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Abstract—For timely sensor update, the traditional approach
is to send new information at every available opportunity. Recent
research has shown that with limited receiver feedback, sensors
can improve the update timeliness by transmitting differential
information for slowly varying correlated sources. In general,
correlated sources can elect to transmit actual or differential
state information depending on the current state. This encoding
scheme generalizes the actual and differential updates schemes.
Using this generalized scheme, we quantify the timeliness gains
for some example sources. Further, we show a stochastic order-
ing among the actual update, the differential update, and the
generalized update schemes.

Index Terms—age of information, renewal theory, Markov
source, erasure channel, differential encoding, block codes.

I. INTRODUCTION

In the past few years, there has been a tremendous interest
in the Internet of things which envisions a world of connected
devices. Apart from being able to communicate, these devices
may have additional functionalities including sensing and ac-
tuation. For applications monitoring a physical process such as
weather, traffic, pollution, etc., the process state is sensed and
communicated to the cloud for further analytics. For real-time
actuation such as selection of less congested/polluted route, the
timeliness of data is crucial. This metric is subtly different than
the traditional communication metric of reliability, throughput,
and latency. Data timeliness is also important in applications
such as news and social media updates, distributed system
updates, and route updates in ad-hoc networks.

In [1], the authors define a metric called ‘age’ to measure
timeliness or staleness of information. This is the metric we
adopt to measure communication timeliness in this article. To
improve timeliness performance in real-time communication
systems, new information is sent at every available opportu-
nity. This update scheme is referred to as true update. Most
of the existing literature on communication timeliness [2]–
[6], study a queue theoretic abstraction where the update
generation and delivery times are stochastic. In these works,
the update is always received correctly at the receiver, and the
channel uncertainty is captured in the random reception time
of an update. Contrastingly, we model the channel unreliability
by an information theoretic binary erasure channel. In our
setup, the update may not be decodable and can be dropped.
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Further, we focus on the effect of coding on the update
timeliness in a setup similar to that studied in [7], [8], where
the source sends an update packet of n bits that includes coded
information bits.

For a temporally correlated source, one can transmit the
difference between the last correctly decoded state and the
current state, instead of the actual current state. Indeed, it is
shown in [7], that sending differential update improves source
timeliness considerably, in the presence of limited receiver
feedback. We will refer to this scheme as differential update
with feedback or incremental update for brevity. The timeliness
gains in this scheme result from the exploitation of temporal
correlation across messages. The authors inherently assume
that the source can always send differential updates. However,
temporal correlation can vary between two transmission oppor-
tunities for a general source, and the number of bits needed
to represent differential message may depend on the actual
realization of the states.

For a finite state source, we assume that the number of bits
needed to represent any actual state is m. In this article, the
source sends a differential update only when the differential
information can be represented by k bits, for some k ≤ m. The
number of bits k is fixed as a design parameter. The source
transmits a true update in either of the following two cases.
Either the source is unable to encode a differential update in
k bits, or the receiver fails to decode an update. When the
last correctly decoded state is i, the source can encode the
differential information in k bits with differential encoding
probability denoted as p3(i). That is, we allow randomness
in the source’s ability to encode the differential information.
For simplicity of analysis, we assume that this randomness
is uniform across states, i.e. p3(i) = p3 for all states i
in the message set. This generalizes the incremental update
scheme for structured sources, and we refer to this as the
generalized incremental update scheme. In Section IV, we will
see examples of sources where the possibility of incremental
update is identical for all states.

We note that as we increase the threshold k, the number of
additional parity bits n−k for the incremental update reduces
as compared to the n −m for the true update. On the other
hand, if we reduce k, only a handful of state differences can
be sent as a differential update. Both these scenarios limit
the performance gain of incremental update over true updates.
This points to a natural trade-off in selection of threshold k
for timely updates.



A. Main Contribution

We show that the true and the differential updates are two
special cases of the generalized incremental update scheme.
We illustrate the trade-off between additional coding gains and
the coding opportunities for two structured sources. Further,
we demonstrate a stochastic ordering among performance
of the true update, incremental update, and the generalized
incremental update schemes.

II. SYSTEM MODEL

In this section, we describe in detail the communication
model shown in Fig. 1, and associated transmission protocol.
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Figure 1. We show an abstract discrete time communication model for a
source with state M(t) at time t = (j − 1)n+ 1 for n ∈ N.

