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Abstract—The ability of a P2P network to scale its throughput
up in proportion to the arrival rate of peers has recently been
shown to be crucially dependent on the chunk sharing policy
employed. Some policies can result in low frequencies of a
particular chunk, known as the missing chunk syndrome, which
can dramatically reduce throughput and lead to instability of
the system. For instance, commonly used policies that nominally
“boost” the sharing of infrequent chunks such as the well-
known rarest-first algorithm have been shown to be unstable.
Recent efforts have largely focused on the careful design of
boosting policies to mitigate this issue. We take a complementary
viewpoint, and instead consider a policy that simply prevents the
sharing of the most frequent chunk(s). Following terminology
from statistics wherein the most frequent value in a data set is
called the mode, we refer to this policy as mode suppression. We
prove the stability of this algorithm using Lyapunov techniques.
We also design a distributed version that suppresses the mode
via an estimate obtained by sampling three randomly selected
peers. We show numerically that both algorithms perform well
at minimizing total download times, with distributed mode
suppression outperforming all others that we tested against.

I. INTRODUCTION

Peer-to-Peer (P2P) file sharing networks such as BitTor-
rent [1] have been studied intensely in recent years, using
analytical models, simulation studies, and large scale field
experiments. This interest partly stems from the dominance of
P2P as a source of Internet traffic in past years. Even today,
although the traffic fraction has reduced to around 3-4% in
North America, P2P sharing still occupies a significant fraction
of about 30% of traffic in the Asia-Pacific region [2]. Interest
also stems from a desire to understand the thought-provoking
phenomenon of apparent scaling up of the throughput of a P2P
network as the number of peers grows, which enables them
to effectively distribute content with low file-download times
during high demand situations called flash-crowds.

In a P2P network, a file is divided into fixed-size chunks,
and a peer possessing a set of chunks can upload those chunks
to other peers that need them. Once a peer has downloaded
all chunks, it could continue to serve other peers or leave the
system. A so-called seed server that possesses all chunks and
never leaves is often used to ensure that no particular chunk
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ever goes missing. It is the feature of integrating the upload
capacity of each peer into the system that is supposed to enable
system-wide throughput scaling up with the number of peers.
However, since peers can only share chunks that they possess,
it is crucial to ensure the wide availability of all chunks to
enable maximum usage of available upload capacity with each
peer.

The problem of ensuring that all chunks are easily
obtainable—ideally by engendering equal numbers of copies
of each chunk over the network—was considered by the
original designers of P2P networks. For example, BitTorrent,
which is the most popular P2P network protocol, uses an
algorithm called rarest-first (RF) to try to achieve this goal [1].
Here, the idea is to keep a running estimate of the frequency
of all chunks in the system. When a peer has a chance to
download a chunk, it chooses the least frequent (i.e., the
“rarest”) among all the chunks that it needs. In practice, peers
keep track of the frequency of chunks in local subsets. Intuition
suggests that such “boosting” of rare chunks might ensure a
near-uniform empirical distribution of chunks.

Recent work has postulated that under some conditions, the
rarest-first policy used by BitTorrent actually does not achieve
its goal, and can actually be harmful to system performance.
In particular, [3] studied a chunk-level model of P2P sharing
under which new peers that do not possess any chunks arrive
into the system at some rate, contacts between peers happen
at random, and at each contact a chunk is transferred to a
requesting peer under a given policy. Peers depart immediately
after completing the file download. The objective was to
determine if the system is stable under a given policy, i.e., at
any time is the number of peers that have not yet received the
whole file finite or is it exploding to infinity? The result was
that under several policies including rarest-first and random
chunk selection, a particular chunk can become very rare
across the network—a phenomenon referred to as the missing
chunk syndrome. This causes the creation of a large set of
peers that are missing only that one chunk, referred to as the
one club. In turn, the seed server must serve the missing chunk
to almost all peers (which then depart), which means that the
system is unstable unless the upload capacity of the seed server
is of the order of the arrival rate of peers into the system. Thus,
the phenomenon largely negates the value of the P2P system.

More recently, experimental studies have revealed that the



missing piece syndrome is an observable phenomenon occur-
ring in BitTorrent networks [4]. The results show that when
the seed server has low or intermittent upload capacity, the
throughput of the system saturates as the number of peers
grows. In turn, this causes lengthened stay of peers in the
system between arrival and completion, where an increasingly
large number of peers are waiting to obtain the final chunk
before leaving. In other words, designing policies that can
ensure stability of a P2P network under a fixed seed server
capacity for all peer arrival rates is practically relevant.

