
Novel Latency Bounds
for Distributed Coded Storage

Parimal Parag∗
∗Department of Electrical Communication Engineering

Indian Institute of Science, Bengaluru, KA 560012, India
parimal@iisc.ac.in

Jean-Francois Chamberland†
†Department of Electrical and Computer Engineering

Texas A&M University, College Station, TX 77843-3128
chmbrlnd@tamu.edu

Abstract—Distributed storage systems are rapidly emerging
as a desirable paradigm for cloud infrastructures. Through
redundancy, such systems can improve the reliability of data
backends. Interestingly, distributed storage can also enhance file
access times for incoming requests, as it takes advantage of sta-
tistical averaging. Still, conducting performance characterization
for ensuing delay profiles remains a challenge. Several recent
contributions in this area construct bounds on the performance
of redundant systems. These are then used to explore the latency-
redundancy tradeoff, and assess the relative values of candidate
implementations. Along these lines, this work establishes novel
upper and lower bounds on the mean sojourn time of a
request entering a distributed storage system. These bounds are
based on stationary distributions of dominating quasi-birth-death
processes and, in many settings, they can be made progressively
tighter at the expense of additional computations.

I. INTRODUCTION

Distributed storage systems are getting increasingly popular.
This growing interest is rooted, partly, in the data deluge
produced by large populations of inter-connected devices and
the voracious appetite for media content of contemporary end-
users. A significant portion of the data files downloaded on the
Internet is hosted on content delivery networks and distributed
storage infrastructures. These systems are utilized to ensure the
wide and timely availability of content, protect against local
failure through redundancy, and enable the statistical averaging
of loads across time and geographical locations.

Forward error correcting codes are emerging as an integral
part of distributed storage. Through the design of such codes,
it is possible to control the size of file downloads, recon-
struction traffic upon failure, and latency profiles for typical
requests. For example, maximum distance separable (MDS)
coding can improve dependability while limiting the amount of
redundancy needed to attain a target level of performance [1].
Several recent and ongoing research initiatives are aimed at
better understanding the limits and tradeoffs associated with
distributed storage. These include efficient erasure correcting
codes [2], [3], recovery schemes [4], repair traffic [5], [6], and
security [7]–[9]. Key advances in the area have also created

This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. CCF-1619085, and by the Science and
Engineering Research Board (SERB) under Grant No. DSTO-1677. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of NSF or the SERB.

a need to understand the connections between redundancy
and file download times [10]–[17]. Our article falls along
these latter considerations, as we further explore the inter-
play between coding schemes and latency. In particular, the
structure of a coding scheme dictates which collections of
servers can be contacted for file recovery. These structures,
combined with the random nature of processing times on
Internet servers, yield distributions for request completion
times. Various performance criteria can be derived from these
ensuing distributions, such as the mean and variance of sojourn
times, and the tail decay rate of a distribution.

At an elementary level, distributed coded storage relies on a
few key notions. First, a media object is divided into k blocks
of equal size and, subsequently, encoded into n pieces. Coded
fragments are then stored at various geographical locations.
When a file request arrives, the corresponding user must
collect at least k data block from the caches to be able
to reconstruct the content of the media object. Constraints
on which k servers can be contacted depend on the coding
scheme adopted by the storage infrastructure. Two emblematic
strategies have emerged as benchmarks to capture the potential
benefits of coding in the context of the latency-redundancy
tradeoff. One approach, called repetition coding, is produced
through simple file fragmentation and block replication. Under
this rudimentary strategy, a request must gather one infor-
mation piece of every possible kind to recover the original
file. Once this is achieved, the media object is obtained by
sorting and appending the various pieces. A more advanced
paradigm is built on the fact that, over large fields, it is
possible to create codewords that produce linearly independent
subsets. For instance, under MDS coding, the original file
can be recovered from any combination of k blocks via a
standard decoding process. It may be pertinent to mention that,
although we employ repetition and MDS coding as expository
schemes, the focus is on developing tools for analysis rather
than comparing the two schemes. With the rapid development
of coding for distributed storage, performance analysis is of
paramount importance to capture an evolving landscape which
includes redundancy, locality, and latency.

The greater flexibility afforded by a more elaborate coding
scheme can improve file recovery times. Yet, this process must
be facilitated by a suitable download strategy. Coordination
can be implemented in a centralized manner [17], or it can take

place in a decentralized fashion where extraneous and obsolete
jobs at caches are discarded whenever a user completes a file
download [12], [18]. A subtlety associated with preemptive
cancellation originates from the option to drop a job when
exactly k block downloads are initiated or when k of them
are finished. These two viewpoints are already present in the
literature. In our work, we adopt the latter course of action;
that is, superfluous jobs are terminated once a file request is
complete and the user departs from the system.

