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Abstract— For timely sensor update, the traditional approach
is to send new information at every available opportunity. Recent
research has shown that with limited receiver feedback, sensors
can improve the update timeliness by transmitting differential
information for slowly varying correlated sources. One can elect
to transmit either the actual or the differential state information
based on a differential encoding threshold for a general Markov
source. This threshold captures the natural trade-off between dif-
ferential transmission opportunities and the coding gains. Using
matrix-geometric method, we find the limiting age distribution
for a Markov source as a function of the encoding threshold,
from which several other performance metrics of interest, such
as mean age, peak age, and the probability of decoding failure
can be derived.

Index Terms— Age of information, Markov source, erasure
channel, matrix-geometric method, differential encoding, block
codes.

I. INTRODUCTION

IN THE past few years we have seen a rapid proliferation
of ‘connected’ devices which aid in real time decision

making. Many of these devices typically monitor physical
phenomena such as temperature, pressure, humidity, traffic,
pollution, etc. and communicate this information to the cloud
to receive central-server-aided decisions. In these real-time
actuation/decision systems, the timeliness of data is crucial.
Data timeliness is also important in many other applications
such as social media updates, distributed system updates,
security patches, and route updates in ad-hoc networks.

Information age was introduced in [2], as a metric to
measure information staleness. At any time t , the age of
information can be defined in terms of the generation time
U(t) of the last received information symbol as

A(t) � t − U(t). (1)

Lower information age at the receiver would correspond to a
more timely information, and this is the metric we adopt in this
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article. Most of the existing literature on communication time-
liness [3]–[7], study a queueing theoretic abstraction where the
update generation and delivery times are stochastic. In above-
mentioned works, the update is always received correctly at
the receiver, and the channel uncertainty is captured in the
random reception time of an update.

In contrast to the typical queueing theoretic models, we
model the channel unreliability by an information theoretic
binary erasure channel. In this setup, a received update may
not be decodable and can be dropped. This setup is different
from a typical queueing setup, where an update would be
received a random time after transmission and the updates are
transmitted and received in order without any packet drops.
Contrastingly in our model, one can choose not to re-transmit
an update upon reception failure, and transmit an entirely new
update packet. That is, our model captures the scenario where
packets can be dropped if certain service constraints are vio-
lated. Apart from capturing the decoding uncertainty, a simple
information theoretic abstraction of channel allows us to study
the impact of coding on update timeliness. Channel coding for
timely update over independent and identically distributed (iid)
erasure channels is studied for always-on source in [8], [9],
for slowly varying source in [10], for special Markov sources
in [1]. We adopt a similar setup, where the source sends an
update packet that includes coded status information bits.

For a temporally correlated source, one can transmit either
the current state or its difference from the last correctly
decoded state, depending on the number of bits needed to
represent either information. A straightforward update scheme
is to merely encode the current source state, and transmit at
each available opportunity, referred to as true update. This
scheme is agnostic to the differential encoding opportunities
due to the source correlation, and hence serves as an upper
bound on the information age. Indeed, it is shown in [10], that
sending differential update reduces information age consider-
ably for a highly correlated source, in the presence of limited
receiver feedback. We will refer to this scheme as differen-
tial update with feedback or incremental update for brevity.
Reduction in information staleness in this scheme results from
the exploitation of temporal correlation across messages. This
is an optimistic lower bound on the information age of the
system, due to the underlying assumption that the source can
always exploit the message correlation to efficiently encode the
differential updates. In practice, temporal correlation can vary
between two transmission opportunities for a general source,
and the number of bits needed to represent differential message
depends on the actual realization of the states.

The practice of using differential coding is quite common
and is used in a wide variety of applications such as rsync [11],
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HTTP [12] and version control [13]. Differential encoding is
typically used to reduce traffic or storage requirements. In our
case, differential encoding gives us opportunities to use better
error protection and consequently improve the age metric. We
note that it may not always be efficient to use differential cod-
ing and any sudden and large change may require us to send
the actual state. We will consider this in our work and use a
general incremental update scheme wherein we send the actual
state when the change in state does not permit differential
encoding. For a finite state source, we assume that the number
of bits needed to represent any actual state is m. In this article,
the source sends a differential update only when the differen-
tial information can be represented by k bits, for some k � m.
We call this threshold k as the differential encoding level, a
design parameter that can be chosen to minimize information
staleness for a given channel. We consider a generalized
incremental update scheme, where the source transmits a true
update only in the following two cases. First, if the source is
unable to encode a differential update in k bits. Second, if the
receiver fails to decode an update. When the last correctly
decoded state is i , the source can encode the differential infor-
mation in k bits with certain differential encoding probability
depending on the source state i . That is, there is uncertainty
in differential encoding opportunities at correlated source. For
a slowly varying source, one can almost surely always exploit
the temporal correlation and hence the differential encoding
probability is unity. It follows that, the generalized incremental
update scheme generalizes the incremental update scheme.

In this article, we study sources that have a Markov state
evolution. We capture the notion of temporal correlation
between successive status updates by setting the transition
probabilities of the associated Markov process appropriately.
For example, for a source with higher temporal correlation, we
set state transitions to be more likely to the neighboring states
than to states farther off. At the other extreme, i.e., of no cor-
relation, we have an iid source where the transition to different
states is independent of how close or far they are to the current
state. Thus we can classify a slowly evolving source, i.e., a
source with higher temporal correlation as a highly correlated
source as opposed to an independent source where the updates
are independent and hence have no correlation.

We show that the highly correlated source that can always
send differential updates [10], and uniformly correlated source
where the incremental update probability is independent of the
source state [1] are special cases. We further note the natural
trade-off between coding opportunities and coding gain that
determines the selection of differential encoding level k. In
particular, if we increase the differential encoding level k,
then the number of additional parity bits n − k available to
incremental update reduces as compared to the true update.
On the other hand, if we reduce the level k, only a handful of
state differences can be sent as a differential update. Both these
scenarios limit the performance gain of incremental update
over true updates.

A. Main Contribution

Our main contribution is to characterize the limiting age
distribution for the generalized incremental update scheme

for a general Markov source. It turns out that the standard
renewal theory technique can’t be applied in a straightforward
manner for this case. We identify a minimal Markov chain
that captures both the age and the source state at each update
reception instant. The transition matrix for this Markov chain
has a block structure, and hence the limiting distribution can
be computed using matrix-geometric methods. Equilibrium
distribution for this Markov chain admit a geometric solu-
tion in terms of a fundamental matrix, which is a solution
of a matrix polynomial equation [14]–[16]. Fortunately, for
the system model under consideration, the marginal limiting
distribution of age admits a closed form solution in terms
of the system parameters. From this closed form limiting
distribution, we can compute additional performance metrics
such as limiting values of mean age, peak age, decoding
failure probability, decay-rate of age etc. We can recover the
existing results for special sources, such as independent, highly
correlated, and uniformly correlated sources. We illustrate
the trade-off between additional coding gains and the coding
opportunities for a general Markov source.