A. Related Work on Stable Algorithms

There has been extensive work on P2P networks, and
we refer here only to those directly relating to the scaling
properties of a single swarm. A large system assumption was
made in [5]–[7], and the evolution of peers and seeds is
described using a system of differential equations. While [5],
[6] study the stationary regime and indicate the stability of
BitTorrent-like systems for all arrival rates, [7] considers the
transient regime and studies how much seed server capacity
is needed to attain a target sojourn time (the time between
the arrival of a peer and its completing the file download).
Results on stability and scaling here require that at least a fixed
fraction of the peers’ upload capacity can always be utilized—
an implicit assumption of chunk availability. As shown in [3],
this assumption need not hold for all chunk selection policies,
and a chunk-level model is needed for accurate analysis.

Chunk-level models have considered the missing chunk
problem from two angles. The first method is to explicitly
insist that peers that have completed the download should stay
in the system as servers for some period of time. For example,
[8] presents results on fairness vs. system performance based
on how long peers stay after completion. In a more recent
work [9], it was analytically shown that the system is stable
as long as peers stay long enough to serve of the order of
one additional chunk after completion. Indeed, in the original
BitTorrent implementation this often happened naturally, since
most users manually stopped participation at some point after
download was completed. However, current implementations
allow for the peer to depart immediately after completion,
which can lead to the instability observed in [4].

The second method is to assume that peers would leave
immediately after completion, and to design the chunk sharing
policy such that the missing chunk syndrome is avoided. Some
algorithms of this nature are “boosting” policies that can be
thought of as modified versions of rarest-first. For example, the
rare chunk (RC) algorithm studied in [10]–[12] picks three
peers at random and chooses a chunk that is available with
exactly one of the selected peers (called a “rare” chunk). Also
studied in [12] is a variant of this algorithm called the common
chunk (CC) algorithm, which proceeds as in the RC algorithm
when the peer has no chunks, then follows a policy of sampling
a single peer with random selection among its required chunks
until it only needs one more chunk, and then proceeds by
sampling three peers and only downloading a chunk if every
chunk with it appears at least twice with the sampled peers.

However, although stable, these algorithms appear to have long
sojourn times in some settings [13].

More recent work on chunk sharing policies [13] describes
an algorithm called group suppression (GS), which is based on
observations made in [3]. The policy is based on computing
the empirical distribution of the states in the system, where a
state of a peer is the set of chunks available with that peer.
Peers that belong to the state with highest frequency are not
allowed to upload chunks to peers that have fewer chunks than
themselves, thus suppressing entry into the highest frequency
group. Although this policy appears to have low sojourn times
in simulations, it is somewhat complex since it requires the
knowledge of the entire empirical state distribution. Further-
more, the authors are only able to prove stability in a P2P
network with exactly 2 chunks, while the stability of the
general case is left as a conjecture.

B. Main Results

The nominal objective of Rarest-First is to ensure a uniform
chunk distribution across the network, which it actually does
not achieve in all cases, causing instability as shown in [3].
Our intuition is that rather than following a policy of boosting
low-frequency chunks as rarest-first does, simply preventing
the most frequent chunk(s) from being shared would allow
less frequent chunks to catch up, and drive the empirical
distribution of chunks towards the desired uniform distribution.
Implicitly, this would also remove a small fraction of the
upload capacity, keeping peers in the system a little longer,
and enabling them to share more copies of rare chunks.

Following this intuition, we propose a policy that we call
mode suppression (MS), which is based on terminology used
in statistics in which the mode is the most frequent value(s)
in a data set. Thus, we keep track of the frequency of chunks
in the system, and when a peer contacts another peer, it is
allowed to download any chunk except the one(s) belonging
to the mode. Any chunk may be downloaded if all chunks are
equally frequent (i.e., if all chunks belong to the mode). The
policy is simple to implement, since all that is needed is the
chunk frequency (which is already a part of BitTorrent).

We consider model similar to [3], [12], [13] in which peers
that have no chunks enter the system according to a Poisson
process with a certain arrival rate. There is a seed server that
has an independent Poisson clock of a fixed rate, and at each
clock tick, it contacts a single peer and uploads a chunk to it
following a given policy. Each peer also has an independent
Poisson clock of a fixed rate, and at each clock tick, the peer
contacts a randomly selected peer and uploads a chunk to it
following the same policy. Our main analytical result is to
show using a Lyapunov drift analysis that mode suppression
is stable under all peer arrival rates in a system in which the
file is divided into any number of chunks.

We also construct two variants on the idea that only depend
on a much smaller set of sample statistics. The first varient
is mode-suppression that samples only one peer at a time
and uses an exponentially weighted moving average estimate
of chunk frequency (MS-EWMA), while the second variant,



TABLE I
COMPARISON OF CHUNK SELECTION POLICIES

Policy m = 2 m > 2 Information Sojourn time
Download from 1 Peer Download from 3 Peers

Random Unstable Unstable None N/A (unstable) N/A (unstable)
Rarest-First (RF) Unstable Unstable Chunk Frequency N/A (unstable) N/A (unstable)
Rare Chunk (RC) Stable Stable 3 Peers Bad Good

Common Chunk (CC) Stable Stable 3 Peers Good Bad
Group Suppression (GS) Stable Unknown Complete Distribution Good Better
Mode Suppression (MS) Stable Stable Chunk Frequency Good Better

EWMA Mode Suppression (MS-EWMA) Unknown Unknown 1 Peer Better Best
Distributed Mode Suppression (DMS) Stable Unknown 3 Peers Best Best

distributed mode suppression (DMS) samples 3 peers at a time,
and uses a (noisy) mode constructed from only those samples.