In general, modeling a request queue for content stored over
a distributed system can be quite challenging. Under typical
Poisson arrivals and exponential service, the system admits
a Markov chain representation with a countably infinite state
space. Still, in such cases, the Markov models can remain
difficult to analyze. As such, alternative solution paths are nec-
essary. A candidate approach to understand such systems con-
sists of finding tractable models that stochastically dominate
the evolution of the actual Markov chains. For instance, the
authors in [16], [17] devise tractable quasi-birth-death (QBD)
processes that can bound the performance of the request queue
using matrix-analytic methods [19]–[21]. Using this approach,
one can efficiently evaluate key attributes of these dominating
system and, hence, establish performance limits on the original
queueing system. Likewise, the authors in [12], [13] introduce
fork-join queues that bound the behavior of a request queue for
redundant requests with cancellation. Implicitly, they study an
MDS coding scheme where any size-k subset of servers can be
contacted to execute a file download. The subordinate system
is then utilized to derive bounds on the mean completion time.

A. Main Contributions

We revisit the distributed storage framework whereby file re-
quests are processed by a collection of servers, each possessing
one coded fragment. We consider the replication-cancellation
scenario where redundant requests are only discarded after a
service completion. We introduce a new analytical approach to
study request completion delay. We then use this abstraction
to establish novel upper and lower bounds on the latency
performance of a distributed storage system with redundant
requests. The performance of the dominating queues are
amenable to efficient numerical evaluation, through matrix-
geometric bounding techniques. More specifically, we expand
the QBD methods introduced in [17] to scenarios where
redundant requests are cancelled upon service completion.
This necessitates the creation of new bounding processes, as a
straightforward extension of existing results is not possible.
Paralleling existing literature, the performance criteria we
adopt are derived from the equilibrium distribution of the
number of active requests in the system.

II. SYSTEM MODEL

In this section, we introduce the mathematical model that
we use to analyze the operation of distributed coded systems,
along with relevant notation. As in established literature on
the subject, we focus on the request queue associated with a

single file m. This file is partitioned into k pieces, and we
view these pieces as symbols in a large finite field Fq ,

m = (m1, . . . ,mk) ∈ Fkq .

Let C denote a linear code that maps a k-length media object
into an n-length codeword,

C(m) = (C1(m), . . . , Cn(m)) ∈ Fnq .

The corresponding code rate is equal to k/n. For simplicity,
we assume that its reciprocal, n/k, is an integer. As usual,
the collection of all possible codewords forms the codebook,
C = {C(m) : m ∈ Fkq}.

The coded fragments of media object m are stored on the
n servers. Specifically, we assume that Cj(m) is stored at
location j. At any point in time, a user may have downloaded
a set of code blocks from the various servers. We refer to the
indices of the downloaded blocks,

T ⊆ [n] , {1, . . . , n},

as the observed servers. Keeping track of the servers which
have contributed to T and of those eligible to provide useful
fragments is key in understanding the evolution of the request
queue.

A k-element subset S ⊆ [n] is called an information
set [22], if the original media object can be reconstructed
unambiguously from CS , {(Cj(m) : j ∈ S) : C ∈ C},
with no extraneous code fragments. The collection of all
information sets for code C is given by

I(C) , {S ⊆ [n] : |S| = dim (span(CS)) = k} .

For situations where the set of observed servers T is not an
information set, we introduce the concept of useful servers,

M(T) = {j /∈ T : j ∈ S for some S ∈ I(C)}

=
⋃

S∈I(C)

S \ T.

In words, M(T) contains the indices of the servers which
can deliver a useful piece of information to a request that has
already gathered fragment set T .

Herein, we develop analysis techniques that apply to sym-
metric linear codes. That is, linear codes for which the
cardinality of every set of useful servers depends solely on
the number of independent fragments present in T . Based on
this property, we introduce a convenient shorthand notation
for the number of useful servers,

N|T | , |M(T)|. (1)

This condition may seem complicated, yet it is instrumental
in establishing a desirable structure for the problem at hand.
Moreover, the two emblematic coding paradigms discussed
above, repetition and MDS coding, possess such a symmetry.
At this point, it is appropriate to review these two classes
of codes, C rep and Cmds in the context of the terminology
introduced thus far.

A. Repetition Coding

In some sense, repetition represents the simplest, non-trivial
distributed coding scheme. Every piece mκ is replicated and
stored at n/k locations. A request can recover the original
media object when it has collected one data fragment of each
kind. When data block mκ is stored at the servers with labels
{s ∈ [n] : dsk/ne = κ}, the set of useful servers for Crep can
be written as

I(Crep) = {S ⊆ [n] : |S| = k, {s ∈ S : dsk/ne} = [k]} .

There are (n/k)k such information sets. Once a re-
quest has acquired fragment mκ, no other server within
{s ∈ S : dsk/ne = κ} can provide it pertinent information.
Thus, the set of useful servers for a request with fragments T
is equal to

M rep(T) =
⋃
j /∈T

{s ∈ S : dsk/ne = j} .

The number of useful servers is N|T | = (k− |T |)n/k for any
information subset T .

Consider the scenario where k = 3 and n = 6. For repetition
coding, there are three distinct components, which we label
A, B, and C. Each of these fragments are stored at two
locations. A request must successfully download one copy
of each component before it departs. The operation of this
implementation is illustrated in Fig. 1.