B. Literature Review

Mean information age is computed for status update queue-
ing systems under various queueing disciplines, service dis-
tributions, and arrival distributions in [2], [5], [6], [17].
Status update systems have the flexibility in determining
which update is transmitted to the receiver. It was shown
in [18], [19], that replacing the waiting update by the latest
update can reduce the information age for a single source
queue with memoryless arrival and service, and buffer size 2.
This result was generalized to multiple sources in [20], and
with status deadlines in [3]. Scheduling problem for multiple
source updates over a single wireless channel is considered
in [21]. Status update transmissions over specific networks
have also been studied, such as parallel networks [22], single-
hop networks [23], and multi-hop networks [24].

For the status update systems, where there is uncertainty not
only in the service time but also in the successful reception,
there is a pertinent question of whether to re-transmit old status
update or to send a new update. This problem is considered for
random arrivals in [4], and always-on source in [8], [9], [25].
Multiple sources with parallel unreliable links is considered
in [26], and a multiple access channel in [27]. Channel-aware
source update is considered in [7], and channel-state update is
considered in [28].

Optimal source sampling strategy to minimize the mean
square estimation error for Weiner process is considered
in [29], where the reception time for real-valued samples are
random. Instead of the process estimation error, we are adopt-
ing the simple metric of average age in our paper. It has been
shown in [7] that these two problems are equivalent when the
sampling is independent of the observed Weiner process. For
simplicity of analysis, we assume a fixed length encoding and
opportunistic sampling, which implies periodic sampling and
transmission in our setting of discrete-valued Markov source.

We note that the joint Markov process under consideration
in this paper is a discrete-time version of the stochastic
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hybrid systems (SHS) [6], [30], [31]. We apply techniques
from matrix-geometric methods, which are more specific to
the block-partition structure of the transition matrix for the
discrete-time Markov process under consideration.

II. SYSTEM MODEL

In this section, we describe each component of the commu-
nication model as shown in Fig. 2, and transmission protocol
in detail.

A. Source

We assume a correlated physical process taking discrete
values from a finite field F2m , such that the state M(t)
can be represented by m bits at every discrete time sample
t ∈ N. We assume that the sampled physical process
(M(t) ∈ F2m : t ∈ N) is an irreducible and aperiodic discrete
time Markov chain with transition probability matrix Q, and
hence is positive recurrent with a unique invariant distribution
ν such that

νQ = ν, �ν, 1� = 1.

In the following section, we will see that the transmission
opportunities for the source arise only periodically at instants
{( j − 1)n + 1 : j ∈ N}. Accordingly, we assume that the
source samples the physical process only at these discrete
instants. We denote the discrete-time discrete-valued sampled
physical process at the source by

M j � M(( j − 1)n + 1), j ∈ N.

We call the random sequence (M j : j ∈ N), the source process
which is a Markov chain with the transition probability matrix
P = Qn , and the invariant distribution ν since νP = ν.

The difference between two consecutively transmitted
source states is denoted by δ j � M j − M j−1 ∈ F2m . For
a fixed differential encoding level k, the set of possible values
for the difference δ j to be represented by k bits is denoted by

�k � {−2k−1, . . . , 2k−1 − 1}.
The event {δ j ∈ �k} is referred to as differential encoding suc-
cess. The probability of differential encoding success depends
on the previous source state M j−1 and the differential encod-
ing level k. Conditioned on the previous source state M j−1
being i ∈ F2m , we denote the encoding success probability
as Pi (�k), which can be computed for the Markov source
(M j : j ∈ N) as

Pi (�k) � Pr(M j − M j−1 ∈ �k|M j−1 = i) =
∑

j−i∈�k

Pi j .

B. Encoder

We assume that the first source message is the m-bit source
state M1. For each j � 2, the source message can either
be the m-bit current state M j or the difference δ j of the
current state M j from the previously transmitted state M j−1,
if the difference can be represented by k-bits and M j−1 is

Fig. 1. A bit-wise iid binary symmetric erasure channel with erasure
probability �, where the erased bit is denoted by e.

successfully decoded at the receiver. We assume a fixed length
permutation invariant coding for both type of source messages,
such that each source message is encoded into an n-length
codeword X j � (X j1, . . . , X jn) that is transmitted at discrete
instant t = ( j − 1)n + 1. The encoded message corresponding
to the true state M j is called true update and the encoded
message corresponding to the state difference δ j is called the
incremental update. We denote the indicator to the event of
the j th encoded message being a differential update by γ j ,
and denote 1 − γ j by γ̄ j , to write the number of information
bits in the j th codeword as

r j = kγ j + mγ̄ j , j ∈ N.

It is possible to use a rateless code instead of the fixed-
length block code. Though for many real-time practical sys-
tems, we envision selection of a finite and fixed block-length
n. Further, the preemption of the current update to begin
immediate transmission of a new update requires a bit-wise
feedback. Thus, we stick to the finite block-length setting since
it requires a simpler implementation with reduced feedback
overhead.

C. Channel

We measure time-units in terms of channel uses, and assume
that each bit-transmission requires single channel use. There-
fore, an n-length update codeword requires n channel uses, and
the j th codeword X j transmitted at time ( j−1)n+1 is received
at instant jn + 1. That is, the codeword length determines the
periodicity of the source transmission opportunities.

We consider a bit-wise iid binary symmetric erasure chan-
nel, as depicted in Fig. 1. Over this channel, each transmitted
bit can be successfully received, or erased independently and
identically with probability �. When the transmitted bit is
erased, the received symbol is denoted by erasure symbol e.
That is, corresponding to the channel input X ji ∈ {0, 1} for the
i th bit-transmission for the j th codeword, the channel output
is denoted by Y j i ∈ {0, 1, e} written as

Yj i = e1{Y ji �=X ji } + X ji 1{Y ji=X ji }, i ∈ [n].
Since the bit-wise erasure channel is iid, the erasure indicators
(1Y ji �=X ji : i ∈ [n], j ∈ N) are iid Bernoulli with mean
Pr {Y j i �= X ji} = �. The number of erasures in the j th
received codeword is sum of n independent erasure indicators,

E j �
∑
i∈[n]

1{Y ji �=X ji }.
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From the channel independence, it follows that the sequence
(E j : j ∈ N) of number of erasures in received codewords is
iid with the common Binomial distribution,

Pr{E j = �} =
(

n

�

)
��(1 − �)n−�, for � ∈ {0, 1, . . . , n}.

D. Decoder

From the received channel output Y j at time t = jn+1, the
decoder computes an estimate M̂ j of the message transmitted
n channel uses ago. For binary erasure channels, the receiver
can either perfectly decode the transmitted message or declare
a decoding failure. Thus, while the receiver may fail to decode
an update, it will never admit an erroneous update. For the j th
received update, the indicator to the event of decoding success
is denoted by

ξ j = 1{M j =M̂ j }, for j ∈ N.

We call a block code to be permutation invariant, if the
event of codeword decoding failure depends solely on the
number of erasures E in the codeword, and not their locations.
Writing the indicator of decoding failure as ξ̄ = 1 − ξ , we
denote the probability of decoding failure for a permutation
invariant code given E erasures in an n-length codeword with
r information bits and n − r parity bits by

P(n, n − r, E) = E[ξ̄ |n − r, E].
The number of information bits in an n-length codeword

is m for the true update, and k for the incremental update
respectively. Hence, the unconditional probability of decoding
failure for true update and incremental update is respectively,
pa = E[P(n, n − m, E)] and pd = E[P(n, n − k, E)], where
the expectation is taken over the binomial random variable
E with parameters (n, �). We assume erasure probability � ∈
(0, 1), and hence pd, pa ∈ (0, 1). Further, since the number
of parity bits are higher for the differential update, we have
pd < pa .