We simulate all the algorithms by starting the system in
a corner case where one of the chunks is available only
at the seed server, and observe the evolution of the system
afterwards. A comparison is presented in Table I, where m
is the number of chunks that the file is divided into. An
additional dimension that we explore is the impact on chunk
diversity engendered by being able to pick a chunk from
the set possessed across multiple peers, i.e., choosing one
chunk from one randomly chosen peer, versus choosing one
chunk from the chunk-set of three randomly chosen peers. We
observe through simulations that mode suppression actually
does come very close to attaining a uniform distribution, and
has a comparable sojourn time to group suppression. The two
variants of MS preformed the best overall, with the version
of DMS that can download a chunk from the chunk-set of 3
random peers being near-optimal in terms of sojourn time.

II. SYSTEM MODEL

We consider a P2P file sharing system for a single file
divided into m chunks. This file sharing system has a unique
seed that has all m chunks, and the seed stays in the system
indefinitely. Peers arrive according to a Poisson process with
rate λ. Each incoming peer arrives without any chunks and
stays in the system till it obtains all m chunks of the file. In
this model, a peer leaves as soon as it has all m chunks of
the file. The peers can receive the chunks in two ways, either
directly from the seed or from other peers.

Whenever the seed or a peer contact another peer, it is
deemed as a contact. Therefore, each peer and the seed have
individual contact processes corresponding to the sequence of
contact instants. Upon contact the seed or the peer transfer
a missing chunk to the contacted peer, according to a chunk
selection policy. When chunk selection policy depends solely
on the current state of the system, it is called a Markov chunk
selection policy.

A. Contact Processes

The time interval between two contacts are assumed to be
random, independent, and identically exponentially distributed,
i.e. all contact processes are assumed to be independent and
Poisson. The Poisson contact rate for the seed is assumed to
be U , and each peer is assumed to have a common contact
rate of µ.

B. State space

At any time t, the number of peers in the system with a
proper subset of chunks S ⊂ [m] is denoted by XS(t) ∈
N0 , {0, 1, . . . }. The system at time t can be represented by
the state

X(t) = (XS(t) : S ⊂ [m]).

The total number of peers at any time t is denoted by

|X(t)| =
∑
S⊂[m]

XS(t).

For any Markov chunk selection policy, the continuous time
process {X(t), t > 0} is Markov with countable state space
X , NP([m])\[m]

0 . The stability region is defined as the set of
arrival rates λ, for which the continuous time Markov chain
X(t) is positive recurrent.

C. State transitions

The generator matrix for the process X(t) is denoted by Q.
For this continuous time Markov chain, there can only be a
single transition in an infinitesimal time. We denote the system
state as x ∈ X just before any transition, and let eS be the
unit vector in the dimension corresponding to a proper subset
S ⊂ [m].

There are three types of possible transitions. First type
of state transition is the arrival of a new peer, that leads
to an increase in the number of peers with no chunks. The
corresponding transition rate is denoted by

Q(x, x+ e∅) = λ.

Second and third type of transitions occur, when a peer with
S ⊂ [m] chunks receives a chunk j /∈ S from the contacting
seed/peer. In both these cases, the next state is denoted by
TS,j(x). Second type of state transition occurs when the
reception of new chunks doesn’t lead to a departure. This
transition is denoted by

TS,j(x) , x− eS + eS∪{j}, xS > 0, |S| < m− 1.

Third type of state transition occurs for a peer with m − 1
chunks, which departs the system after getting the last chunk
upon contact. This transition is denoted by

TS,j(x) , x− eS , xS > 0, |S| = m− 1.



At a system state x, if the contacting source has T chunks
and the contacted receiving peer has S chunks, then the set of
available chunks that can be transferred is T \ S. Selection
of which chunk to transfer is called the chunk selection
policy, that governs the evolution of the process X(t). In
particular, the last two transition rates Q(x, TS,j(x)) can only
be computed for a specific Markov chunk selection policy.
We describe the proposed chunk selection policy and the
corresponding transition rates in the following section.

III. MODE SUPPRESSION POLICY

In this section, we describe the mode suppression policy and
provide its rate transition matrix. First, let us establish some
notation. The set of allowable transfers from a peer with set
of chunks T to a peer with set of chunks S, is denoted by
A(x, T, S) ⊆ T \ S, and the cardinality of this set is denoted
by h(x, T, S), that takes integral values between 0 and m.
Recall that the seed has all the chunks, and hence the set of
allowable chunk transfers by the seed is A(x, [m], S). Below,
we describe the specifics of selecting the set of allowable
transfers.