A

A

B

B

C

C

?�∗

?�∗

�∗

�∗

?�∗

?�∗

•
•
•

•
•
•

•

Figure 1. This diagram depicts a distributed fork-join network with six
caches. Two servers are storing symbol A, two servers offer symbol B, and
the remaining two servers host symbol C. Under this divide and replicate
paradigm, a request must obtain piece A, piece B, and piece C to reconstruct
the original media object.

B. MDS Coding

Contrastingly, MDS codes have optimal minimum Ham-
ming distance, d = n − k + 1. Under this coding strategy,
server j ∈ [n] hosts fragment Cj(m), which is unique.
Moreover, every k distinct symbols form an information set,
with

I(Cmds) = {S ⊆ [n] : |S| = k}.

That is, a request can successfully recover the original media
file by acquiring any k different data blocks. There are
|I(Cmds)| =

(
n
k

)
such sets. Thus, the MDS coding scheme

features a larger number of information sets compared to
repetition coding; naively, it should perform better. Suppose
that a request has acquired segments T . Then, with MDS
codes, every remaining server can offer a useful block;

Mmds(T) = [n] \ T.

where T ⊆ S ∈ I(Cmds). The number of useful servers admits
the simple form N|T | = n− |T |.

Again, assume that k = 3 and n = 6. MDS coding
produces unique fragments {Cj(m) : j ∈ [6]}, and each code
block is stored at a different location. Moreover, a request can
download pieces from any three servers to recover the original
media object. Upon successful decoding, extraneous jobs are
cancelled and the corresponding request departs from the
system. This is shown in Fig. 2 for an MDS-based distributed
storage system.

C1(m)

C2(m)

C3(m)

C4(m)

C5(m)

C6(m)

?�∗

∗

?�∗

?�∗

�∗

?�∗

•
•
•

•
•
•

•

Figure 2. In a more elaborate fork-join system, the various caches store
independent symbol of the coded message. The original media object can
be recovered by decoding the content of any three distinct data blocks. Upon
successful decoding, the corresponding user exits the system and its orphaned
requests are dropped from the remaining queues.

III. QUEUEING BEHAVIOR

New requests for media object m arrive at a central location,
and they are buffered in a queue of infinite capacity. All
incoming users demand the entire file. We assume a Poisson
arrival model. That is, the elapsed time between consecutive
arrivals forms a sequence of independent and exponentially
distributed random variables, each with parameter λ. Upon
entering the system, a request seeks to aggregate k fragments
from available servers as to form an information set. Once
this is achieved, the request decodes these blocks, it recovers
the original media object, and then departs from the queue.
Extraneous downloads are cancelled immediately when the
fragment they provide becomes irrelevant for the purpose of
decoding.

Fragment downloads are facilitated by a group of homoge-
nous servers. We assume that the service time at a particular
location is an exponential random variable with rate µ, and
it is independent over time and across caches. The waiting
time between consecutive service opportunities also forms an
instance of a Poisson process. Thus, the distributed storage
infrastructure is a Poisson system. A direct consequence of

these modeling assumptions is the fact that, when a request
is being served concurrently at multiple locations, the waiting
time until its next download completion is the minimum of
a collection of independent exponential random variables. As
such, the effective waiting time is itself an exponential random
variable with parameter %µ, where % is the total number of
caches where the request is being processed.

The overall operation of the queueing system we study
matches the (n, k) fork-join scheduling policy defined in [12],
[13]. To support the fork step every server has an individual
queue, and each incoming request joins all n queues through
replication. Data queries at a given location are attended
to according to a first-come-first-served (FCFS) scheduling
policy. In the join step, a request leaves the system as soon as
it successfully gathers blocks associated with an information
set and can therefore reconstruct the original file m. Pending
block queries are dropped from useless queues as their parent
request gathers new pieces. That is, as soon as a request
acquires message subset T , all the servers in set [n] \M(T)
abandon the block queries associated with the parent request.
The task of matching requests to servers described above
is stationary, work conserving, and it induces the Markov
property. Coordination is established through a central agent.
When a server completes a block query, it removes the request
from its local buffer and notifies the central agent. As a
notification arrives at the central agent, servers entering a
useless set are instructed to discard their ongoing queries and
to proceed with the next item. When a request gathers k pieces
from an information set, all its remaining block queries are
dropped and the request departs from the system.

A. Continuous-Time Markov Chain

The queueing system under consideration belongs to the
class of Markov processes. One way to visualize its state
space is to first consider the possibilities for T , the fragments
gathered by a request. Let the collection of subsets of [n] with
cardinality less than k be denoted by

P(n,k) = {S ⊆ [n] : |S| < k}.

Then, for a work-conserving policy, we must have T ∈ P(n,k).
We represent the subset of blocks acquired by request i at time
t by Si(t). Moreover, the number of requests in the system
at time t is denoted by r(t). When the system is empty of
requests, we employ special symbol e to designate its state.
Otherwise, we can express the state of the system at any time
t as

S(t) = (Si(t) ∈ P(n,k) : i ∈ [r(t)]).

Admittedly, this state space is somewhat convoluted. Thus, we
seek a simpler representation.

Theorem 1. The collection of useful servers at time t,

{M(Si(t)) : i ∈ [r(t)]},

for a storage system with a symmetric code and fork-join
FCFS scheduling is totally ordered by set inclusion. The sizes

of the message subsets {|Si(t)| : i ∈ r(t)} form a monotone
decreasing sequence in i.