From iid nature of the channel, it follows that the codeword
decoding failure events are also independent, conditioned on
the differential update indicators (γ j : j ∈ N). The sequence
of decoding failure indicators (ξ̄ j : j ∈ N) has conditional
mean

E[ξ̄ j |γ j ] = E[P(n, n−r j , E j )] = pdγ j + pa γ̄ j , j ∈ N. (2)

E. Control Channel

We also assume the existence of a separate control chan-
nel [32], that allows the decoder to distinguish between a true
and an incremental update. The system model is illustrated
in Fig. 2.

III. GENERALIZED INCREMENTAL UPDATE

After the codeword reception, there are two possibilities
at the receiver. First, the receiver is able to decode the
transmitted message correctly, leading to a successful status
update. Alternatively, the receiver declares a decoding failure
and sends an immediate and accurate negative feedback to the

Fig. 2. An abstract discrete time communication model for a source, where
the state M j at time t = ( j − 1)n + 1 is encoded to an n-length codeword
X j , which is received as channel output Y j after n channel uses at time
t = jn + 1. Decoder forms an estimate M̂ j at the reception instant, where
each transmitted bit is erased independently and identically.

Fig. 3. We show the flow chart for the algorithm used by the source in
generalized incremental update scheme, to encode message M j as incremen-
tal or true update.

source.1 The source always responds to an event of decoding
failure by sending its true state as the following update.

For the generalized incremental update, the source starts
with a true update, encoding the first source state sample M1.
For any j � 2, the j th transmission is a differential update if
and only if both of the following two conditions are met. First,
the ( j − 1)th transmission was successfully received. Second,
the j th state difference δ j can be represented by k bits, i.e.

γ j = ξ j−11{δ j ∈�k}, j � 2. (3)

This shows that the differential update indicator γ j is function
of M j , M j−1, ξ j−1, and hence has a correlated evolution.
Since the source Markov process (M j : j ∈ N) is independent
of the decoding success sequence (ξ j : j ∈ N), we can find
the mean of the differential update indicator γ j conditioned
on previous source state M j−1 and decoding success indicator
ξ j−1 of previous update, as

E[γ j |ξ j−1, M j−1] = ξ j−1 PM j−1(�k).

We have summarized the generalized differential update algo-
rithm at the source by a flow chart in Fig. 3.

1We note that, since we assume an erasure channel, the above two
possibilities are the only ones that occur and the receiver never admits an
erroneous update.
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Fig. 4. This plot shows a sample path of the age process for the generalized
incremental updates with codeword length n = 10. Hollow and filled parts of
the age sample path correspond to bit-transmissions of incremental and true
update codewords respectively. In this realization of age evolution, the first
update at instant t = 1 is encoded as a true update and successfully decoded
at instant n + 1. Source fails to encode M3 − M2 within k bits, and sends the
true update at time 2n + 1 which is successfully decoded at instant 3n + 1.
Incremental update sent at instant 3n + 1 fails to get decoded at instant
4n + 1. Therefore, the source starts sending the true updates from the next
transmission opportunity at instant 4n + 1.

We observe that certain types of the probability transition
matrix P reduces generalized incremental update to two special
cases. For example, when Pi (�k) = 0 for each i ∈ F2m ,
then the generalized scheme reduces to always sending true
updates. Whereas, if Pi (�k) = 1 for each i ∈ F2m , then
the generalized scheme reduces to always sending incremental
updates. Thus, the generalized update scheme generalizes both
the previously studied update schemes in [1], [10].

IV. AGE PROCESS

Timeliness is our primary performance criterion, and we
adopt the age of information [2] at the receiver as a measure
of information staleness. In the following, we characterize the
information age at receiver as a stochastic process. We focus
on the sampled version of this process at update reception
instants, which determines this process at all times.

Let U(t) denote the generation time of the last correctly
decoded update at the receiver at time t , then the age of
information A(t) at time t is given by t − U(t). Since the
source state is sampled at each transmission opportunity and
instantaneously transmitted, the generation time of the last
correctly decoded state is the corresponding transmission time.
Hence, the generation time U(t) remains constant until the
reception of next successfully decoded update. Therefore,
at each reception instant t = jn + 1 for j ∈ N, we can write

U(t) = ξ j (t − n) + ξ̄ j U(t − n).

It follows that the age A(t) = t − U(t) resets to value n at
the instants of decoding success of update codewords, and is
linearly increasing at all other instants. We have illustrated
a sample path for the age process in Fig. 4. It follows that
the age at the reception instants ( jn + 1 : j ∈ N) is a

sequence of random variables of the form qn where q ∈ N.
Therefore, we consider the age process sampled at the j th
reception instant t = jn + 1 and scaled by 1/n, denoted by
A j � A( jn + 1)/n. The scaled and sampled age process is
denoted by (A j : j ∈ N), and its evolution can be written in
terms of decoding success indicators (ξ j : j ∈ N) as

A j = 1 + ξ̄ j A j−1. (4)

Assuming A0 ∈ N, it follows that A j ∈ N for all j ∈ N. In
addition, the sampled-scaled age is unity if and only if the
last reception was successful, that is {A j = 1} if and only if
{ξ j = 1}. We will show that the sampled-scaled age process is
ergodic, and hence the limiting probability of sampled-scaled
age can be written as

lim
j→∞ Pr{A j � q} = lim

N→∞
1

N

N∑
j=1

1{A j �q}.

One can completely determine the age process at any
discrete instant t from its sampled-scaled version. Since each
update is sent using an n length codeword, the number of
update receptions until a discrete time t can be defined as
Nt � � t−1

n 	, such that nNt � t −1 < n(Nt +1). We can write
the age A(t) at time t in terms of number of update receptions
Nt as

A(t) = n ANt + (t − 1 − nNt ).

For example in Fig. 4, we have codeword length n = 10 and
there are five updates received until time t = 55. It follows
that at this time t = 55, the number of update receptions is
Nt = 5, the sampled-scaled age at last update reception is
ANt = 3, and the age is A(55) = 34. We will derive various
performance metrics of interest from the limiting distribution
of the sampled-scaled age process.

V. JOINT MARKOV PROCESS

The source is sampled at time ( j − 1)n + 1 and its state
M j is encoded as j th source update, which is received at
time jn + 1. The sampled-scaled age at the receiver, at the
time of j th update reception is denoted by A j . We study the
joint evolution of the source state and the sampled-scaled age,
and denote this process by the random sequence ((M j , A j ) :
j ∈ N). We say that the process is at level q if sampled-scaled
age A j = q .

We first show that the joint process ((M j , A j ) ∈ F2m × N :
j ∈ N) is an irreducible and aperiodic Markov chain and
determine the associated transition probability matrix. We
further show that this joint Markov chain is positive recurrent
and has a unique stationary distribution π = (πi,q : i ∈
F2m , q ∈ N), where

πi,q � lim
j→∞ Pr{(M j , A j ) = (i, q)}.

