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Abstract—For many applications in sensor networks and
cyber-physical systems, receiving timely information is of utmost
importance. In this article, we study data transmission schemes
for a single source, sending periodic updates to a receiver
through an unreliable channel. We consider two schemes that
exploit the temporal correlation in the source messages, to send
differential information to the receiver. Taking advantage of the
receiver feedback in the first scheme, the source can decide
between the differential and the actual information, to be sent
at each transmission opportunity. Contrastingly, in the second
scheme without any feedback, the source periodically sends the
actual information, interspersed with differential messages. We
observe that the differential encoding improves the timeliness
performance, only if the receiver feedback is available.

Index Terms—age of information, renewal theory, erasure
channel, differential encoding, block codes.

I. INTRODUCTION

With reduced costs of sensor units, we are witnessing an
increasing number of sensor deployments for monitoring a
wide range of physical phenomena. A typical sensor has
limited data processing capability, and the sensed information
is relayed from the sensors to a monitor which processes
this information. In sensing applications such as health and
environment monitoring, the latest observation makes the older
information obsolete, and hence the timeliness of information
is a metric of paramount interest. Information timeliness can
be quantified by a metric called age of information defined
in [1]. This is the the performance metric we adopt in this
article.

We would like to differentiate this metric from the tradi-
tional communication performance metric of reliability. Re-
liable communication focuses on the maximum rate of in-
formation that can be transmitted over an unreliable channel
with vanishing probability of message decoding failure. These
rates can be achieved utilizing sophisticated coding techniques
using the channel multiple times. However, timeliness is an
appropriate performance metric for real-time communication
applications, where having the latest information is more
important than obtaining reliable but delayed information.

Timeliness is a relatively new metric that has been employed
to understand real-time communication in [1]–[6]. In the
referenced articles, the communication channel model from
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the sensor to the monitor is somewhat idealized. In the channel
models considered in these articles, the transmission is always
reliable and the channel uncertainty is only reflected in the
randomness of the service time. In this article, we study
real-time communication over unreliable channels that corrupt
the transmitted message, and render it unrecognizable at the
receiver. In particular, we model the channel unreliability using
an information theoretic bit-wise binary symmetric erasure
channel. One can improve the probability of successful in-
formation transmission across this channel by sending addi-
tional redundant information. Additional redundancies result
in higher number of channel uses. Hence, even though the
transmitted message is more robust to the channel unreliabil-
ity, it takes longer to be received. Therefore, the improved
reliability comes at a cost of freshness.

We are interested in finding data transmission schemes
for sending sensor information over this unreliable channel.
One obvious scheme at the sensor is to encode its current
state, and transmit the encoded message to the monitor at
each transmission opportunity. We consider the case where
the time-variation of the physical process being sensed, is
slower than the update frequency. That is, between two sensor
updates there is little change in the information being sent to
the monitor. This setup is reasonable for monitoring physical
processes such as temperature, humidity, traffic, and pollution
that change gradually. This assumption would also hold if the
sensing rate is high enough, so that the process being sensed
does not change much during the inter-sensing interval.

For slowly varying processes, the change in state can be
represented by a smaller number of bits, when compared to the
actual state. Exploiting this property of the physical process
under surveillance, one can send incremental change in states
instead of the current state, at each transmission opportunity.
This idea is already utilized by applications such as rsync [7]
and http [8], that send encoded difference between the current
and the previous state for traffic reduction. Analogously, one
reasonable scheme at the sensors would be to encode and
transmit the difference in states, rather than the true state.
In this situation, one can afford to send larger number of
redundant bits in the same length codeword, thereby reduc-
ing the probability of decoding failure. However, differential
encoding correlates the messages temporally, and the failure
of an incremental update adversely affects the subsequent
updates, if there is no receiver feedback. For systems with no
feedback from the receiver, the source can periodically send



the true states. This enables the monitor to correct itself in the
event of an incremental update failure. For systems that can get
the receiver feedback indicating decoding failures, the source
can send the actual state in the next transmission opportunity.