If there are no peers in the system, there is no need for chunk
transfer. Hence without any loss of generality, we consider the
mode suppression policy when there exist peers in the system,
or |x| > 0. Here, we assume that each peer has the knowledge
of all chunk frequencies in the system. Frequency of the jth
chunk is

πj(x) ,

∑
j∈S xS

|x|
.

The chunks that attain the highest frequency argmax{πj(x) :
j ∈ [m]} are called the modes of the chunk frequencies. The
set of modes is defined as

I(x) , {i ∈ [m] : πi(x) ≥ πj(x),∀j 6= i}.

The mode suppression policy restricts transmission of
chunks that belong to the set of modes. Specifically, when the
index set I(x) is a strict subset of all chunks, the contacting
source excludes the most popular chunk(s) (i.e., the modes)
from the set of allowable transfers. Otherwise, when all chunks
are equally popular, the source allows all possible transfers.
Mathematically, one can write the allowable transfer set for
mode suppression policy as

A(x, T, S) =

{
T \ (S ∪ I(x)), I(x) ⊂ [m],

T \ S, I(x) = [m].

From the superposition of independent Poisson contact
processes, the rate at which either the seed or one of the
peers with chunk j contact any peer is also Poisson with the
aggregate rate

Rj(x) , U + µ
∑
T :j∈T

xT = U + µ|x|πj(x).

The probability of the source contact process contacting a peer
with chunk subset S is xS

|x| . If the contacting source has T
chunks, then it can transfer one out of h(x, T, S) available

chunks to the contacted peer with S chunks. The transition
of type TS,j occurs when either the seed or one of the peers
with chunk j /∈ S contact a peer with chunks S, and transfer
chunk j among all the possible choices. From the thinning and
superposition of independent Poisson processes, we can write
for j /∈ S and xS > 0

Q(x, TS,j(x)) =
xS
|x|

 U

h(x, [m], S)
+ µ

∑
T :j∈T

xT
h(x, T, S)

 .

IV. STABILITY REGION OF MODE SUPPRESSION POLICY

In this section we characterize the stability region of mode
suppression policy.

Theorem 1. The stability region of the mode suppression
policy is λ ≥ 0 for file-sharing systems with at least two
chunks, and positive contact rates U, µ.

Proof: To prove the positive recurrence of the continuous
time Markov chain X(t), we employ Foster-Lyapunov crite-
ria [14]. We consider the following Lyapunov function,

V (x) =

m∑
i=1

(
(π − πi)|x|

)2
+ C1

(
(1− π)

)
|x|

+ C2

(
M −

m∑
i=1

πi|x|
)+
,

(1)

where, C1, C2 and M are positive constants that depend
on m,λ,U, µ, and π = maxi πi. Note that the explicit
dependency of π(x) on x is not shown for simplicity.

The intuition behind this Lyapunov function is as follows.
Since the nominal objective is to attain a uniform distribution,
we should expect that the policy should promote negative Lya-
punov drift whenever the current state differs from uniformity.
Hence, our Lyapunov function is designed to penalize for
the cases where chunks have differing frequency, where some
might have zero frequency, and where all have zero frequency.

The expected rate of change of potential function for a
Markov process X(t) from state x is called the mean drift
from this state, and is given by∑

y

Q(x, y)(V (y)− V (x)) = QV (x).

Mean drift from a state x for the Markov process X(t) in
terms of its generator matrix Q can be written as

QV (x) = Q(x, x+ ∅)(V (x+ ∅)− V (x))

+
∑
j∈[m]

Q(x, TS,j(x))(V (TS,j(x))− V (x)).

First, we compute the mean drift corresponding to a new peer
arrival. The arrival of a new peer does not change the number
of peers with chunk j ∈ [m]. However, it does lead to a unit
increase in the number of peers in the system. That is,

Q(x, x+ e∅)(V (x+ e∅)− V (x)) = λC1.

The rest of the proof proceeds as follows. We divide the states
into two cases when the chunk frequency is (i) non-uniform



and (ii) uniform, and in each case we show that the drift is
negative.
Case 1: I(x) ( [m]: In this case, no popular content is
allowed to be transferred. Hence, any transition of type TS,j(x)
occurs only for j /∈ I(x). When S∪{j} ( [m], this transition
leads to unit increase in the number of peers with chunk j,
and no change in the number of peers with other chunks. The
corresponding change in potential function for S ∪{j} ( [m]
and M ∈ Z+ equals

V (TS,j(x))− V (x) = 1− 2(π − πj)|x| − C21{M>
∑

i πi|x|}.

Since the number of popular chunks has to be at least unity,
this difference is strictly negative for all non-zero states x. For
this transition, we can trivially bound the cardinality of the
allowable transfers by supT h(x, T, S) ≤ |Sc|. This provides
a lower bound on the transition rate

Q(x, TS,j(x)) ≥
xS
|Sc||x|

Rj .