A. Encoder

At discrete instants t ∈ {(j − 1)n+ 1 : j ∈ N}, the source
encodes the update message M(t) into an n bit codeword Xn

j

and sends over an unreliable channel to the monitor.

B. Source

We assume a correlated physical source with realizations
from a finite field F2m , such that the source state M(t) can
be represented by m bits at every discrete time sample t ∈ N.
We assume that the source process {M(t) : t ∈ N} is Markov.
Further, we can define a set of symbols

∆k , {−2k−1, . . . , 2k−1 − 1}.

Hence, if the difference δM (t) ,M(t)−M(t−n) ∈ ∆k, then
this difference can be represented by k bits. We call this event
as differential encoding success and denote the probability of
this event conditioned on the source state at time t− n as

p3(i) , Pr{M(t)−M(t− n) ∈ ∆k|M(t− n) = i}.

We consider the simple case where p3(i) does not depend on
the state i. That is, p3(i) = p3 for all states i. In terms of
transition matrix P for the Markov source M(t), it means∑

j:j−i∈∆k

Pij = p3, for each i ∈ F2m .

C. Channel

We assume that each bit-transmission requires single chan-
nel use, and each transmitted bit can be erased independently
and identically with probability ε. Therefore, the encoder gets
to transmit the update codeword Xn

j only at periodic instants
{(j− 1)n+ 1 : j ∈ N}, which is received as a channel output
Y n
j after n channel uses at instants {jn+ 1 : j ∈ N}. Let Ej

be the number of erasures in an n-length received codeword

Y n
j . Since the bit-wise erasure channel is iid, it follows that

the number of erasures {Ej : j ∈ N} in received codewords
are iid Binomial random variables with parameters (n, ε).

D. Decoder

From the channel output Y n
j at time t = jn+1, the decoder

finds an estimate M̂(t − n) of the message transmitted n
channel uses ago. For binary erasure channels, the estimate is
able to decode the transmitted message M(t − n) perfectly
or declare a decoding failure. For a permutation invariant
coding scheme the event of decoding failure depends solely
on the number of erasure E in a codeword, and not their
locations. We denote the probability of decoding failure for
an n-length codeword with n− r parity bits and E erasures,
as P (n, n − r, E) for a permutation invariant code. From iid
nature of the channel, it follows that the codeword decoding
failure events are also independent and Bernoulli with prob-
ability EP (n, n − r, E), where the expectation is taken over
the binomial random variable E with parameters (n, ε).

E. Transmission Protocol

After the codeword reception, we have following two pos-
sibilities at the receiver. First, the receiver is able to decode
the transmitted message correctly, leading to a successful
status update at the monitor. Alternatively, receiver declares a
decoding failure and sends an immediate and accurate negative
feedback to the source. The source always responds to an event
of decoding failure by sending its true state as the following
update.

1) True Updates: For the true update scheme, the update
message from the source is always its m-bit current state M(t)
at time t. Hence, the probability of decoding failure for a true
update is p1 = EP (n, n−m,E).

2) Incremental Updates: For the differential update
scheme, the update message is the k-bit difference between
its current state M(t) and the last transmitted state M(t−n),
when M(t− n) is correctly decoded. Underlying assumption
here is that the source is slowly varying such that δM (t) ∈ ∆k

almost surely. In this case, the probability of decoding failure
for an incremental update is p2 = EP (n, n− k,E).

3) Generalized Incremental Updates: For the generalized
incremental update, the source uses the following algorithm
at each transmission instant t. If the update sent at time t−n
was successfully decoded and the incremental message can
be represented by k ≤ m bits, then the update message is
a differential update. Else, the true state update is encoded
and transmitted. That is, if M̂(t − n) = M(t − n) and the
difference δM (t) ∈ ∆k, then this difference of k bits is
encoded as an n-length incremental update codeword. Recall,
we denote the probability of this event as p3, and assumed it to
be independent of the source state M(t−n). This assumption
simplifies the analysis greatly, and captures the inability of
source to represent incremental message using pre-specified
k bits at all times. In addition, this case generalizes both the
previously studied update schemes. The values of encoding



success probability p3 being 0 and 1 correspond to the true
and the incremental update schemes, respectively.