In this article, we analyze the performance of the above
mentioned data transmission schemes using the timeliness
metric as the performance criterion. This provides us insights
into the trade-off between timeliness and the additional pro-
tection offered by the differential encoding.

A. Main Contributions

We consider a source that is sampling a temporally cor-
related physical process. The source encodes this sampled
data and transmits it to a monitor over an unreliable channel.
We consider information timeliness as a performance metric.
While earlier studies analyzed the effect of unreliability due
to random service times of the updates, we study the effect
of unreliability due to channel erasures. Further, we are
also interested in the selection of suitable data transmission
schemes for maximizing freshness of the received information.
We analyze two schemes that use differential encoding, and
compare it to the scheme that sends true updates at every
transmission opportunity. We find that the differential encoding
only helps if there is a feedback from the receiver to the source.

II. BACKGROUND

We describe the system model, performance metric, and the
update transmission schemes in this section.

A. System Model

We consider a source that is sensing the state of a physical
process denoted by X(t). The sensor samples the state X(t)
and sends the encoded state Xn to a remote monitor through
an unreliable channel. We assume that the source encodes each
message into a n-length codeword for transmission. Hence,
the source can only transmit opportunistically at periodic times
{n(j−1)+1 : j ∈ N}. We illustrate the abstract system model
in Figure 1, and discuss each component in detail below.

Source Encoder
X(t)

Channel
Xn

Decoder
Y n

Monitor
X̂(t− n)

Figure 1. We show an abstract discrete time communication model for a
source with m-bit information X(t) at time t. The message X(t) is encoded
to an n-length codeword Xn and transmitted over an unreliable bit-wise iid
binary symmetric erasure channel that outputs Y n. Each bit requires single
channel use, and hence the output Y n is obtained after n channel uses. From
the output, the decoder finds an estimate X̂(t−n) of the message transmitted
n channel uses ago.

1) Source: We assume that the source samples the physical
process at discrete times. We also assume that the source
message can be represented by finitely many bits, say m.
We capture the temporal correlation of the physical process
X(t) ∈ {0, 1}m by the following assumption. The state of the
physical process sampled at times t − n and t do not differ
much, and this difference X(t)−X(t−n) can be represented
by 1 ≤ k ≤ m bits. Notice, that the number of bits to represent

the difference would depend on the mixing time of the process,
and the time-interval n.

2) Monitor: We measure the time in terms of channel use.
An n-length update packet is received at the monitor after n
channel uses since its generation. That is, an update codeword
sent at time n(j − 1) + 1 is decoded at instant nj + 1.

3) Channel Model: We consider a bit-wise iid binary
symmetric erasure channel, such that for each i ∈ {1, . . . , n},
the channel output Yi ∈ {0, 1, e} corresponding to the input
Xi ∈ {0, 1} is given by

Yi = e1{Yi 6=Xi} +Xi1{Yi=Xi},

where e denotes an erasure symbol. Further, each bit of the
update packet can be erased independently and identically with
probability ε = Pr{Yi 6= Xi}. Since each bit erasure is iid
Bernoulli random variable, we have the following lemma.

Lemma 1. The number of bit erasures E in an n-length
update packet has a binomial distribution,

Pr{E = j} =

(
n

j

)
εj(1− ε)n−j , for j ∈ {0, 1, · · · , n}.

4) Encoding: The source message can either be the m-
bit current state or the k-bit difference from the previously
transmitted state. The encoded message corresponding to the
true state X(t) and the difference X(t)−X(t−n) are called
true update and incremental update respectively. Our analysis
applies for any permutation invariant coding scheme, where
the probability of decoding failure depends solely on the
number of erasures in a codeword, and not its location.

5) Decoding: Conditioned on the number of erasures E in
an n-length codeword with n−r parity bits, the probability of
decoding failure for a permutation invariant code is denoted
P (n, n − r, E). The unconditioned probability of decoding
failure for true and incremental updates are respectively

p1 = EP (n, n−m,E) and p2 = EP (n, n− k,E).

Due to the nature of the erasure channel and permutation
invariant coding, the decoding failures at the receiver are
independent Bernoulli random variables. In this article, we
consider the erasure probability ε ∈ (0, 1). Together with the
fact that k ≤ m, it implies that 0 < p2 ≤ p1 < 1.