Proof Sketch: Since the proof of Theorem 1 is lengthy
and this result is not the main focus of our article, we only
provide a brief outline for the demonstration; a more rigorous
argument is omitted.

Stochastic process S(t) is a continuous-time Markov chain
with a discrete state space. Consequently, it suffices to track
transitions in its subordinate jump chain to establish the
aforementioned properties. We present the argument below
around one transition, and exclude the dependence on t for
convenience. Recall that M(Si) is the set of useful servers for
request i. Inductively, assume that symmetric coding combined
with fork-join FCFS scheduling ensures that M(Si−1) ⊆
M(Si) for all i. We check that this property is maintained
through the next event. Suppose that server j intends to
deliver a fragment to request i. Then, j must be contained
in M(Si). Moreover, under FCFS, this is only possible when
j /∈M(Si−1). Thus, this transactions can only occur if

M(Si−1) (M(Si)

and, necessarily, |M(Si−1)| < |M(Si)|. This inequality, in
turn, yields |Si−1| > |Si|. After the delivery of piece j to
request i, we get

M(Si−1) ⊆M(Si ∪ {j})

and |Si−1| ≥ |Si ∪ {j}|. Since the statement of the theorem
trivially holds at the onset of the process when the system
is empty, and because the properties are maintained through
arrivals and query completions, the theorem must be true at
any time t.

An important consequence of Theorem 1 is that it enables
a much more intelligible representation for the state of the
queueing system. Indeed, we gather that the number of useful
servers and, hence, the rates at which requests are being
served within the Markov chain depend exclusively on the
cardinalities of the message subsets. This invites a system
description based on state

L(t) = (Li(t) = |Si(t)| : i ∈ r(t)). (2)

In words, it is enough to keep track of the number of data
blocks accumulated by every request, rather than recording the
labels of the blocks downloaded by each requests. Moreover,
L(t) inherits the Markov property from S(t) since transition
rates in L(t) are completely determined by its own state.

We take a closer look at possible states under L(t). When
r(t) = 0, then L(t) = e; this is rather uninteresting. On the
other hand, suppose r(t) = r > 0. Then, we can employ
vector notation ` = (`1, . . . , `r) to denote admissible states.
For a system with r > 0 active requests, these states are

Lr = {{0, . . . , k − 1}r : `i ≥ `i+1, i ∈ [r − 1]} . (3)

The entire state space can then be summarized as

L =
⋃
r∈N0

Lr,

where L0 = {e}. With this deeper understanding of L(t), we
turn to transition rates.

B. Generator matrix

For any symmetric code, we can separate jumps into three
categories. First, a new request may arrive; this event takes
place at rate

Q(`, (`, 0)) = λ.

We emphasize that λ is the parameter of the Poisson process
governing arrivals in the system. Second, request i can obtain
an additional data block from a server without leaving the
system. Such an event is only possible when r = length(`) ≥
i and `i < k−1. Under these circumstances, the corresponding
transition rate is

Q(`, `+ ei) =
(
N`i −N`i−1

)
µ,

where N`i is the number of useful servers to request i. For
this equation to work with i = 1, we must use the convention
N`0 = 0; this convention is acceptable because there does
not exist a request 0. The third possibility corresponds to the
head request obtaining its last data block, which enables the
decoding of the original media object and, consequently, leads
to a departure from the queue. Such a transition can only
happen if `1 = k − 1 and, whenever this condition is met,
it comes about with rate

Q(`, (`2, . . . , `r)) = N`1µ.

Collectively, these rates determine the generator matrix for
Markov chain L(t). As usual, the diagonal elements of the
generator matrix are defined such that the rows of the matrix
sum to zero.

Having completely characterized Q, we can theoretically
simulate the evolution of L(t). Moreover, since S(t) and L(t)
always have the same number of requests, we can assess the
performance of a distributed storage system built around any
symmetric code using L(t). The caveat with this technique, of
course, is the size and complexity of state space L; they rapidly
make analysis intractable. As mentioned in the introduction,
our approach is to find computationally efficient means to
bound the performance of coded systems. This way, we
circumvent the challenges associated with getting stationary
distributions for L(t). This is accomplished in the next section.

IV. BOUNDING TECHNIQUES

The rationale behind bounding techniques is that the actual
distributed coded system is hard to analyze. The candidate
approach we adopt to assess performance consists in find-
ing stochastic processes that dominate the evolution of the
continuous-time Markov chain L(t), yet remain tractable. This
solution path is successfully employed in [12], [13]. Therein,
the authors bound the operation of distributed systems where
job cancellation takes place once k jobs are completed. An
analogous approach can be found in [16], [17] for distributed
storage systems where a file request is fulfilled by contacting
exactly k servers. The goal of this section is to expand the

techniques introduced in the latter set of citations, which
yield families of increasingly tight bounds on performance,
and apply them to the former scenario where the concurrent
processing of requests from a same user is unconstrained.
This research direction should produce novel upper and lower
bounds on the performance of distributed coded systems
that advance the state-of-the-art. Specifically, we wish to
introduce tractable quasi-birth-death (QBD) processes that
are amenable to analysis and confine the evolution of the
underlying continuous-time Markov chain L(t). The appeal
of constrained QBD processes lies in their repetitive structures
and the fact that they are well suited for numerical evaluation.
This will become manifest shortly.