F. Control Channel

We also assume existence of a separate control channel [9]
that allows the decoder to distinguish between a true and an
incremental update.

G. Performance Metric

We adopt the age of information metric defined in [1] as our
primary performance metric. Let U(t) denote the generation
time of last correctly decoded update at time t. Then the age
of information A(t) at time t, is given by t − U(t). In [10],
the authors define a metric called the peak age of information.
The peak age is the information age just before the monitor
successfully decodes an update. Suppose the ith successful
status update is received by the monitor at time Vi, then A(Vi−
1) is the peak age corresponding to the ith successful update.
The peak age is related to the receiver waiting time for a
successful update.

III. COMPUTATION OF LIMITING AVERAGE AGE

We will denote the age of the true, the incremental, and
the generalized updates by A, Â, and Ã, respectively. Next,
we compute the limiting average age EÃ for the generalized
incremental updates, from which the expressions for EA and
EÂ can be obtained as special cases.

A. Generalized Incremental Update

We will use a similar approach as used in [7] to compute
the limiting average age for this scheme. We denote R0 = 0
and let Ri be the time instant of the ith correctly decoded
true update. Due to the iid nature of the underlying channel,
it follows that the time duration Ti = Ri − Ri−1, between
consecutive decoding successes of true updates are iid. These
form inter-renewal times for a counting process that counts
the number of decoding successes of true updates. Let Zi and
Wi respectively denote the number of true and incremental
updates sent in the ith renewal interval [Ri−1, Ri− 1]. In this
renewal cycle, we have Wi incremental updates followed by
Zi true updates. Hence,

Ti = nZi + nWi.

Lemma 1. The number of true updates {Zi : i ∈ N} and the
number of incremental updates {Wi : i ∈ N} are independent
processes. Both processes are iid with the distribution of
number of true updates Zi being geometric with the success
parameter (1− p1).

Proof. Independence of {Zi : i ∈ N} and {Wi : i ∈ N}
follows from the independence of erasure channel. Each de-
coding failure of a true update is iid Bernoulli with probability
p1, and Zi− 1 is the number of true updates failures before a
successful reception. Hence, the result follows. �

The number of incremental updates Wi in the ith renewal
interval, is composed of number of decoding successes and
failures denoted by W s

i and W f
i respectively.

Theorem 2. The number of successful incremental updates in
the ith renewal interval {W s

i : i ∈ N} is iid with distribution

Pr{W s
i = j} = rj(1− r), j ∈ N0.

The number of incremental update failures {W f
i : i ∈ N} is an

iid Bernoulli process with probability Pr{W f
i = 0} = (1−p3)

(1−r) ,
where r = p3(1−p2). Further, W s

i and W f
i are independent.

Proof. The monitor receives an incremental update success-
fully, when the source can encode the difference in k bits
and the incremental update is successfully decoded. Decoding
successes of incremental updates and encoding of incremental
packets are iid due to the channel and the source structure
respectively. Further, they are independent due to the source
and the channel independence. Hence, the successful reception
of incremental updates are iid Bernoulli with probability
r = p3(1− p2).

In any renewal interval i, the failure to encode or decode
an incremental update leads to transmission of a true update,
and hence the number of successful incremental updates W s

i

is geometrically distributed with incremental update success
probability r. A sequence of j consecutive incremental updates
can be interrupted by either incremental encoding failure at
the source or decoding failure at the receiver, corresponding
to W f

i being 0 or 1 respectively. Hence,

Pr{W s
i = j,W f

i = 0} = rj(1− p3), j ∈ N0.

From this we can obtain the marginal distribution of W f
i , and

verify the independence of W f
i and W s

i . �

In the ith renewal interval [Ri−1, Ri−1], the age is reset to n
at times Ri−1+(j−1)n for j ∈ {1, . . . ,W s

i }, corresponding to
the instants when the source state can be successfully decoded
from the incremental updates. Age grows linearly at all other
points in the interval. We illustrate the evolution of the age
process and the peak ages for this scheme with an example in
Fig. 2. Let S(Ti) =

∑Ti−1
j=0 Ã(Ri−1 + j) be the accumulated

age over renewal period Ti. Then, as an application of renewal
reward theorem [11], the limiting average age is

EÃ , lim
t→∞

1

t

t∑
s=1

Ã(s) =
ES(Ti)

ETi
.