B. Performance Metric
The latest information available at the monitor is the last

correctly decoded update. Let U(t) denote the generation time
of the last successfully decoded source state at time t. We
quantify the timeliness of the update using the information
age [1] or age A(t) at time t as

A(t) = t− U(t). (1)

The performance metric we are interested in, is the limiting
value of average age defined as limt→∞

1
t

∑t
s=1A(s).

C. Update Transmission Schemes
We are interested in understanding the impact of the fol-

lowing update transmission schemes on the information age
at the monitor.



1) True Updates: First, we consider a scheme where the
source sends the encoded current state at every transmission
opportunity, i.e. at times {(j − 1)n+ 1 : j ∈ N}. This acts as
our baseline scheme for comparison.

2) Incremental Updates without Feedback: Second, we
consider the scheme where the source periodically sends the
encoded current state at times {(j − 1)qn+ 1 : j ∈ N} for a
fixed q ∈ N. At the q − 1 transmission opportunities between
the transmission of two true updates, the source encodes the
differential information to send incremental updates.

3) Incremental Updates with Feedback: In the third
scheme, we consider the availability of an immediate and
accurate feedback from the monitor. In this scheme, the source
begins transmission with a true update and sends a true update
each time it receives monitor feedback of a decoding failure.
At all other times, the source sends incremental updates.

III. COMPUTATION OF LIMITING AVERAGE AGE

We will compute the limiting values of average age for
the different update schemes using renewal theory. The main
technique we would utilize is the renewal reward theorem [9].
Let N(t) be a process that counts the number of successful
receptions of the true update till time t. We denote S0 = 0
and let Si be the time instant of the ith successful reception
of the true update. For all three schemes, we would show that
the ith inter-arrival time Ti = Si − Si−1 is iid and has finite
mean. Hence, the counting process N(t) is a renewal process.
From the independence of channel realizations, it is clear that
the renewal periods Ti’s are independent. Therefore, it suffices
to show that Ti’s are also identically distributed and have a
finite mean. Conditioned on the length of the ith renewal period
Ti, we will find the accumulated age S(Ti) =

∑Si−1
t=Si−1

A(t)

in the ith renewal interval [Si−1, Si − 1]. Since A(Si) = n,
the accumulated age S(Ti) depends solely on renewal interval
length Ti, and is also iid with finite mean. We denote the lim-
iting average age by EA. The following almost sure equality
follows from the application of renewal reward theorem [9] to
renewal process N(t) and the reward process A(t),

EA , lim
t→∞

1

t

t∑
s=1

A(s) = ES(Ti)/ETi.

Since the length of an update codeword is fixed to be n, hence
each codeword is sent every n channel uses, Ti

n is the number
of updates codewords sent during the ith renewal interval.

A. True Updates

Let Zi be the number of true updates transmitted by the
source in the interval [Si−1, Si − 1] before the ith successful
reception at time Si. For the true updates scheme, each update
codeword contains the true state information, and hence Ti =
nZi. We can show that the number of true updates {Zi : i ∈
N} are iid and have finite mean.

Lemma 2. The number of true updates {Zi : i ∈ N} are iid
geometric with the success parameter (1− p1).

Proof. Independence of {Zi : i ∈ N} follows from the
independence of erasure channels. We observe that Zi − 1 is
the number of true updates sent before a successful reception.
Since the update decoding failures are iid Bernoulli with
probability p1, the result follows. �

That is, we have shown that the ith renewal occurs for the
counting process N(t) at time Si = nZi, for this scheme.
Further, in the ith renewal interval, the age starts at n from the
instant Si−1 and increases linearly till time Si−1. We illustrate
the evolution of the age of information for this scheme using
an example in Figure 2.
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Figure 2. This plot shows one sample path of the age process for the true
update scheme. We have taken the codeword length n = 10. First update sent
at time 1 is decoded successfully at time n+ 1, and hence Z1 = 1. Second
update sent at time n + 1, fails to get decoded at time 2n + 1, leading to
one decoding failure. The following update sent at time 2n + 1 is received
successfully at time 3n+ 1, and hence Z2 = 2.