When S = {j}c, it is clear that the set of allowable transfer is
{j} for the contacting sources. Hence, h(x, T, S) = |Sc| = 1
and the transition rate is

Q(x, TS,j(x)) =
xS
|x|
Rj .

Further, the transition TS,j(x) leads to a departure from the
system of peer with S = {j}c chunks. That is, this transition
leads to a unit decrease in number of peers with chunks other
than j. The change in potential function V (TS,j(x))−V (x) for
the transition from state x to state TS,j(x), for S ∪{j} = [m]
and M ∈ Z+, is upper bounded by

1− 2(π − πj)|x|+ C2(m− 1)1{M+m−1>
∑

i πi|x|}.

The fraction of users that have all the pieces except jth
piece is denoted by γj(x) ,

x{j}c

|x| , and the aggregate
number of chunks in the system at all peers is denoted by
r ,

∑
S⊆[m] |S|xS =

∑
i∈[m] πi|x|. Aggregating all the above

results and notations, and observing that |Sc| ≤ m, we can find
an upper bound on the mean drift from state x as

C1λ−
∑
j /∈I(x)

Rj
m

[
(2(π − πj)|x| − 1)(1− πj)

+ C2(1− πj − γj)1{M>r} − γjC2m(m− 1)1{M+m−1>r}

]
.

(2)

We will divide the state space in to three regions and show
that in each region the drift is negative. The details are given
in the Appendix A. Now, we consider the uniform chunk
frequency case.

Case 2: I(x) = [m]: In this case, the chunk frequencies are
identical, that is π = πi for each chunk i ∈ [m], and any
chunk j can be transferred. This also implies that the contact
rate Rj = U + µπj |x| is uniform for all chunks j, and can
be denoted by R = U + µπ|x|. For S ( {j}c, a transition of
type TS,j(x) doesn’t lead to any departure from the system.
The number of peers with chunk j has a unit increase by one,

and chunk j becomes the popular chunk. There is no change
in the number of peers for other chunks. Hence the potential
change, due to this transition, is

V (TS,j(x))− V (x) = m− 1− C1 − C21{M>r}.

For S = {j}c, a transition of type TS,j(x) leads to the
departure of the receiving peer from the system. In this case,
the number of peers with chunk j remains same, the number
of peers having other chunks has a unit decrease. The potential
change due to this transition, is

V (TS,j(x))− V (x) ≤ m− 1− C1 − C2(m− 1)1{M+m−1>r}.

Using the same techniques as in Case 1, we can upper bound
the drift of state x by,

C1λ−R
[
(C1 −m+ 1)(1− π) + C2(1− π − γj)1{M>r}

− γjC2m(m− 1)1{M+m−1>r}

]
.

(3)

Similar to Case 1, we will divide the state space in to three
regions and show that in each region the drift is negative. The
details are given in the Appendix A.

V. DISTRIBUTED POLICIES

Mode suppression requires global information of the chunk
frequencies. We propose two policies which circumvent this
requirement, and study their performance through simulations

A. EWMA Mode Suppression:

Under this policy, each peer calculates the empirical
marginal chunk frequencies based only on the chunks pos-
sessed by all peers that it has met until (and including) the
current time. The marginal chunk frequency is calculated using
an Exponentially Weighted Moving Average (EWMA) to take
into account both history and present, and the mode of this
estimate is suppressed.

B. Distributed Mode Suppression Policy:

Under distributed mode suppression (DMS), a peer contacts
three other peers at random, and among the chunks available
with more than one peer, we define the local mode to be
the chunk(s) with greatest frequency. The peer is allowed to
download any chunk that is not part of the local mode. Any
chunk may be downloaded if all chunks are equally frequent.
The proof of stability of DMS for the case of a file with m = 2
chunks is similar to the proof of Rare Chunk policy given in
[12], and is omitted. Stability for the case m > 2 chunks is
left as conjecture.

VI. SIMULATION RESULTS

In this section, we show the results from numerical sim-
ulations that illustrate the performance of different chunk
selection policies. Recall that our candidate policies are (i)
random chunk selection, (ii) rarest-first, (iii) rare chunk, (iv)
common chunk, (v) group suppression, (vi) mode suppression,
(vii) mode suppression-EWMA, and (viii) distributed mode
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Fig. 1. Number of peers in the system when m = 5, U = 1 and µ = 1. Random becomes unstable in some cases, whereas MS and DMS are always stable.

suppression. A description of these policies can be found in
Section I and Section V. For all the simulations, we kept the
peer contact rate and seed contact rate to 1. To simulate a
Poisson process, we make use of the fact that inter arrival
times of a Poisson process follow an exponential distribution.
Each peer in the system, including the seed, generates an
exponential random variable with mean 1

µ = 1
U = 1, and

the peer or the seed with the smallest value gets a chance to
contact another peer. After the contact, a chunk transfer takes
place instantaneously according to the chosen chunk selection
policy.