We create bounding QBD Markov chains by constraining
the number of users who can simultaneously be processed by
the servers. We let the parameter θ designate the maximum
number of partially fulfilled users. Conceptually, we can
partition the entries in L(t) into two groups. The first group
consists of eligible requests, which are allowed to be scheduled
on servers and can therefore acquire data blocks. There can be
at most θ such requests. The second group, which is composed
of all users awaiting eligibility, is unbounded. However, none
of these requests have accumulated partial information about
the original media object.

To discuss the evolution of the upcoming QBD processes, it
is useful to discuss their common state space. We emphasize
that, if only the first θ requests are eligible for service, then
all entries in ` with index i > θ must be zero. When the
system is empty, we still denote the state by e. Furthermore,
when the system features fewer than θ requests, the admis-
sible states remain unchanged. However, when the number
of requests exceed limit θ, vector ` must assume the form
(`1, . . . , `θ, 0, . . . , 0) because the ineligible requests cannot
have accumulated data blocks. Mathematically, this results in
a slightly obscure state space given by

L = {e} ∪

(
θ⋃
r=1

Lr

)
∪

Lθ × {{0}r−θ : r > θ
}︸ ︷︷ ︸

vectors of zeros

 (4)

where Lr is defined in (3). Still, the underlying concept is
simple: constraining the number of partial requests reduces
the complexity of the state space.

A more appropriate representation for this state space is to
keep track of the entries that are lower than θ, and simply
count the number of ineligible request beyond this threshold.
To this end, we introduce a bijection f(·) of the following
form. For cases where r > θ, we define the mapping

f(`) = f ((`1, . . . , `θ)⊕ (`θ+1, . . . , `r))

= ((`1, . . . , `θ), r − θ) = (`[1:θ], r − θ).

When r ≤ θ, function f(·) is assigned value

f(`) = ((`1, . . . , `r), 0) = (`, 0).

Finally, f(e) = (e, 0). After this transformation, the state
space for the resulting Markov chain L̃(t) takes on the natural
form

Lqbd ,

(
θ⋃
r=0

(Lr, 0)

)
∪ {(Lθ, q) : q ∈ N} .

This bijection yields a more compact notation and, more
importantly, it reveals the level structure of our eventual QBD
processes. We refer to the first component in tuple (`, q) as the
status of the eligible requests; and, to the second component
as its level. Again, q indicates the number of extra requests
awaiting eligibility.

We employ π to represent the stationary distribution of the
continuous-time Markov chain over Lqbd, when it exists. As
is customary, we can decompose π in terms of levels,

π = (π0, π1, . . . , πq, . . .). (5)

Excluding the first element, all the sub-vectors {πq : q ∈ N}
have the same size, length(πq) = |Lθ|. At level zero, we get
length(π0) =

∑θ
r=0 |Lr|. With this notation, we are ready to

establish the bounding stochastic processes.

A. QBD Reservation-θ

The extended QBD Reservation-θ model, as its name sug-
gests, is closely related to the bound introduced in [17].
Consider a variation of the distributed coded system where
only θ requests are eligible for service at any one time. Every
other request, if present in the system, must wait until a
suitable number of departures occur before being eligible for
scheduling at a server. It can be helpful to think of these
extra requests as awaiting eligibility in an auxiliary buffer.
This abstract model is illustrated in Fig. 3.

?�∗

?�∗

?�∗

�∗

?�∗
θ = 3

Figure 3. This block diagram showcases the operation of an extended QBD
Reservation-3 system. In this case, only the first three requests are allowed
to receive service. When the queues become imbalanced, a server may idle
until the next departure, even though additional requests may be present in
the system. Additional requests await eligibility in a generic buffer.

The difference in operation between QBD Reservation-θ
and the standard system arises from instances of strong queue
imbalance. Suppose there are θ partially fulfilled requests in
the system and, at the same time, one of the servers is not
useful to any of them. Under normal operation, this server

initiates the processing of request θ+1. Whereas, under QBD
Reservation, this server idles until a departure occurs, as it is
not allowed to fetch requests beyond threshold θ. This situation
is shown in Fig. 3 for the threshold set at three concurrent
requests. We denote the QBD Reservation-θ process by L(t).

The off-diagonal non-zero elements of generator matrix Q
for L(t) can be inferred from the structure of the system.
Transition rates corresponding to the arrivals are

Q ((`, 0), ((`, 0), 0)) = λ r < θ

Q ((`, q), (`, q + 1)) = λ r ≥ θ.

Request completions and, necessarily, user departures can only
occur when `1 = k − 1; they are governed by

Q ((`, 0), ((`2, . . . , `r), 0)) = N`1µ r ≤ θ
Q ((`, q), ((`2, . . . , `θ, 0), q − 1)) = N`1µ r > θ.