Theorem 3. The limiting average age for the true update
scheme almost surely equals

EA , lim
t→∞

1

t

t∑
s=1

A(s) =
(n− 1)

2
+

n

(1− p1)
.

Proof. The cumulative sum of ages for ith renewal interval is

S(nZi) =

nZi−1∑
j=0

(n+ j) = n2Zi +
nZi(nZi − 1)

2
.

Since {Zi} is an iid sequence, so is the sequence {S(nZi)}.
From the finiteness of the first two moments of the geometric
random variable Zi, it follows that the cumulative age S(nZi)
has finite mean. From the application of renewal reward
theorem [9], we get

EA = ES(nZi)/EnZi = n− 1/2 + nEZ2
i /2EZi. (2)

The result follows from substituting the first and second
moment of the geometric random variable Zi. �



B. Incremental Updates without Feedback

Let Zi be the total number of true updates transmitted by the
source in the interval [Si−1, Si−1]. In this scheme, the encoder
sends q−1 incremental updates between two true updates, and
hence Ti = nqZi. Using similar arguments as in Section III-A,
we can show that {Zi : i ∈ N} is an iid process distributed
geometrically with success parameter (1−p1). That is, we have
shown that the counting process N(t) is a renewal process for
this scheme as well. We observe that, after the failure of the
first incremental update, receiver can’t successfully decode the
source state till the next successful reception of the true state.
We define W̄i to be the number of successful source state
receptions in the ith renewal interval.

Lemma 4. For each renewal interval, the number of successful
receptions 1 ≤ W̄i ≤ q, and is independent of the number of
true updates Zi. Further, the sequence {W̄i : i ∈ N} is iid
and distributed as truncated geometric

Pr{W̄i = k} = (1− p2)k−1
(
p21{1≤k<q} + 1{k=q}

)
.

Proof. We note that W̄i − 1 is the number of contiguous
incremental updates, decoded successfully in the ith interval.
Since in each renewal interval, at least one update is success-
fully received, 1 ≤ W̄i. Further, if W̄i − 1 = q − 1, then
the next update contains the true state information. If this
update is decoded successfully, then Zi = 1 and ith renewal
occurs. Otherwise, Zi > 1 and all the subsequent incremental
updates in this renewal period, are useless at the monitor.
From the independence of the channel realizations, it follows
that {W̄i : i ∈ N} is an iid sequence, and that W̄i and Zi

are independent. Since the decoding success of incremental
updates are iid Bernoulli with probability 1− p2 and W̄i ≤ q,
the distribution of W̄i is truncated geometric. �

In the ith renewal interval, the age is reset to n at instants
Si−1 + jn for j ∈ {0, 1, . . . , W̄i − 1} corresponding to the
successful reception of the source state. The age grows linearly
at all other points in the interval. We illustrate the evolution of
the age process for this scheme, with an example in Figure 3.

Theorem 5. The limiting average age of information for the
incremental updates without feedback is given by

EĀ , lim
t→∞

1

t

t∑
s=1

Ā(s) =
ET 2

i

2ETi
+
n2EW̄i(W̄i − 1)

2ETi

−
(
nE(W̄i − 2) +

1

2

)
.

Proof. The cumulative sum of ages S(Ti) in the ith renewal
interval can be written as

S(Ti) =

W̄i−1∑
j=1

n−1∑
k=0

(n+ k) +

Ti−1∑
j=n(W̄i−1)

(n+ j − n(W̄i − 1)),

=
n2W̄i(W̄i − 1)

2
+
T 2
i

2
−
(
n(W̄i − 2) +

1

2

)
Ti.
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,Ā
(t

)

Figure 3. This plot shows a sample path for the age process in one renewal
interval, for the incremental updates and no feedback. We have taken the
codeword length n = 10, and the period after which the true update is sent
as n(q − 1) = 20. In this example, the first q − 1 incremental updates are
successfully decoded, i.e. W̄1−1 = 2. The source sends the true update at the
qth transmission opportunity, which fails to get decoded. Since the source has
no feedback, it starts sending incremental update for next q− 1 transmission
opportunities. Finally, the following true update is decoded successfully at the
monitor, and hence Z1 = 2.