A. Stability of Mode Suppression Policy:

We begin the simulation with 500 empty peers. Whenever a
peer receives all the chunks, it immediately leaves the system.
In Figure 1, we plot the number of peers in the system as time
progresses for three different polices, namely (i) random chunk
selection, (ii) mode suppression, and (iii) distributed mode
suppression. The purpose of simulating the random chunk
selection policy, which is known to be unstable, is to provide a
visual representation of what an unstable regime appears like,
in order to compare with stable policies. In this simulation, the
number of chunks is taken as 5, and the peer arrival rate (λ) is
varied. We observe that when the peer arrival rate is less than
seed rate (λ = 0.5 < 1 = U ), the random chunk selection
policy is stable and in all other cases λ > U , the number
of peers grows large and the system is unstable. However, in
case of mode suppression and distributed mode suppression,
the system is stable for all arrival rates.

B. Chunk Frequency Evolution:

A stable chunk selection policy has to be robust to the
one-club state. In other words, a stable policy should be
able to boost the frequency of a rare chunk. To see how
different policies handle the one-club situation, we start the
system with 500 peers that have all the chunks except first
chunk (i.e., all peers are part of the one-club). In Figure 2,
we plot the evolution of the chunk frequency for different

policies under this initial condition. We see that when using
the rarest-first policy, the rare chunk remains rare and abundant
chunks remain abundant—a clear sign of instability. In all
stabilizing policies, the rare chunk is made available by giving
priority to that chunk in some way. For instance, in case of
mode suppression, no other chunk will be transmitted until
the frequency of the rare chunk is equal to the frequency
of all other chunks. Once this happens, the frequencies of
the different chunks remain almost same, and hence we only
see a thin spread across the frequencies. Other policies also
manage to bring the rare chunk back into circulation and the
corresponding statistics become similar to all other chunks.
We also observe that the stabilization time to increase the
frequency of rare chunk to the same level as that of other chunk
frequencies, is shorter for MS and DMS when compared to
other algorithms.

C. Sojourn times:

In addition to stability, an important performance metric is
the sojourn time of a peer, which is defined as the amount of
time a peer spends in the system collecting all chunks before
leaving. In Figure 3, the peer arrival rate is fixed at λ = 30
and we plot the mean stationary sojourn times of the peers for
different policies, for different values of file chunks m. The
stationary sojourn times are obtained by running the system for
a long period of time and ignoring the first 2000 peers that
left the system. Our goal is to evaluate how effectively the
algorithms use their information on chunk statistics. Further,
we also wish to study the effect of chunk diversity provided
through being able to choose a chunk from 1 versus 3 peers.
Thus, we have two versions of each algorithm that both use
identical chunk statistics obtained through sampling all or
some peers as per the algorithm. However, the first version
(indicated using A-1, where A is the algorithm) can obtain any
one chunk from those possessed by 1 randomly selected peer,
while the second (indicated by A-3, where A is the algorithm)
can pick any one chunk from the set of chunks possessed
by 3 randomly selected peers. We see that GS and MS have
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Fig. 2. Chunk frequency evolution in a system with m = 5 chunks under different policies when starting from the state of a “missing-chunk” ( whose
frequency is indicated by a red/dashed line). Rarest-first is clearly unstable, since it cannot recover, whereas the other protocols manage to bring the chunk
back into peer circulation and stabilize the system.

comparable perfromances, while DMS has the least average
sojourn times among all policies in both scenarios. Also
note that on average, the stationary sojourn time for DMS-3
is essentially the same as the number of chunks m, i.e., peers
collect close to 1 chunk per unit time on average. Since the
rate of peer contact is 1, this fact indicates that among the
algorithms compared, DMS-3 attains the best possible trade-
off between suppression (to keep peers in the system) and
sharing (to enable peers to gather chunks).
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Fig. 3. Stationary mean sojourn times of stable policies for different values
of m.

VII. CONCLUSION

In this work, we analyzed the scaling behavior of a P2P
swarm with reference to its stability when subjected to an
arbitrary arrival rate of peers. It has been shown earlier that
not all chunk sharing policies are stable in such a regime,
and our goal was to design a simple and stable policy that
yields low sojourn times. Our main observation was that,
contrary to the traditional approach of boosting the availability
of rare chunks, preventing the spread of the most frequent
chunk(s) yields a simple and stable policy that we entitled
mode suppression (MS). We analytically proved its stability,
and also described version of the policy entitled distributed
mode suppression (DMS) that works on the same principle.
DMS only uses locally sampled statistics using three randomly
selected peers, and yields low (near-optimal) sojourn times in
numerical studies. An additional observation is that DMS-3
attains this performance, i.e., it appears that the chunk diversity
provided by choosing a chunk from the set possessed by three
randomly selected peers is sufficient for optimality.