We can also write the invariant distribution as π =
(π1, π2, . . . ), where πq = (πi,q ∈ [0, 1] : i ∈ F2m ) is the sta-
tionary distribution vector for the joint process to have age q .
Age acts as level for the matrix-geometric methods described
below, and we say that πq is the invariant distribution vector
for the joint process to be in level q .
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The transition operator for the Markov process (M j , A j ) has
a block structure, and we characterize its invariant distribution
using matrix-geometric methods [14]–[16]. Thereby, we derive
the marginal distribution of the sampled-scaled age process by
summing over all possible source states. From the invariant
distribution of the sampled-scaled age, we can derive the
performance metrics of interest.

Theorem 1. The joint process of the source state and the
sampled-scaled age ((M j , A j ) : j ∈ N) is an irreducible,
aperiodic, and positive recurrent homogeneous Markov chain
with the transition probability operator T having the form

T =

⎡
⎢⎢⎢⎣

B̃ F̃ 0 0 . . . . . .
B 0 F 0 . . . . . .
B 0 0 F . . . . . .
...

...
. . .

. . .
. . .

...

⎤
⎥⎥⎥⎦, (5)

where the F2m × F2m matrices B̃, F̃, B, F are given by

B = (1 − pa)P, F = paP

B̃ = B + D̃, F̃ = F − D̃,

and the F2m × F2m matrix D̃ is defined by its (i, l)th entry

D̃il = (pa − pd)Pil1{l−i∈�k }.

Proof: State space of the process is obtained in Lemma 12.
The process is shown to be Markov in Lemma 13, and
homogeneous in Lemma 15. The corresponding transition
probabilities are obtained in Corollary 16. The process is
shown to be irreducible in Lemma 17, aperiodic in Lemma 18,
and positive recurrent in Lemma 19.

A. Matrix-Geometric Method

Any discrete-time Markov chain over countable state space
is called a quasi GI/M/1 process [14]–[16] if the state space
can be permuted to obtain the following block partitioned form
of the associated transition matrix

T =

⎡
⎢⎢⎢⎣

Q̃1 Q̃0 0 0 . . . . . .

Q̃2 Q1 Q0 0 . . . . . .

Q̃3 Q2 Q1 Q0 . . . . . .
...

...
. . .

. . .
. . .

...

⎤
⎥⎥⎥⎦.

Here, the matrices (Qi : i ∈ Z+) and (Q̃i : i ∈ Z+) are
of identical finite size N × N . A quasi GI/M/1 process can
be considered to be a two dimensional Markov chain with
countable state space N × Z+. If the quasi GI/M/1 is in state
(i, q) then it is in phase i ∈ {1, . . . , N} and level q ∈ Z+.

From the repeated block structure of probability transition
operator T, it follows that the joint process (M j , A j ) is a quasi
GI/M/1 process, with the source state M j ∈ {1, . . . , 2m} being
the phase and the sampled-scaled age A j ∈ N being the level.
Further, in our setting Q̃1 = B̃, Q̃q = B for q � 2, Q̃0 = F̃,
Qq = 0 for q ∈ N, and Q0 = F. In Fig. 5, we have shown the
possible state transitions for this process. Each transition leads
to either a unit increase in level, or resetting of the age level
to unity. Each level has all possible source states indicating

Fig. 5. We have shown the forward and backward block transitions for
the joint process ((M j , A j ) : j ∈ N). Each block of this Markov chain
corresponds to a specific level of the joint process.

a vector of states at each level, and hence there is a matrix
of possible transitions between two levels. Forward transition
matrix corresponding to unit level increase is denoted by F
for levels q > 1, and F̃ for level q = 1. Similarly, backward
transition matrix associated with the age resetting to unity is
denoted by B for levels q > 1, and B̃ for level q = 1.

Since the backward transition matrix B = (1 − pa)P and
the forward transition matrix F = paP, it follows that ν is
the left eigenvector and 1 is a right eigenvector for both the
matrices with the eigenvalue (1 − pa) and pa respectively.

Next, we will show the relation between the stationary
distribution ν of the sampled Markov source and the stationary
distribution π of the joint process.

Lemma 2. The following relation holds between the stationary
distribution ν of the source state Markov chain (M j : j ∈ N),
and the joint process ((M j , A j ) ∈ F2m × N : j ∈ N),

ν =
∑
q∈N

πq .

Proof: Since the equilibrium distribution for the Markov
chain (M j : j ∈ N) is ν, the result follows from the application
of the monotone convergence theorem. Specifically, we have

νi = lim
j→∞ Pr{M j = i} = lim

j→∞
∑
q∈N

Pr{(M j , A j ) = (i, q)}

=
∑
q∈N

lim
j→∞ Pr{(M j , A j ) = (i, q)} =

∑
q∈N

πi,q .

Since the joint process is positive recurrent, the unique
invariant distribution π satisfies the equilibrium condition
πT = π , for the associated transition probability operator
T. Next, we will find the equilibrium distribution of the joint
process.

Theorem 3. The equilibrium distribution π of the joint
process ((M j , A j ) : j ∈ N) with the associated transition
probability operator T defined in (5) has the following geo-
metric form

πq = π1F̃Fq−2 for q � 2, and π1 = (1 − pa)ν(I − D̃)−1.

Proof: From the equilibrium condition πT = π for the
stationary distribution π , and the fact that B̃ = B + D̃, we get

π1(I − D̃) =
∑
q∈N

πqB, π2 = π1F̃, πq+1 = πqF, q � 2.
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The geometric form of the level distribution follows from
the second and the third equation above. Further, we notice that
D̃ is a sub-stochastic matrix with the spectral radius smaller
than unity, and hence I − D̃ is invertible. The result follows
from the first equation, using the result

∑
q∈N

πq = ν from
Lemma 2 and the fact that ν is a left eigenvector of B with
eigenvalue (1 − pa).

Corollary 4. The sampled-scaled age process (A j : j ∈ N)
is ergodic, with the stationary distribution for q � 2 given by

lim
j→∞ Pr{A j = q} = �πq , 1� = (1 − pa)pq−2

a (1 − �π1, 1�).

Proof: Ergodicity of the sampled-scaled age process
follows from the ergodicity of the joint Markov chain, and
we can find the associated marginal stationary distribution by
summing over all source states. The result follows from the
fact that 1 is a right eigenvector for F with eigenvalue pa,
�ν, 1� = 1, and that we can write F̃ = (I − D̃) − (I − F).

Lemma 5. The sampled-scaled age process (A j : j ∈ N) is
uniformly integrable, and hence it converges in mean. That is,
lim j→∞ EA j = E lim j→∞ A j .

Proof: Since the event {A j = l} implies decoding failure
of last l − 1 updates, we have

1{A j =l} =
l−2∏
i=0

ξ̄ j−iξ j−l+1 �
l−2∏
i=0

ξ̄ j−i , j � l.