Finally, all other non-vanishing rates have the form

Q ((`, q), (`+ ei, q)) =
(
N`i −N`i−1

)
µ

where length(ei) = length(`) and i ≤ min{r, θ}.

B. QBD Eviction-θ

We turn to the derivation of the lower bound, called QBD
Eviction-θ. This lower bound is designed by adding extra help
when a data fragment is destined to a request at level (θ+ 1).
More precisely, suppose that the state of system L(t) is (`, q)
where both q > 0 and `θ > 0. Under normal system operation,
n−N`θ servers would be processing jobs for request (θ+ 1).
A query completion from one of these servers would then lead
to `θ+1 = 1. However, to preserve state space Lqbd and lower
bound system evolution, we simply assume that when the
request `θ+1 receives this fragment, head request 1 is pushed
out of the system at the same time. Equivalently, we can
think of this situation as the head request instantly receiving
enough information from a genie to decode the media object.
Of course, this limits the number of partially fulfilled requests
to θ, as desired. The operation of L(t) is depicted in Fig. 4.

We turn to the infinitesimal generator matrix Q associated
with L(t). Its off-diagonal non-zero elements are identified
below. As usual, transitions driven by an arrival take place at
rates

Q ((`, 0), ((`, 0), 0)) = λ r < θ

Q ((`, q), (`, q + 1)) = λ r ≥ θ.

Query completions directed at request i, where i ∈ {2, . . . , θ}
or where i = 1 with `1 < k − 1, have rates

Q ((`, q), (`+ ei, q)) =
(
N`i −N`i−1

)
µ;

above, length(ei) = length(`) and i ≤ min{r, θ}. User
departures are more difficult to describe for L(t). When r ≤ θ,
a request completion can only happen when `1 = k − 1; the
corresponding rate in this case is

Q ((`, 0), ((`2, . . . , `r), 0)) = N`1µ.

?�∗

?�∗

?�∗

�∗

?�∗
θ = 3

Figure 4. This diagram illustrates a QBD Eviction-3 process. For this system,
only the first three requests are permitted to get service. If a server completes
a query destined to request 4, a genie supplies enough information to push the
head request out of the system, hence the name eviction. Thus, the number
of partially fulfilled requests remains bounded by θ = 3, while providing an
optimistic lower bound on occupancy. As before, we can think of the extra
requests as awaiting eligibility in a generic buffer.

Contrastingly, when r ≥ θ, a departure can arise naturally or
it can take place under the auspice of the genie, with rates

Q ((`, q), ((`2, . . . , `θ, 0), q − 1)) = N1µ

Q ((`, q), ((`2, . . . , `θ, 1), q − 1)) = (n−Nθ)µ,

respectively.

C. Block Structure

The book keeping involved in describing the infinitesimal
generator matrices for L(t) and L(t) is admittedly tedious. The
benefit of introducing these dominating processes, however,
lies in the shared repetitive structure of Q. For these two
processes, the level refers to the number of requests awaiting
scheduling eligibility. In an infinitesimal time duration, such a
process can have, at most, a single jump. Hence, any transition
resulting in a level change leads to a unit increase or decrease
in the level. As such, we can define pertinent sub-matrices of
sizes |Lθ| × |Lθ| that expose this structure. Suppose q ≥ 1
and let `, ˇ̀ ∈ Lθ; we consider transitions originating from
state (`, q), with corresponding rates

A0(`, ˇ̀) , Q((`, q), (ˇ̀, q + 1))

A1(`, ˇ̀) , Q((`, q), (ˇ̀, q))

A2(`, ˇ̀) , Q((`, q), (ˇ̀, q − 1)).

At the boundaries associated with level q = 0, more transitions
are admissible. For these dynamics, and states `, ˇ̀ ∈ Lθ,
`0, ˇ̀

0 ∈ ∪θr=0Lr, we define

B00(`0, ˇ̀
0) , Q((`0, 0), (ˇ̀

0, 0))

B01(`, ˇ̀) , Q((`, 0), (ˇ̀, 1))

B10(`, ˇ̀) , Q((`, 1), (ˇ̀, 0)).

Under proper state ordering, operator Q for either L(t) or L(t)
has a semi-infinite matrix structure given by

Q =

B00 B01 0 0 · · ·
B10 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
0 0 A2 A1 · · ·
...

...
...

...
. . .

 (6)

where the submatrices B00, B01, B11, A2, A1, and A0 are
determined by the level structure discussed above.

The continuous-time Markov processes associated with such
Q belong to the class of random processes with repetitive
structures. Thus, one can leverage numerical techniques from
the vast literature on matrix-analytic methods and quasi-
birth-death processes [19], [20]. The key insight behind this
approach is to take advantage of the symmetric interactions
among the different levels of the Markov chain. Specifically,
for q ≥ 2, the Chapman-Kolmogorov equations for the
queueing system, πQ = 0, yield

πq−1A0 + πqA1 + πq+1A2 = 0

where πq are the level components of π introduced in (5).
In finding a solution to this matrix equation, the form of
the embedded Markov structure and, specifically, its block
partitioning are far more important than the values of each
submatrix. The stationary distribution of the queue, when it
exists, is characterized in the following theorem [19], [20],
which is an adaptation of the matrix-geometric method to the
current problem formulation.