The result follows from taking expectations and independence
of Ti and W̄i, and applying renewal reward theorem. �

C. Incremental Updates With Feedback

We let Zi and Wi respectively denote the number of true
and incremental updates sent in the interval [Si−1, Si−1], then

Ti = nZi + nWi.

The process {Zi : i ∈ N} is iid geometric with success
parameter (1−p1) as before. From the independence of erasure
channel, it follows that Zi and Wi are independent for each
i ∈ N. We have the following lemma for the number of
incremental updates.

Lemma 6. The number of incremental updates {Wi : i ∈ N}
are iid geometric with the success parameter p2.

Proof. Independence of Wi’s follows from the independence
of the erasure channel. Further, Wi − 1 is the number of
incremental updates before the first decoding failure in the
ith inter-arrival interval of the counting process N(t). Since
the decoding failure events are iid Bernoulli with probability
p2 for incremental updates, the result follows. �

It follows that the periods Ti are iid and have finite mean,
and hence the counting process N(t) is a renewal process for
this scheme as well. In the renewal interval [Si−1, Si−1], the
age is reset to n at times Si−1 + jn for j ∈ {0, 1, . . . ,Wi −
1}, corresponding to the instants when the source state can
be successfully decoded from the incremental updates. Age
grows linearly otherwise at all other points in the interval. We
illustrate the evolution of the age process for this scheme with
an example in Figure 4.
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Figure 4. This plot shows a sample path of the age process in one renewal
interval, for the incremental updates with feedback. We have taken the
codeword length n = 10. In this example, first W1 − 1 = 3 incremental
updates are successfully decoded. Fourth incremental update sent at time
3n+ 1 fails to get decoded. The source starts sending the true updates from
the next transmission opportunity at 4n+1. True updates sent at instant 4n+1
fails to get decoded, with the first success after Z1 = 2 transmissions.

Theorem 7. The limiting average age of information for the
incremental updates with feedback is given by

EÂ , lim
t→∞

1

t

t∑
s=1

Â(s) =
(3n− 1)

2
+
n(EZ2

i + EZi)

2(EWi + EZi)
. (3)

Proof. The cumulative age S(Ti) over the ith renewal period
Ti, is the sum of the cumulative age due to incremental and
true updates. During this interval, all but the last incremental
update are decoded correctly. Therefore, we can write

S(Ti) =

Wi−1∑
j=1

n−1∑
k=0

(n+ k) +

Ti−n(Wi−1)−1∑
k=0

(n+ k)

= (3n− 1)Ti/2 + n2(Zi + 1)Zi/2.

Since {Ti} and {Zi} are iid and mutually independent se-
quences, it follows that {S(Ti)} is also an iid sequence. Fur-
ther, S(Ti) has a finite mean from the finiteness of the mean
of the renewal period Ti and the first two moment of random
variable Zi. The result follows from taking expectations and
applying the renewal reward theorem. �

IV. ANALYTICAL AND NUMERICAL COMPARISONS

We now compare the timeliness performance of three source
state encoding schemes.

A. Analytical Comparison
We show that for any arbitrary streaming update source, the

limiting average age for the three schemes can be ordered.

Theorem 8. The mean age of information for the three
schemes satisfy,

EÂ ≤ EA ≤ EĀ. (4)

Proof. We define λ = EWi

EWi+EZi
∈ (0, 1). Since EWi = p−1

2

and EZi = (1− p1)−1, and p2 ≤ p1, it follows that

EA− (n− 1)

2
− n

λ
= n

(
1− p2

1− p1
− 1

)
≥ 0.

The first inequality in (4) follows by writing the mean age EÂ
for the incremental update scheme with feedback as

EÂ = EA− nλ
(

1− p2

1− p1
− 1

)
.

For the incremental updates without feedback, the minimum
cumulative age over a renewal cycle Ti is attained when the
first q − 1 incremental updates succeed. That is,

S(Ti) ≥
1

2
(Ti − nq)2 − n2q

2
+

(
2n− 1

2

)
Ti.