Since the decoding failure probabilities for both true and
differential updates are upper bounded by pa , we can bound
the following expectation for j � q by

E[|A j |1{A j �q}] =
∑
l�q

E[|A j |1{A j =l}]

�
∑
l�q

lpl−1
a = pq−1

a (q(1 − pa) + pa)

(1 − pa)2 .

As limq→∞ qpq−1
a = 0 and limq→∞ pq

a = 0 for pa ∈ (0, 1),
we have limq→∞ sup j∈N E[|A j |1{A j �q}] = 0, and the uniform
integrability follows. From the convergence in distribution for
the sampled-scaled age and uniform integrability, the conver-
gence in mean follows.

VI. PERFORMANCE EVALUATION

We compute the marginal limiting age distribution under
the generalized incremental update scheme for a given Markov
source on finite states F2m with transition matrix Q, a fixed
update codeword length n, and a fixed differential encoding
threshold k. From the resulting marginal limiting age distribu-
tion, we evaluate the performance of the proposed generalized
incremental update scheme. We denote the limit of sampled-
scaled age by A � lim j→∞ A j , where the convergence is in
distribution. Then,

Pr{A = q} = �πq , 1�.

One can compute the moments of the limiting age process
using the discrete Fourier transform. We define the z-transform
of the stationary age distribution (�π1, 1�, �π2, 1�, . . . ) as


(z) �
∑
q∈N

zq�πq , 1�. (6)

Using the explicit geometric from of the level distributions
(πq : q ∈ N) and linearity of the dot product, we can write
the z-transform of the equilibrium age distribution


(z) = (1 − pa)z2

1 − zpa
+ z(1 − z)

1 − zpa
�π1, 1�,

where the region of convergence is |z| < 1/pa. We derive
the following four performance metrics from the limiting age
distribution.

A. Mean Information Age

First metric is the limiting empirical average age defined
as limt→∞ 1

t

∑t
s=1 A(s). We can compute this metric from

the limiting distribution of sampled-scaled age, given by the
following Lemma. The limiting sampled-scaled age is defined
as lim j→∞ A j , where we take the convergence in distribution.
Thus, we can formally define the distribution of limiting
sampled-scaled age (also referred by limiting distribution
of sampled-scaled age) as lim j→∞ Pr{A j = q}. From the
ergodicity of the sampled age process, it follows that the
limiting empirical average of sampled-scaled age is equal to
its limiting mean. Since the number of receptions until time t
is Nt = �(t − 1)/n	, we can write

lim
Nt →∞

1

Nt

Nt∑
j=1

A j = lim
j→∞ E[A j ].

From the uniform integrability of sampled-scaled age process
shown in Lemma 5, we have the convergence of the sampled-
scaled age process in the mean. In particular, the limiting
mean of sampled-scaled age is equal to the mean of limiting
sampled-scaled age.

Lemma 6. The limiting average age is almost surely an affine
function of limiting average of sampled-scaled age,

lim
t→∞

1

t

t∑
s=1

A(s) = nE[A] + (n − 1)

2
.

Proof: We can express the cumulative sum of age between
two reception instants jn + 1 and ( j + 1)n + 1 in terms of the
sampled-scaled age at the j th reception, as

∑( j+1)n
s= j n+1 A(s) =

n
(
n A j + (n−1)

2

)
. Summing over all s ∈ [t], we can write in

terms of the number of receptions Nt until time t , as

n
Nt∑

j=1

(
n A j + (n − 1)

2

)
�

t∑
s=1

A(s) � n
Nt +1∑
j=1

(
n A j + (n − 1)

2

)
.

Dividing by t and taking limits, it follows that the difference in
limiting averages of the age and the sampled age is a constant,

lim
t→∞

1

t

t∑
s=1

A(s) = lim
Nt →∞

1

Nt

Nt∑
j=1

n A j + (n − 1)

2
.
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From the ergodicity of the sampled-scaled age process shown
in Corollary 4, it follows that the limiting empirical aver-
age of sampled-scaled age equals its limiting mean, that is
limNt →∞ 1

Nt

∑Nt
j=1 A j = lim j→∞ E[A j ] almost surely. From

Lemma 5, it follows that E[lim j→∞ A j ] = lim j→∞ E[A j ].
Theorem 7. The limiting average of sampled-scaled age for
a Markov source with the generalized incremental update is

E[A] = �−ν(I − D̃)−1, 1� + 1 + 1

1 − pa
. (7)

Proof: We can find the mean of the limiting sampled-
scaled age as EA = 

(1). The evaluation of first derivative
of the z-transform, gives us



(z) = (1 − pa)
z(2 − zpa)

(1 − zpa)2 + (1 − 2z) + z2 pa

(1 − zpa)2 �π1, 1�.

Result follows from the above by setting z = 1, and substitut-
ing π1 = (1 − pa)ν(I − D̃)−1.

B. Limiting Probability of Decoding Failure

Second metric of interest is limiting probability of decoding
failure lim j→∞ Pr{A j �= 1}. Since the sampled-scaled age
process is ergodic, the limiting probability of decoding failure
is almost surely equal to the limiting empirical average of
number of decoding failures. That is,

lim
j→∞ Pr{A j �= 1} = lim

N→∞
1

N

N∑
j=1

1{A j �=1} = lim
N→∞

1

N

N∑
j=1

ξ̄ j .

It follows that the limiting probability of decoding failure
is equal to limiting average of number of negative feedback
messages from the receiver.

Theorem 8. The limiting probability of decoding failure with
generalized differential updates is

lim
j→∞ Pr{A j � 2} = 1−�π1, 1� = 1− (1− pa)�ν(I− D̃)−1, 1�.

Proof: Follows from the marginal stationary distribution
of sampled-scaled age in Corollary 4.

C. Tail Decay-Rate for Limiting Distribution

Third metric of interest is tail decay-rate or large deviation
exponent of the limiting distribution for sampled-scaled age,
defined as

θ � − lim
q→∞

1

q
log lim

j→∞ Pr{A j � q}. (8)

We can see from Corollary 4, that the limiting marginal distrib-
ution of the sampled-scaled age is geometrically distributed for
q � 2, and hence the limiting distribution of sampled-scaled
age decays with this large-deviation exponent θ even for finite
threshold q . Thus, this exponent is an important performance
metric of interest.

Theorem 9. The tail decay-rate of limiting age distribution
for Markov sources with generalized differential updates is

θ = − lim
q→∞

1

q
log

∞∑
u=q

�πu , 1� = log
1

pa
. (9)

Proof: From Corollary 4, we get that for q � 2

− log
∞∑

u=q

�πu, 1� = (q − 2) log
1

pa
− log(1 − �π1, 1�).

The result follows from the definition of the tail decay-rate (8).

D. Distribution of Peak Information Age

Fourth metric is the limiting distribution of peak age [18],
where the peak age is the age just before an update decoding
success. That is, if jn + 1 is an instant of update decoding
success, then the peak age is A( jn). We observe that we can
write

A( jn) = A(( j − 1)n + 1) + n − 1 = n A j−1 + n − 1.

We observe that the peak age is just a constant n − 1 shift
from the previous sampled age A(( j − 1)n + 1) = n A j−1,
and hence we focus on finding the limiting distribution of the
peak of the sampled-scaled age.