Theorem 2. Consider a positive recurrent and irreducible
Markov chain on state space Lqbd with transition probabilities
given by (6). Then, for stationary distribution π, there exists
a constant matrix R such that

πq = πq−1R = π1R
q−1, q ∈ 2, 3,

Furthermore, constant matrix R fulfills

A0 + RA1 + R2A2 = 0.

Matrix R may be computed as the limit, starting from R0 = 0,
of the sequence defined by

Rp+1 = −A0A
−1
1 −RpA2A

−1
1 , p = 1, 2, (7)

Let matrix Q̃ be given by

Q̃ =

[
B00 B01

B10 A1 + RA2

]
. (8)

Then, Q̃ is a rate matrix associated with an irreducible,
finite Markov chain. If we denote the invariant distribution
associated with Q̃ by (π̃0, π̃1), then the stationary distribution
associated with Q can be expressed for q ≥ 1 as

π0 =
π̃0

(π̃0 + π̃1(I−R)−1)1
,

πq =
π̃1R

q−1

(π̃0 + π̃1(I−R)−1)1
.

(9)

This theorem offers an algorithm to efficiently compute
the stationary distributions associated with bounding processes
L(t) and L(t). This is in stark contrast with the fact that there
is no efficient way to compute the stationary distribution cor-
responding to L(t). The bounds resulting from the application
of the matrix-geometric methods, get progressively tighter as
θ grows. Yet, from the structure of the theorem, we see how
raising θ entails more computations.

V. PERFORMANCE EVALUATION

The characterization presented in the previous section makes
it possible to efficiently compute a number of performance
criteria. To enable a rapid comparison with previously pub-
lished findings, we focus on the mean sojourn time of a
request. We choose the random query time at a server to
be distributed exponentially with rate µ = k/n. With this
convenient choice, we can present results as a function of
normalized load. Data fragments for our distributed storage
system are generated using a (6, 3) linear code. We report
findings for the two emblematic coding paradigms: repetition
coding and MDS coding. We emphasize that, although the
proposed QBD bounds can be computed for large system
parameters, the selected values k = 3 and n = 6 enable the
presentation of comparative simulation results.

We study the empirical average of sojourn time obtained by
the simulation, and contrast it to the upper and lower bound
on the mean value we obtain from the mean sojourn time in
QBD Reservation-θ and Eviction-θ systems. In addition, we
compare our proposed bounds to a closed form approximation
and lower bound derived in [23], and a block service upper
bound derived analytically in [12] for an MDS code. This up-
per bound has a connection to the extended QBD Reservation-
1 bound, and can be generalized to other symmetric codes as
well.

Figure 5 shows the two novel QBD bounds, along with
simulation results, aforementioned approximation, and existing
upper and lower bounds for repetition coding. The QBD
bounds appear very good over all stable arrival rates. Not too
surprisingly, the upper bound is much tighter than the block
service upper bound. The QBD lower bound is very close to
simulated performance at low loads, but it gets progressively
looser at higher loads. This can be attributed to the greater
propensity for the genie to evict requests when the queue is
large. Also, the effect of an eviction is felt for the duration of
a regenerative cycle for the request queue, i.e., until the queue
length goes back to zero. Since higher loads imply longer
generative cycles, the impact of the genie is more significant
in this regime. A threshold θ = 12 is suitable for exposition.
For this rudimentary example, a much greater θ can be selected
with reasonable computational complexity.

In Fig. 6, we plot the corresponding curves for MDS
coding. In this case, the novel QBD bounds are very tight,
and the threshold θ must be reduced to three to artificially
create separation. For higher threshold values, the two bounds
become nearly indistinguishable. This is very encouraging, as
it points to the suitability of the proposed approach. The QBD

0 0.2 0.4 0.6 0.8 1
100

100.5

101

101.5

Normalized Arrival Rate λ (Load)

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (6, 3) Repetition Code

Block Service
QBD Reservation-12
Simulation
Approximation
QBD Eviction-12
Lower Bound

Figure 5. This graph showcases mean sojourn time for a (6, 3) repetition
scheme as a function of normalized arrival rate. The figure also contains
the closed-form approximation, along with existing and novel bounds. The
numerical QBD bounds can be made tighter by selecting a larger threshold θ;
accuracy comes at the expense of additional computations.

bounds are much tighter for MDS coding; this stems from the
fact that it is very difficult for the query queues associated
with the servers to showcase strong imbalance. As such, the
system rarely operates with a queue length larger than θ.

0 0.2 0.4 0.6 0.8 1
100

100.5

101

101.5

Normalized Arrival Rate λ (Load)

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (6, 3) MDS Code

Block Service
QBD Reservation-3
Simulation
Approximation
QBD Eviction-3
Lower Bound

Figure 6. This chart exhibits mean sojourn time for a (6, 3) MDS coding
scheme as a function of normalized arrival rate. It also displays the closed-
form approximation, along with the derived upper and lower bounds. The
numerical QBD bounds are naturally tighter for MDS coding. Again in this
case, they can be refined by increasing threshold θ.