Our results indicate that there is a delicate trade-off between
sharing (i.e., uploading a useful chunk if at all possible) and
suppression (i.e., trying to reduce chunk transfers to keep peers
in the system so that they can help others). The chunk selection
policy has a fundamental impact on this trade-off. On one
hand, by suppressing some chunk sharing (as in the GS, MS
or DMS algorithms), we can ensure peers stay longer at the
expense of increasing sojourn time, with too much suppression



leading to instability. On the other hand, trying too hard to be
work conserving (maximizing sharing as in random or RF)
with the idea of reducing sojourn times can lead to instability
due to chunk starvation. Our future work will be to obtain a
deeper understanding of the trade-off between suppression and
sharing to minimize sojourn time for stable protocols.
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APPENDIX

AUXILLIARY RESULTS

Lemma 2. For each state x, the fraction of peers with least
popular chunk is upper bounded by m−1

m .

Proof: Any peer in the system can have at most m − 1
pieces, or else it would leave the system. The result follows
from bounding the total number of pieces in the system as

mπ|x| ≤
∑
i∈[m]

πi|x| =
∑

S([m]:S 6=∅

|S|xS ≤ (m− 1)|x|.

Recall π and π respectively denote the fraction of peers that
have the most and least popular chunks. When all chunks are
equally popular, then π = π = πj for each chunk j.

When the set of most popular chunks I(x) ( [m], the least
popular chunk is denoted by j /∈ I(x), and π = πj . In this
case, the least popular chunks are possessed by at least one
less peer than the corresponding number for other chunks.

That is, when πi > π, we have πi|x| − π|x| > 1. Specifically,
2(π − π)|x| − 1 > 1.

Lemma 3. Let K1 > 0,K2 < 2 be constants. For each ε > 0
there exists an N(K1,K2, ε) ∈ R+, such that if π|x| ≥ N ,
then for I(x) ( [m], we have

C1λ−K1

∑
j /∈I(x)

Rj(1− πj)(2(π − πj)|x| −K2) < −ε.

Proof: Lower bounding the summation over [m] \ I(x)
by a single term corresponding to the least popular chunk j,
and lower bounding 1−π by 1

m from Lemma 2, we can upper
bound the LHS of the above equation by

C1λ−
K1

m
Rj(2(π − πj)|x| −K2).

To upper bound the above equation, we define η as the ratio of
number of peers with the least and the most popular chunks.
That is, π = ηπ and η ∈

[
0, 1− 1

π|x|

]
, and we can write

Rj(2(π − πj)|x| −K2) = (U + ηπµ|x|)(2π(1− η)|x| −K2)

= −K2U + 2Uπ|x|(1− η)−K2ηπ|x|µ+ 2π2|x|2µη(1− η).

Let us denote the above quadratic expression in η by g(η). We
can check that g′′(η) = −4π2|x|2µ < 0. Hence, the function
g(η) is strictly concave and quadratic in η, with a unique
maximum. This function attains minimum at the boundary
values of η, and we can lower bound g(η) as

g(η) ≥ min{g(η) : η ∈ [0, 1− 1

π|x|
]} = g(0) ∧ g(1− 1

π|x|
)

=
K1

m
[U(2π|x| −K2) ∧ (2−K2)(U + µ(π|x| − 1)] .

The result follows since C1λ − K1

m g(η) < −ε if π|x| > N ,
where we can choose N to be

max

{
1

2

(
C1λ+ ε
K1

m U
+K2

)
,

(
C1λ+ ε

K1

m (2−K2)µ
− U

µ
+ 1

)}
.

Corollary 4. Let K1 > 0,K2 < 2 be constants, π(x) ≥ δ,
and I(x) ( [m]. Then, for each ε > 0, we can find an L such
that when |x| > L,

C1λ−K1

∑
j /∈I(x)

Rj(1− πj)(2(π − πj)|x| −K2) < −ε.

Proof: Fix ε > 0, we choose the N from Lemma 3 and
L = N

δ . Then π|x| ≥ N , and the inequality holds.

DETAILS OF THEOREM 1

For any δ ∈ (0, 1), we can partition the state space into
following three regions,

R1 = {π ≥ δ},R2 = Rc1 ∩ {π|x| ≥
M

m
}, and

R3 = Rc1 ∩ {π|x| <
M

m
}.



For each i ∈ [3], we can further subdivide each region Ri into

Ri1 = {x ∈ Ri, I(x) ( [m]}, Ri2 = {x ∈ Ri, I(x) = [m]}.

All these regions have countable number of states. We will
prove that in each region Rij where i ∈ {1, 2, 3} and j ∈
{1, 2}, the mean drift QV (x) < −ε for all states x ∈ Rij \Fij
for some finite set Fij dependent on ε. We fix ε > 0, and
choose N(K1,K2, ε) from Lemma 3.

Lemma 5. For states in the region R1, the total number of
chunks is lower bounded by δ|x|.

Proof: The total number of chunks in the system r is
lower bounded by the number of most popular chunk, i.e.

r =
∑
i∈[m]

πi|x| ≥ π|x|.