Peaks of the sampled-scaled age are equal to the number
of update transmissions between two decoding successes. We
denote the limiting sampled-scaled peak age of the generalized
incremental update for Markov sources by AM . The sampled-
scaled age is unity if and only if the received update was
successfully decoded. Hence, we can write the limiting distri-
bution of the peak of sampled-scaled age as

Pr{AM = q} = lim
j→∞ Pr{A j = q|A j+1 = 1}.

Theorem 10. The limiting distribution of the peak of sampled-
scaled age for Markov sources with the generalized incremen-
tal updates, is given by

Pr{AM = q} =
{

1 − (1 − pa)
(1−�π1,1�)

�π1,1� q = 1,

(1 − pa)
2 pq−2

a
(1−�π1,1�)

�π1,1� q � 2.
(10)

Proof: We can write the stationary distribution of joint
process for q � 2 as

lim
j→∞ Pr{M j = i, A j = q, M j+1 = l, A j+1 = 1} = πi,q Bil .

By summing over source states M j , M j+1, we get

lim
j→∞ Pr{A j = q, A j+1 = 1} = �πqB, 1� = (1 − pa)�πq , 1�.

The result for q � 2 follows from substituting the limiting
marginal distribution of sampled-scaled age from Corollary 4
and the definition of conditional probability. The result for
q = 1 follows from the fact that Pr{AM = 1} = 1 −∑

q�2 Pr{AM = q}.
Recall that the peak of sampled-scaled age is the number of

updates between two decoding successes, and it can be seen
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that the limiting probability of decoding failure for generalized
incremental updates of Markov sources, is given by

lim
j→∞ Pr{A j � 2} = 1 − 1

E[AM ] .

This relation can be established from equation (10) to com-
pute the mean peak age as E[AM ] = ∑

q∈N Pr{AM � q} =
1

�π1,1� , and from Corollary 4 to get the limiting probability of
decoding failure as lim j→∞ Pr{A j � 2} = 1 − �π1, 1�.

VII. AN EXAMPLE MARKOV SOURCE

We evaluate the performance metrics for the following
Markov source, as a special case of our general result. Recall
that ν denotes the invariant distribution of the transition
probability matrix P of the Markov source. It follows that
ν and all one column vector 1 are respectively the left and the
right eigenvectors of the matrix P with unit eigenvalue.

A Markov source is called uniform if the probability of
consecutive state difference δ j being represented by k bits
is independent of the initial state i . That is, the differential
encoding success probability Pi (�k) is identical for all states
i ∈ F2m , and can be denoted by P(�k).

Corollary 11. For a uniform Markov source, the limiting mean
of sampled-scaled age Ã is

E[ Ã] = − 1

1 − (pa − pd)P(�k)
+ 1 + 1

1 − pa
.

and the distribution of peak age ÃM is given by

Pr{ ÃM = q} =
{

s q = 1,

(1 − s)pq−2
a (1 − pa) q � 2.

where s = (1 − pa) + (pa − pd)P(�k).

Proof: For uniform Markov source, the all ones column
vector 1 is a right eigenvector for the block-diagonal matrix
D̃ corresponding to the eigenvalue (pa − pd)P(�k). Hence,
it follows that

�ν(I − D̃)−1, 1� = 1

1 − (pa − pd)P(�k)
.

Result follows immediately from (7) and (10).
We note that setting P(�k) = 1 for the uniform Markov

source gives us a highly correlated source wherein the consec-
utive state difference can always be represented by k bits. Such
a source offers differential encoding opportunities after every
successful update decoding, and hence serves as the lower
bound on the age of the generalized update scheme for general
Markov sources. A true update scheme ignores the differential
encoding opportunity, as if P(�k) = 0, and serves as an
upper bound on the age for general Markov source. Another
special case is a uniform iid source which generates messages
uniformly at random from F2m , such that P(�k) = 2k−m .

VIII. NUMERICAL COMPARISON

Our proposed analysis is valid for any permutation invariant
coding scheme. For clarity of exposition, we use a random
coding scheme [33] for the numerical studies. For the random

Fig. 6. We plot the variation of limiting average age with respect to the
differential encoding threshold k in generalized incremental update scheme,
when the channel erasure probability � ∈ {0.01, 0.1, 0.2, 0.7}. We have chosen
codeword length n = 20 and the number of information bits m = 15.

coding scheme, conditioned on the number of erasures E in
an n-length codeword with n − r parity bits, the probability
of decoding failure [34] is given by

P(n, n − r, E) = 1 −
E−1∏
i=0

(
1 − 2i−(n−r)

)
.

For all numerical comparisons, we have considered a Markov
source M(t) with the associated fundamental transition prob-
ability matrix Q to be tri-diagonal such that for all i, j ∈ F2m ,
we have

Qi j � Pr{M(t + 1) = j |M(t) = i} =
{

1 − αi , j = i,

αi/2, | j − i | = 1.

The diagonal element 1 − αi for each state i measures the
self-correlation of source state i , with smaller αi indicating
higher self-correlation. For the numerical studies, we chose
the number of information bits m = 15, and update codeword
lengths to be n = 20 bits. Let Y be a standard normal random
variable. For each i ∈ F2m , the parameter αi is chosen in (0, 1)
to create the tri-diagonal fundamental source state transition
matrix Q. Since the set of parameters (αi : i ∈ F2m ) is
large (215 elements), we chose these parameters randomly and
independently from the following distribution for x ∈ [0, 1],

Pr{X � x} = P(|Y | � x ||Y | ∈ [0, 1]) =
∫ x
−x dye−y2/2∫ 1
−1 dye−y2/2

.

The above distribution corresponds to the absolute value of
a standard normal random variable constrained between the
duration [0, 1].

We plot the limiting average age of information of gen-
eralized incremental update scheme for the above men-
tioned source when the channel erasure probability � ∈
{0.01, 0.1, 0.2, 0.7} in Fig. 6, as the differential encoding
threshold k grows in {1, . . . , m}. As was alluded in the
introduction, we observe the existence of optimal differential
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Fig. 7. We plot the variation of the optimal differential encoding threshold k∗
for the generalized incremental update scheme, with respect to the codeword
length n in {20, . . . , 45}. The number of information bits is taken as m = 15,
and the erasure probability is � = {0.1, 0.2, 0.5, 0.7}.

Fig. 8. We plot the limiting average age with respect to the codeword length n
in {20, . . . , 45} for the generalized incremental update (GIU) with the optimal
differential encoding threshold k∗(n) and with a fixed differential encoding
threshold k. We also plot the limiting average age with respect to codeword
length n for true updates. We have chosen the number of information bits as
m = 15, and the erasure probability as � = 0.1.

encoding threshold for generalized incremental updates of
Markov sources.