Figure 7 compares the mean sojourn times of a request for
repetition and MDS coding. As expected, the more elaborate
MDS coded system outperforms repetition coding. The perfor-

mance gains are accurately predicted by the lower bounds on
repetition coding and the upper bound on MDS coding, over a
range of system loads. This is especially relevant for systems
with intricate coding schemes and multiple servers because, in
such situations, the actual system becomes hard to simulate.
We included the Eviction-25 lower bound for repetition coding
to illustrate how the bound gets tighter as θ increases.

0 0.2 0.4 0.6 0.8 1
100

100.5

101

101.5

Normalized Arrival Rate λ (Load)

M
ea

n
So

jo
ur

n
Ti

m
e
W

Mean Sojourn Time for (6, 3) Repetition Code

Rep Simulation
Rep Eviction-25
Rep Eviction-12
MDS Reservation-3
MDS Simulation

Figure 7. This plot provides a comparison of the MDS and repetition coding
schemes. Due to its greater flexibility, the MDS coding scheme outperforms
repetition coding, showcasing significant gains across loads. This trend is
also accurately captured over most loads with the QBD bounding techniques
proposed in this article.

VI. CONCLUDING REMARKS

In this work, we introduce a novel methodology to bound
the performance of distributed coded systems based on dom-
inating QBD processes. These bounding techniques apply to
FCFS fork-join scheduling with symmetric codes and homo-
geneous servers. They advance the state-of-the-art, with sig-
nificant improvements over existing bounds. And, they can be
employed to characterize the latency-redundancy tradeoff for
candidate implementations. We note that the QBD bounds can
be made tighter by selecting a large parameter θ. Still, greater
accuracy comes at the expense of additional computations.

Potential avenues for future research include relaxing the
assumption regarding exponential service and independence
across caches. Matrix-analytic methods have been applied
to semi-Markov queueing models. Such extensions may find
application in the context of distributed coded systems as well.
In this article, we allude to the difference between cancelling
requests when k jobs are scheduled or discarding them imme-
diately after k jobs are completed. For non-exponential service,
it would be interesting to delineate conditions under which one
strategy outperforms the other. Finally, the field of distributed
coded systems is evolving rapidly. It would be interesting to
integrate recent developments such as locally repairable codes
and secure codes into the latency-redundancy tradeoff.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, 2001.

[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, 2006.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE Trans. Inf.
Theory, vol. 52, no. 6, pp. 2809–2816, June 2006.

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit
codes minimizing repair bandwidth for distributed storage,” in Informa-
tion Theory Workshop (ITW). IEEE, 2010, pp. 1–5.

[6] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes
for repair in distributed storage systems,” in Allerton Conference on
Communication, Control, and Computing. IEEE, 2010, pp. 1510–1517.

[7] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and
M. Effros, “Resilient network coding in the presence of byzantine
adversaries,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2596–2603,
2008.

[8] D. Wang, D. Silva, and F. R. Kschischang, “Robust network coding in
the presence of untrusted nodes,” IEEE Trans. Inf. Theory, vol. 56, no. 9,
pp. 4532–4538, Sept 2010.

[9] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–
5239, Aug 2011.

[10] R. Rojas-Cessa, L. Cai, and T. Kijkanjanarat, “Scheduling memory
access on a distributed cloud storage network,” in Wireless and Optical
Communications Conference (WOCC), April 2012, pp. 71–76.

[11] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,
and N. B. Shroff, “When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,” in IEEE Conference on Computer
Communications, April 2014, pp. 1042–1050.

[12] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[13] G. Joshi, E. Soljanin, and G. W. Wornell, “Queues with redundancy:
Latency-cost analysis,” SIGMETRICS Perform. Eval. Rev., vol. 43, no. 2,
pp. 54–56, Sep. 2015.

[14] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” in International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS). New
York, NY, USA: ACM, 2014, pp. 599–600.

[15] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis of coding
versus replication in cloud storage systems,” in IEEE International
Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[16] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
2016.

[17] K. Lee, N. B. Shah, L. Huang, and K. Ramchandran, “The MDS queue:
Analysing the latency performance of erasure codes,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, May 2017.

[18] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and
A. Scheller-Wolf, “Queueing with redundant requests: exact analysis,”
Queueing Systems, vol. 83, no. 3, pp. 227–259, 2016.

[19] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Dover Publications, 1995.

[20] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling, ser. ASA-SIAM Series on Statistics and
Applied Probability. Society for Industrial Mathematics, 1987.

[21] R. V. Evans, “Geometric distribution in some two-dimensional queuing
systems,” Operations Research, vol. 15, no. 5, pp. 830–846, Sep.-Oct.
1967.

[22] P. Gopalan, G. Hu, S. Kopparty, S. Saraf, C. Wang, and S. Yekhanin,
“Maximally recoverable codes for grid-like topologies,” in ACM-SIAM
Symposium on Discrete Algorithms (SODA), Philadelphia, PA, USA,
2017, pp. 2092–2108.

[23] P. Parag, A. Bura, and J.-F. Chamberland, “Latency analysis for
distributed storage,” in IEEE International Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