The result follows since π ≥ δ in the region R1.

Lemma 6. For states in the region R2 ∪ R3, the fraction of
peers γj with the set of chunks {j}c is upper bounded by δ.

Proof: We can upper bound the number of peers with the
set of chunks {j}c as

x{j}c ≤
∑

S:i∈S,i 6=j

xS = |x|πi1{i 6=j} ≤ |x|π.

The result follows since π < δ in region R2 ∪R3.
Region R11: For this region, we choose N11 , N( 1

m , 1, ε)
from Lemma 3, to define the finite set

F11 , {δ|x| ≤ (M +m− 1) ∨N11}.

From Lemma 5, it follows that for the states x ∈ R11 ∩ F c11,
the indicator corresponding to the event {M +m− 1 > r} is
zero in the mean drift of (2). Therefore, Corollary 4 implies
that the mean drift in (2) is upper bounded by −ε.

Region R12: For this region, we choose C1 > (m−1) and

N12 ,
m(C1λ+ ε)

µδ(C1 −m+ 1)
,

to define the finite set F12 , {δ|x| ≤ (M +m− 1) ∨N12}.
Let x ∈ R12∩F c12. In this region, the indicator corresponding
to the event {M + m − 1 > r} is zero in the mean drift
of (3). By choosing a lower bound on common contact rate
R ≥ µπ|x|, complement of the frequency 1 − π ≥ 1

m from
Lemma 2, and on the frequency π ≥ δ since x ∈ R1, we can
bound the mean drift in equation (3) by −ε.

Region R21: We can upper bound the fraction of peers
γj < δ by Lemma 6, and upper bound 1 < m(1 − πj) from
Lemma 2. Thus, we can upper bound

γjC2m(m− 1)1{M+m−1>r} ≤ δC2(1− πj)m2(m− 1).

Hence, we can upper bound the mean drift in (2) with

C1λ−
∑
j /∈I(x)

Rj(1− πj)
m

(
2(π − πj)|x| − 1− δC2m

2(m− 1)
)
.

When δC2m
2(m− 1) < 1, we can choose from Lemma 3

N21 , N

(
1

m
, δC2m

2(m− 1) + 1, ε

)
.

For each x ∈ R21, π|x| ≥ M
m , and hence by selecting

M
m > N12, we ensure that the mean drift in (2) is bounded
above by −ε in this region.

Region R22: In this region, π|x| ≥ M
m , and hence the total

number of chunks r =
∑
i πi|x| ≥M . We again choose C1 >

m− 1 and bound the common contact rate R = U +πµ|x| ≥
M
m µ. We also use the upper bound for fraction of peers γj <
δ from Lemma 6, and the lower bound 1 − π ≥ 1

m from
Lemma 2, to upper bound the mean drift from equation (3)
with

C1λ−
M

m2
µ
(
C1 −m+ 1− δC2m

2(m− 1)
)
.

Hence, the mean drift for all states x ∈ R22 is bounded above
by −ε, if δC2m

2(m− 1) < C1 −m+ 1 and

M

m
> N22 ,

(
C1λ+ ε

)
m

µ (C1 −m+ 1− δC2m2(m− 1))
.

Region R31: In this region, mπ|x| < M , and hence
the total number of chunks r =

∑
i πi|x| ≤ mπ|x| < M .

Therefore both the indicator functions associated with the
events {M > r} and {M +m − 1 > r} equal unity in the
equation (2). Recall that γj < δ by Lemma 6, 1− π > 1

m by
Lemma 2, Rj ≥ U , and 2(π − π)|x| − 1 > 0 for state such
that I(x) ( [m]. Summarizing all these results, and lower
bounding the summation over Ic(x) by the least popular term,
we can upper bound the mean drift with

C1λ− C2
U

m

(
1

m
− δ(m(m− 1) + 1)

)
.

By choosing δ < 1
2m(m(m−1)+1) and C2 = 2m2(C1λ+ε)

U we
can bound the mean drift from state x ∈ R31 with −ε.

Region R32: Similar to region R31 both the indicator
functions in equation (2) will be equal to unity. In this region,
π = π. Using the bounds γj < δ, 1 − π > 1

m , R ≥ U , and
C1 > m − 1, we can upper bound the mean drift in (3) for
x ∈ R32 with

C1λ− UC2

(
1

m
− δ(m(m− 1) + 1)

)
By choosing δ < 2m−1

2m2(m(m−1)+1) and C2 = 2m2(C1λ+ε)
U we

can bound the drift with −ε.
Choosing Parameters:

Following choice of C1, C2,M satisfy all the constraints,

C1 > m− 1, C2 =
2m2(C1λ+ ε)

U
, M > mmax {N21, N22} ,

where m2(m− 1)δ equals

min

{
m− 1

2

m+ 1
m−1

,
m
2

m+ 1
m−1

,
1

C2
,
C1 −m+ 1

C2

}
.