In Fig. 7, we have plotted the age-optimal differential
encoding level k∗ of the generalized incremental update
scheme for channel erasure probability � ∈ {0.1, 0.2, 0.5, 0.7},
as the codeword length n varies in {20, . . . , 45}. We can
infer from the plot that for a fixed value of �, the optimal
differential encoding level k∗ first increases in code length
and then saturates. The saturation of k∗ results from the fact
that as the codeword length n increases the source states
M(t + n) and M(t) tend to get statistically independent,
and hence there is very little correlation between these two
source states to be exploited by the differential update. As
the channel gets worse, the average age is dominated by
decoding failures and hence adding more parities is more
important than sending differential updates, and hence the

Fig. 9. This plot shows the variation of limiting average age with respect to
the codeword length n in {20, . . . , 45} for the generalized incremental update
(GIU) with the optimal differential encoding threshold k∗(n) and with a fixed
differential encoding threshold k. We also plot the limiting average age with
respect to codeword length n for true updates. We have chosen the number
of information bits as m = 15, and the erasure probability as � = 0.01.

saturation level for differential encoding threshold decreases
with increase in channel erasure probability �.

In Fig. 8 and Fig. 9, we have plotted the limiting average
age for two different channel erasure probabilities � = 0.1
and � = 0.01 respectively, as the code length n varies in
the range {15, . . . , 45} for three different update schemes: the
true update scheme, the generalized incremental update with
fixed differential encoding threshold k, and the generalized
incremental update with optimal differential encoding thresh-
old k∗(n). We note that for generalized incremental update,
there exists an optimal differential encoding threshold k∗(n)
for each code length n that minimizes the average age. We
have plotted the average age for parameters (n, k∗(n)) in the
third case. We observe the existence of optimal code-length
selection for age minimization for all three update schemes.
Further, we observe that a sub-optimal selection of differential
encoding threshold can significantly reduce the average age
gain for the generalized incremental updates when compared
to always sending true updates.

IX. CONCLUSION AND FUTURE WORK

We considered a generalized incremental update scheme for
real-time status updates for timely information reception at
the receiver. This scheme exploits the temporal correlation
between consecutive samples of a Markov source to reduce the
information age at the receiver by sending differential updates,
as compared to sending true updates. We numerically find
the mean-age-optimal differential encoding threshold to decide
between differential and actual updates. To this end, we needed
to evaluate the age distribution of the proposed scheme for a
general Markov source. We show that for this case, the source
state and the information age are jointly Markov, and the
standard technique of finding an age renewal interval can’t
be applied in a straightforward manner. Instead, utilizing the
block structure of the corresponding transition matrix, we
find the invariant distribution of the joint Markov process
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using matrix geometric methods. From this joint invariant
distribution, we find the marginal stationary distribution of
the age process. From the resulting limiting age distribution,
we can compute limiting performance metrics such as mean
age, peak age, decoding failure probability, and decay-rate of
age-distribution for a general Markov source. These perfor-
mance metrics admit a much simpler form for some special
Markov sources with additional structure, and are derived as
a corollary of the general result. We recover earlier results on
highly correlated and uniform Markov sources, and provide
new results for general Markov sources.

We showed that with the age-optimal differential encoding
threshold, the generalized differential update scheme is more
timely than the true update scheme. However, these gains seem
to hinge on the accurate and immediate feedback from the
receiver, and a perfect control message from the transmitter
indicating the different encoding schemes for the differential
and the true update. We remark that having immediate receiver
feedback is not necessary for these gains to be realized. For
example, consider the case when feedback delay is of one
codeword duration. In this case, we can divide the source trans-
mission into two streams that transmit n-length packets one
after the other. Each stream receives its associated feedback
before its next transmission opportunity. With this modifica-
tion, both of these streams can employ the proposed update
protocol, and can be studied in isolation using the proposed
technique. However, the gains would diminish when the feed-
back messages are erased themselves, and if we need to send
the control message along with the actual information over the
unreliable channel. Consideration of unreliable feedback and
control channels is an interesting future research direction.

While we consider the problem of age minimization for the
periodic updates, it would be interesting to consider the prob-
lem of minimization of process estimation error at the receiver
with non-periodic updates. For example, an interesting future
direction is exploring sampling strategies outlined in [29] for a
Markov source, with constraints on how often one can sample
the source.

APPENDIX A
JOINT MARKOV PROCESS

We assume A0 = 1 in the following.

Lemma 12. The state space of random vector (M j , A j ) is
F2m × N for each j ∈ N.

Proof: The state space for the source state M j is finite field
F2m . Since A0 = 1, the sampled-scaled age A j ∈ {1, A j−1+1}
from the age evolution equation (4). Hence A j can assume
values in N for each j .

Lemma 13. The discrete-time discrete-valued joint process
((M j , A j ) ∈ F2m × N : j ∈ N) is Markov.

Proof: We denote the history of the joint sampled process
until j th reception as F j = σ(A0, M1, A1, . . . , M j , A j ).
From the Markov property of the source and its independence
from the erasure channel, it follows that for each j ∈ N

PM j |F j−1 = PM j |M j−1 = PM j−1,M j . (11)

We recall that the age at j th reception is A j = 1 + ξ̄ j A j−1
from the age evolution equation (4). Further, the differential
update indicator γ j is a function of source states M j , M j−1
and sampled-scaled age A j−1, and can be written as

γ j = ξ j−11{δ j ∈�k} = 1{A j−1=1}1{M j −M j−1∈�k}.

Conditioned on the differential update indicator γ j , the decod-
ing success indicator ξ j is independent of the past history
F j−2. Hence, for each j ∈ N

PA j |F j−1,M j = PA j |M j ,M j−1,A j−1 . (12)

From the definition of conditional probability, and equa-
tions (11) and (12), we have

PM j ,A j |F j−1 = PA j |F j−1,M j PM j |F j−1

= PA j |M j ,M j−1,A j−1 PM j |M j−1 = PM j ,A j |M j−1,A j−1 .
(13)

Hence, we have obtained that, conditioned on the current state
(M j , A j ), the future state (M j+1, A j+1) is independent of the
past history F j−1. This implies the Markov property for the
joint process.

Lemma 14. Conditioned on A j−1 � 2 and source states
M j , M j−1, the probability distribution of sampled-scaled age
A j after j th reception, is given by

PA j |M j ,M j−1,A j−1 = (1 − pa)1{A j =1} + pa1{A j =A j−1+1}.

Conditioned on A j−1 = 1 and the source states M j , M j−1,
the probability distribution of sampled-scaled age A j after j th
reception, is given by

PA j |M j ,M j−1,A j−1 =
{

1 − pa + (pa − pd)1{δ j ∈�k}, A j = 1,

pa − (pa − pd)1{δ j ∈�k}, A j = 2.

Proof: From the age evolution equation (4), we have A j ∈
{1, A j−1 + 1} and A j = 1 iff ξ j = 1. Hence, we have

PA j =A j−1+1|M j ,M j−1,A j−1 = E[ξ̄ j |M j , M j−1, A j−1].
The event {A j−1 � 2} is equivalent to the decoding failure of
the ( j − 1)th update, i.e. ξ j−1 = 0. Hence the j th update has
the true state information, and the corresponding differential
update indicator γ j = 0. From the conditional mean of
decoding failure indicator (2), we have

E[ξ̄ j |M j , M j−1, A j−1 � 2] = E[ξ̄ j |γ j = 0] = pa.

Contrastingly, the indicator 1{A j−1=1} is equal to the decoding
success indicator ξ j−1 of the ( j − 1)th update. Hence the j th
update is differential update if {δ j ∈ �k}, and true update
otherwise. From (3), it follows that

E[ξ̄ j |M j , M j−1, A j−1 = 1] = pa1{δ j /∈�k} + pd1{δ j ∈�k}.