Substituting Ti = nqZi above, and applying the renewal
reward theorem, we get

EĀ ≥ n(q − 1)E(Zi − 1)2/2EZi + EA.

The result follows from the non-negativity of (Zi − 1)2. �

B. Numerical Comparison

Even though our proposed analysis is valid for any sym-
metric coding scheme, we use a random coding scheme [10]
for the illustration purposes. For the random coding scheme,
conditioned on the number of erasures E in a n-length
codeword with n − r parity bits, the probability of decoding
failure [10] is

P (n, n− r, E) = 1−
E−1∏
i=0

(
1− 2i−(n−r)

)
.

We are interested in the timeliness performance for small
codewords used in real-time communication. Therefore, we
have taken codeword length n = 120 inspired by the system
parameters used in GSM based wireless links [11]. We have
also taken the periodicity of true updates q ∈ {2, 6}, for the
differential encoding scheme without feedback.

In Figure 5, we plot the limiting average age for the three
schemes as the number of information bits m increases in
{110, · · · , 120}. The erasure probability is set to be 0.001, and
we assume that the differential information can be represent by
k = 10 bits, irrespective of m. From Theorem 8, we know the
order on the performance of the three schemes. We observe
that as the code-rate m/n of the true update increases, the
average age remains invariant for the incremental updates with
feedback, while it increases for the other two schemes. We
know that the incremental update scheme without feedback
is identical to the true update scheme when q = 1. Further,
we see that the performance of this scheme gets worse as the
periodicity q increases.

We compare the limiting average age of information for
all three schemes in Figure 6, as the erasure probability ε
increases in [0.01, 0.1]. We take a fixed number of information
bits m = 105 in each codeword of length n = 120, and
assume that the differential information can be represented by
k = 10 bits. The qualitative behavior of limiting average age
with increasing erasure probability is similar to that of with
increasing number of information bits.

Finally, we compare the limiting average age of informa-
tion for all three schemes in Figure 7, as the incremental
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Figure 5. This plot shows the variation of limiting average age as the number
of information bits m grows. We have chosen the codeword length n = 120
and the differential information is assumed to be represented by k = 10 bits.
The erasure probability of the iid bit-wise binary symmetric channel is taken
as ε = 0.001.
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Figure 6. This plot shows the variation of limiting average age as erasure
probability ε increases. We have chosen the number of information bits m =
105, in each codeword of length n = 120. The number of bits needed to
represent the differential information is taken as k = 10.

information bits k grows in {1, . . . ,m}. We have selected the
erasure probability ε = 0.1 and the number of information
bits m = 105 in each codeword of length n = 120 bits. We
observe that the limiting average age is constant for a wide
range of k, and shoots up as k approaches m. As expected, the
performance gain of the differential encoding with feedback
when compared to the true state encoding, diminishes as k
approaches m.

V. CONCLUSION AND FUTURE WORK

We considered a slowly varying source sending real-time
updates over a single unreliable link, modeled by an iid bit-
wise binary symmetric erasure channel. We compared the
timeliness performance of the differential encoding with and
without feedback, to the true state encoding. We found that the
differential encoding is better than the actual state encoding, if
there is a receiver feedback, and worse otherwise. Even though
the differential encoding offers increased protection for the
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Figure 7. This plot shows the variation of the limiting average age as the
number of bits needed to represent incremental information bits, k, grows.
We have chosen the number of information bits m = 105, in each codeword
of length n = 120 bits. The erasure probability of the iid bit-wise binary
symmetric channel is taken as ε = 0.1.

message bits, a single decoding failure can corrupt multiple
future messages, if there is no receiver feedback. Thus, we
infer that the feedback is crucial in exploiting the advantages
of differential encoding, for the reduction of the information
age. We have considered a general source constrained by
the assumptions on the temporal correlation of the states.
An extension would be to consider source messages with
structured temporal correlation, e.g. mixing times of Markov
sources. It would also be interesting to explore joint source
channel codes that optimize the timeliness performance for
the structured sources.
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