Theorem 3. The limiting average age of information for the
generalized incremental update scheme is given by

EÃ = n− 1

2
+
nE(W s

i )2 + nE(W f
i + Zi)

2

2(EW s
i + EW f

i + EZi)
.

Proof. The mean of cumulative age ES(Ti) and ETi are

ES(Ti) = E

W s
i∑

j=1

n−1∑
k=0

(n+ k) +

Ti−nW s
i −1∑

k=0

(n+ k)

 ,
ETi = n(EZi + EW s

i + EW f
i ).

Using Lemma 1 and Theorem 2, we can compute the average
age. �
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,Ã
(t

)

Figure 2. This plot shows a sample path of the age process in one renewal
interval for generalized incremental update for codeword length n = 10.
In this example, W s

1 = 3 incremental updates are successfully decoded.
Fourth incremental update sent at time 3n+1 fails to get decoded and hence
W f

1 = 1. The source starts sending the true updates from the next transmis-
sion opportunity at 4n + 1. True update sent at instant 4n + 1 fails to get
decoded and the update is successfully decoded after Z1 = 2 transmissions.
Age process has peaks at in for i ∈ {1, . . . ,W s

1 } ∪ {W
f
1 +W s

1 + Z1}.

The limiting average ages EA and EÂ for the true update
and the incremental update scheme can be found from the
expression of EÃ in Theorem 3. Specifically, setting p3 = 0
and p3 = 1 in the expression of EÃ results in EA and EÂ
respectively. From Lemma 1 and Theorem 2, we can see that
EW s

i , EW f
i are functions of (p2, p3) and EZi is a function

of p1. Therefore, EÃ is a function of (p1, p2, p3). It follows
from Theorem 3, that EÃ is increasing in p2 and decreasing
in p3.

IV. SOME EXAMPLE SOURCES

In this section, we consider two examples where we use
the analysis from Section III to compute the limiting average
age. First, we consider a source generating iid messages,
while in the second example we consider a Markov source.
In both cases, the source message set is F2m which can
be represented by m bits. It is clear that, the differential
encoding probability p3 increases with the threshold k. We also
notice that the decoding failure probability p2 for incremental
updates, increases with k. Since mean age for generalized
incremental update is decreasing in p3 and increasing in p2,
it indicates a choice of k that can optimally trade-off between
these two competing considerations.

For numerical studies, we adopt a random coding
scheme [12], for which the probability of decoding failure in
an n-length codeword with n − r parity bits and E erasures
is given by

P (n, n− r, E) = 1−
E−1∏
i=0

(
1− 2i−(n−r)

)
.

We plot the mean age for the three update schemes as a func-
tion of the number of differential information bits k for two
example sources considered below. Probability of incremental
update p3 is 0 and 1 respectively for the true and incremental
update schemes, bounding the performance of the differential
update scheme. In practice, a source would not be able to send
differential information at time t if M(t)−M(t− n) /∈ ∆k.

A. The iid case
In this case, the source generates messages uniformly at

random from F2m . The probability p3, that the source message
is encoded as an incremental update is 2k/2m. For the iid
case plotted in Fig. 3, we see that the limiting average age
for generalized incremental update is close to that of the true
update, with the optimal number of differential information
bits, k∗ ≈ m. Since an iid source has no temporal correlation,
the generalized differential updates do not reduce the average
age significantly. It is clear that even though incremental
update promise timeliness gains, they can’t be achieved for
iid sources.
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Figure 3. This plot shows the variation of limiting average age as the number
of differential information bits k increases in generalized incremental update,
for an iid source. We have chosen code length n = 20, the number of
information bits m = 15, and the erasure probability ε = 0.1. The optimal
number of differential information bits for generalized incremental update is
k∗ = 14.

B. Markov source
We now consider the source M(t) to be Markov with the

associated transition probability matrix P such that for all
i, j ∈ F2m , we have

Pij , Pr{M(t+ 1) = j|M(t) = i} =

{
1− α, j = i,

α/2, |j − i| = 1.