Result follows from the above two conditional means of the
decoding failure indicator ξ̄ j .

Lemma 15. The joint process is a time-homogeneous Markov
process.

Proof: Homogeneity of the Markov process follows
from the fact that the conditional distributions PM j |M j−1 and
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PA j |M j ,M j−1,A j depend only on the realized states, and don’t
vary with the update index.

Since the joint process is a time-homogeneous Markov
chain, we can define the transition probability operator T for
the joint process as

T(M j−1,A j−1),(M j ,A j ) � P(M j ,A j )|(M j−1,A j−1).

Corollary 16. The probabilities for the joint process to
transition from state (i, q) to state (i 
, q 
) for level q � 2 are

T(i,q),(i 
,q+1) = paPii 
 , T(i,q),(i 
 ,1) = (1 − pa)Pii 
 .

The transition probabilities from level q = 1 are

T(i,1),(i 
,2) = (pa − (pa − pd)1{i 
−i∈�k })Pii 
 ,

T(i,1),(i 
,1) = ((1 − pa) + (pa − pd)1{i 
−i∈�k })Pii 
 .

Proof: Recall that the sampled source process is Markov
process with the transition matrix P independent of the age
process. The result follows from equation (13) and Lemma 14.

Lemma 17. The Markov process ((M j , A j ) : j ∈ N) is
irreducible.

Proof: We fix two arbitrary states i, l ∈ F2m and level
q � 2. To show irreducibility, it suffices to show that there
is a positive probability of transition from state (l, q) to state
(i, 1) in finite steps, and positive transition probability from
state (i, 1) to (l, q).

We first show that there is a positive probability of transition
from state (l, q) to state (i, 1) in finite steps. From the
irreducibility of the Markov source, we can find r � q − 1
such that Pr

li > 0. The probability of r successful updates is
lower bounded by (1 − pa)

r , and hence

Tr
(l,q),(i,1) � Pr

li (1 − pa)
r > 0.

Next, we consider the reverse transition from state (i, 1)
to state (l, q). From the irreducibility of the Markov source,
we can find r ∈ N such that Pr

il > 0. One sample path to reach
from state (i, 1) to (l, q) is to have r−q+1 decoding successes
followed by q − 1 consecutive failed updates. The probability
of this sample path is lower bounded by (1− pa)

r−q+1 pd pq−2
a ,

and hence

Tr
(i,1),(l,q) � Pr

il (1 − pa)
r−q+1 pd pq−2

a > 0.

This shows that the joint process is irreducible.

Lemma 18. The Markov process ((M j , A j ) : j ∈ N) is
aperiodic.

Proof: Since aperiodicity is a class property, we show that
there exists a state i and some co-prime positive integers n1, n2
such that the probabilities of return to state (i, 1) in n1 steps
and in n2 steps are positive. From aperiodicity of P, it follows
that there exists some state i and co-prime positive integers
n1, n2 such that Pn1

ii > 0 and Pn2
ii > 0. If either n1 or n2

equals unity, then it follows that Pii > 0. Hence,

T(i,1),(i,1) = Pii (1 − pd) > 0.

Next, we consider n1, n2 � 2. Sample paths of return after
n j − 1 consecutive failures happen with non-zero probability

greater than (1− pa)pd p
n j −2
a and hence for co-prime positive

integers n1, n2 we have

T
n j

(i,1),(i,1) � P
n j
ii (1 − pa)pd p

n j −2
a > 0, j ∈ {1, 2}.

Lemma 19. The joint process ((M j , A j ) : j ∈ N) is positive
recurrent.

Proof: From our assumption of the irreducibility and
aperiodicity of the source state transition matrix P, it follows
that the transition operator T for the joint process is also
irreducible and aperiodic. Further, we know that the state
space F2m of underlying sampled Markov source is finite
and A j ∈ N. Therefore, the state space of the joint process
is countably infinite, and it suffices to show that the mean
of return time T(i,1) to a state (i, 1) is finite. Towards this,
we construct a process ((M̂ j , Â j ) : j ∈ N) with state space
F2m ×N for which the return time to state (i, 1) is stochastically
larger than T(i,1), and the mean return time is finite.

At each decoding instant j ∈ N, we set M̂ j = M j .
While the decoding failure probability for the j th update is
either pa or pd depending on (M j , M j−1, A j−1), we set the
decoding failure probability pa for the constructed process
((M̂ j , Â j ) : j ∈ N). Thus, we have

Pr( Â j+1 = m| Â j = q) = pa1{m=q+1} + (1 − pa)1{m=1}.
The coupled process ((M̂ j , Â j ) : j ∈ N) is equivalent to a

process which simply sends the true state at each transmission
opportunity. Let ξ̂ j be the indicator for the decoding success
for the j th received update for the constructed process, then
we can couple the Bernoulli indicator random variables ξ̂ j and
ξ j such that ξ̂ j � ξ j for each j ∈ N since pd < pa . That is,
this coupling ensures that the success of an update (say the j th
update) in the process ((M̂ j , Â j ) : j ∈ N) implies the success
of the corresponding update (the j th update) in the original
process, ((M j , A j ) : j ∈ N). This provides us a coupling of
the constructed process ((M̂ j , Â j ) : j ∈ N) to the original
joint process ((M j , A j ) : j ∈ N) such that A j � Â j almost
surely. For the coupled processes, we can see that the time
to return to state (i, 1) for the process ((M̂ j , Â j ) : j ∈ N)
is stochastically larger than the corresponding time for the
process ((M j , A j ) : j ∈ N).

Next, we show that the constructed joint process has a
unique stationary distribution which implies the mean return
time to (i, 1) is finite for this process. Since the probability of
decoding failures for the constructed process ((M̂ j , Â j ) : j ∈
N) is always pa, the sampled-scaled age process ( Â j : j ∈ N)

is independent of the source-state process (M̂ j : j ∈ N). This
implies that for all j ∈ N,

Pr{M̂ j = m, Â j = q} = Pr{M̂ j = m} Pr{ Â j = q}.
Hence, we can write the stationary distribution of the joint
process as

lim
j→∞ Pr{M̂ j = m, Â j = q}
= lim

j→∞ Pr{M̂ j = m} lim
j→∞ Pr{ Â j = q},
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whenever the limits on the individual terms exist. The station-
ary distribution for the source process (M̂ j : j ∈ N) is ν and
for the process Â j we can compute the invariant distribution
by using global balance equations, which is given by,

lim
j→∞ Pr{ Â j = q} = (1 − pa)pq−1

a .

Thus the process ((M̂ j , Â j ) : j ∈ N) has a unique invariant
distribution given by

lim
j→∞ Pr{M̂ j = m, Â j = q} = νm(1 − pa)pq−1

a .

This implies the positive recurrence of ((M̂ j , Â j ) : j ∈ N),
and the result follows from the stochastic dominance of the
mean return time to state (i, 1) for the ((M̂ j , Â j ) : j ∈ N)
process over the corresponding return time for the joint process
((M j , A j ) : j ∈ N).
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