSION

We proposed an analytical framework to study latency
redundancy tradeoff for homogeneous servers and two dif-
ferent coding schemes. We also proposed two stochastically

2 4 8 12 16 20
1

2

3

4

5

Number of Servers n

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time Scaling with Number of Servers

Repetition Simulation
Repetition Approximation
MDS Simulation
MDS Approximation

Figure 9. For a fixed arrival rate λ = 0.3 and coding overhead n
k

= 2, this
graph displays the plot of mean sojourn times for MDS and repetition codes
as the number of servers n increases.

1 4 8 12 16 20 24
0

2

4

6

8

10

Message length k

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time versus Message Length

Repetition Coding Simulation
Repetition Coding Approximation
MDS Coding Simulation
MDS Coding Approximation

Figure 10. This graph plots mean sojourn times for MDS and repetition
coding as functions of message length for rate λ = 0.45 and n = 24 servers.

dominating systems that bound the actual system performance.
Based on these dominating systems, we provided uniform
upper and lower bounds on the mean waiting time of the
requests in the queue, for all system loads and both the coding
schemes. We observe that the bounds are fairly tight for the
repetition code, though not so tight for the MDS code at higher
arrival rates. This motivated another stochastic system, that
approximates the mean behavior of the actual system well.
Using this approximation, we can make quantitative statements
about the performance gains for various system parameters. In
future work, we would like to extend this framework to a wider
class of codes, and with heterogeneous servers. We would also
like to explore the large deviation behavior of the actual queue

system, in terms of bounding and approximating systems.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, 2001.

[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, 2006.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE Trans. Inf.
Theory, vol. 52, no. 6, pp. 2809–2816, June 2006.

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit
codes minimizing repair bandwidth for distributed storage,” in Informa-
tion Theory Workshop (ITW). IEEE, 2010, pp. 1–5.

[6] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Communication, Control, and
Computing (Allerton), 48th Annual Allerton Conference on. IEEE,
2010, pp. 1510–1517.

[7] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and
M. Effros, “Resilient network coding in the presence of byzantine
adversaries,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2596–2603,
2008.

[8] D. Wang, D. Silva, and F. R. Kschischang, “Robust network coding in
the presence of untrusted nodes,” IEEE Trans. Inf. Theory, vol. 56, no. 9,
pp. 4532–4538, Sept 2010.

[9] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in IEEE International Symposium on
Information Theory Proceedings (ISIT). IEEE, July 2012, pp. 2766–
2770.

[10] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Analysing
the latency performance of erasure codes,” CoRR, vol. abs/1211.5405,
2012.

[11] ——, “The MDS queue: Analysing the latency performance of erasure
codes,” in IEEE International Symposium on Information Theory, June
2014, pp. 861–865.

[12] ——, “When do redundant requests reduce latency?” IEEE Transactions
on Communications, vol. 64, no. 2, pp. 715–722, Feb 2016.

[13] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Communication, Control, and Computing (Allerton), 50th Annual
Allerton Conference on, Oct 2012, pp. 326–333.

[14] ——, “On the delay-storage trade-off in content download from coded
distributed storage systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 32, no. 5, pp. 989–997, May 2014.

[15] G. Joshi, E. Soljanin, and G. W. Wornell, “Queues with redundancy:
Latency-cost analysis,” SIGMETRICS Performance Evaluation Review,
vol. 43, no. 2, pp. 54–56, Sep. 2015.

[16] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” in ACM International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS. New York, NY, USA: ACM, 2014, pp. 599–600.

[17] ——, “Using straggler replication to reduce latency in large-scale
parallel computing,” SIGMETRICS Perform. Eval. Rev., vol. 43, no. 3,
pp. 7–11, Nov. 2015.

[18] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5227–5239, Aug 2011.

[19] R. Rojas-Cessa, L. Cai, and T. Kijkanjanarat, “Scheduling memory
access on a distributed cloud storage network,” in 21st Annual Wireless
and Optical Communications Conference (WOCC), April 2012, pp. 71–
76.

[20] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,
and N. B. Shroff, “When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,” in IEEE Conference on Computer
Communications, April 2014, pp. 1042–1050.

[21] L. E. Schrage and L. W. Miller, “The queue M/G/1 with the shortest
remaining processing time discipline,” Operations Research, vol. 14,
no. 4, pp. 670–684, 1966.

[22] F. P. Kelly, Reversibility and Stochastic Networks. New York, NY,
USA: Cambridge University Press, 2011.