Thus, given past state M(t − n) = i, the probability that the
current state M(t) = j is Pn

ij , where Pn is the n-step transi-
tion probability matrix for the Markov chain described above.
Parameter α captures the source correlation, with smaller
values corresponding to more correlated sources. We see in
Fig. 4, that the generalized updates offer significant timeliness
gains for such Markov sources. We also observe that the gains
increase with the source correlation, and the optimal number of
differential information bits k∗ for correlated Markov sources
is much smaller than m. This is in contrast to the iid case,
where the optimal k is closer to m. We observe that the
differential encoding is better for the Markov source when
compared to the iid source, since this update scheme is able
to exploit the temporal correlation. Further, we observe that
the timeliness gains reduce as the source correlation decreases.
In particular, the average age for the Markov source with
α = 0.1 is smaller than average age for the Markov source
with relatively less temporal correlation having α = 0.7.



2 4 6 8 10 12 14

28

30

32

34

36

Differential information bits (k)

L
im

iti
ng

av
er

ag
e

ag
e

True update
Generalized incremental with α = 0.7

Generalized incremental with α = 0.1

Incremental update

Figure 4. This plot shows the variation of limiting average age as the number
differential information bits k increases in generalized incremental update
for Markov sources. We have chosen code length n = 20, the number of
information bits as m = 15, and the erasure probability as ε = 0.1.

V. STOCHASTIC ORDERING OF PEAK AGE

Let us denote the peak age for the true, incremental, and
generalized incremental updates by AM , ÂM , ÃM respec-
tively.

Lemma 4. The distribution of peak age ÃM is given by

Pr{ÃM = jn− 1} =

{
s j = 2,

(1− s)pj−3
1 (1− p1) j ≥ 3.

where s = p3(1− p2) + (1− p3)(1− p1).

Proof. Following an update decoding success, the next update
is an incremental or true state update with probability p3 and
1 − p3 respectively. Probability of decoding success for the
corresponding updates are 1 − p2 and 1 − p1 respectively. If
this update succeeds, the peak age ÃM is 2n− 1. Combining
these we get Pr{ÃM = 2n− 1} = s.

If the first update fails, the source starts sending true updates
till one of them is successfully decoded. The number of true
updates Z, sent between successful updates is geometric with
success parameter (1 − p1). Thus, the peak age, in the event
of the first incremental update failure is nZ + 2n − 1. Thus,
Pr{ÃM = jn− 1} = (1− s)pj−3

1 (1− p1), for j ≥ 3. �

We can find the distribution for AM and ÂM from Lemma
4, by setting differential encoding probability p3 as 0 and 1 for
true and incremental updates respectively. We now compare
the timeliness performance of the three encoding schemes.

Theorem 5. The mean age of information for the generalized
incremental update scheme satisfies

EÂ ≤ EÃ ≤ EA. (1)

Proof. When p3 is 0, EÃ = EA and when p3 is 1, EÃ = EÂ.
Result follows if we prove EÃ is decreasing in p3. To this end,
we observe that as p1 > p2, dEÃ

dp3
= −(p1−p2)

2(p3(p2−p1)+1)2 < 0. �

Theorem 6. The peak age for three update schemes satisfy
the following stochastic ordering

AM ≥st ÃM ≥st ÂM . (2)

where X ≥st Y implies X is stochastically larger than Y .

Proof. The minimum peak age for all the three schemes is
2n − 1. Hence, Pr{AM ≥ 2n − 1} = Pr{ÂM ≥ 2n − 1} =
Pr{ÃM ≥ 2n− 1} = 1. For j ≥ 3, it follows from Lemma 4,

Pr(AM ≥ jn− 1)

p1
=

Pr(ÂM ≥ jn− 1)

p2
=

Pr(ÃM ≥ jn− 1)

(1− s)
.

The result follows as p2 ≤ (1− s) ≤ p1. �

The above theorem shows that for any cost function which
is a non-decreasing function of the peak age, the average cost
will be maximum for the true updates scheme and minimum
for the incremental updates with feedback scheme [13].

VI. CONCLUSION AND FUTURE WORK

In this article, we considered a generalized incremental
update scheme for real time status updates which exploits tem-
poral correlation between consecutive messages. We showed
that this scheme generalizes true and incremental update
schemes. We demonstrated a trade-off between probabilities
of decoding failure and differential encoding, for two example
sources. In addition, we showed a stochastic ordering between
the three update schemes with respect to the peak age metric.
This was illustrated through some numerical examples. An
interesting direction for future work would be to consider
sources with state dependent differential encoding probabilities
which would further generalize our current work.
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