
Sequential addition of coded sub-tasks for straggler
mitigation

Ajay Badita
Indian Institute of Science

Bengaluru, KA 560012, India
ajaybadita@iisc.ac.in

Parimal Parag
Indian Institute of Science

Bengaluru, KA 560012, India
parimal@iisc.ac.in

Vaneet Aggarwal
Purdue University

West Lafayette, IN 47907, USA
vaneet@purdue.edu

Abstract—Straggler mitigation can be achieved by redundant
computation. In MDS redundancy method, a task is divided into
k sub-tasks which are encoded to n coded sub-tasks, such that
a task is completed if any k coded sub-tasks are completed.
Two important metrics of interest are task completion time, and
server utilization cost which is the aggregate completed work
by all servers in this duration. We consider a proactive straggler
mitigation strategy where n0 out of n coded sub-tasks are started
at time 0 while the remaining n−n0 coded sub-tasks are launched
when `0 6 min(n0, k) of the initial ones finish. The coded sub-
tasks are halted when k of them finish. For this flexible forking
strategy with multiple parameters, we analyze the mean of two
performance metrics for the proposed forking strategy when the
random service completion time at each server is independent
and distributed identically to a shifted exponential. Our analysis
demonstrates that the regime of n0 < k leads to higher mean
service completion time and no change in mean server utilization
cost as compared to no forking (n0 = n), and is thus not a regime
of interest. For n0 > k, we find that there is a tradeoff between
the two performance metrics and leads to decrease in mean server
utilization cost at the expense of mean service completion time
and an efficient choice of the parameters is helpful.

Index Terms—Straggler mitigation, distributed computing,
completion time, scheduling, forking points.

I. INTRODUCTION

Distributed computing uses multiple distributed servers to
process the job. With the use of erasure coding, a job can be
divided into ncoded sub-tasks, such that the job is complete
when any k of them are finished. Erasure coding is a more
general form of redundancy than simple replication, where
k = 1. Such flexibility of finishing any k out of n coded
sub-tasks has been shown in the prior works on distributed
computing [1], [2]. The slowest tasks that determine the job
execution time are called stragglers.

Assuming that each server is working on a unique coded
sub-task, we consider the following important question. When
should the n coded sub-tasks be started? One option is to start
all coded sub-tasks at time 0, corresponding to the job request
time. This leads to using all n servers until the first k of them

This work is supported in part by the Science and Engineering Research
Board under Grant DSTO-1677, the Department of Telecommunications,
Government of India, under Grant DOTC-0001, the VAJRA fellowship, the
National Science Foundation under Grant CNS-1618335, and CISCO. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of the funding agencies.

have finished, resulting in low service completion time at the
cost of a high server utilization. On the other hand, we may
start k servers at time 0. This would help avoid the excess
server utilization cost for the remaining n − k servers, while
it is unclear how the server utilization cost or the service
completion time is affected. A more flexible approach is to
start with n0 < n coded sub-tasks at time 0. When `0 < k
of them are finished, we launch the remaining n1 = n − n0

servers and this launching point is called forking point. In the
first example of starting all n servers, we have n0 = n, `0 = k,
n1 = 0. In the second example of starting with k, we have
n0 = `0 = k. Thus, the proposed approach affords a flexible
framework for launching the coded sub-tasks. It is not apriori
clear as to how should these parameters be chosen so that both
the metrics are optimized. This paper aims to find the affect
of n0, n1, and `0 on the two metrics - the service completion
time, and the server utilization cost.

A. Related Work

Given the unpredictable nature of the nodes in distributed
computing systems, coding theoretic techniques have been
used to achieve high-quality algorithmic results in the face
of uncertainty. Coding-theoretic approaches have been shown
to provide a tradeoff between latency and cost in distributed
storage systems [4]. It was shown in [5] that MDS codes
are the latency-minimizing code among a class of symmetric
codes for distributed systems. Coding theoretic techniques
have been provided for mitigating stragglers in matrix multi-
plication [6]–[8]. The authors of [1], [9] consider the problem
of computing gradients in a distributed system, and propose
a novel coded computation scheme tailored for computing
a sum of functions. While most of the works focus on the
application of coded computation to linear operations, coding
has also been found useful in distributed computing frame-
works involving nonlinear operations [10]. Efficient coding
theoretic techniques to reduce the communication cost in the
process of transferring the results of mappers to reducers have
been studied in [6], [11]–[14]. These works demonstrate the
improvement of service completion times with the use of
coding. However, this line of work does not take the server
utilization cost into account. We will consider this cost to
determine efficient launching times of the different coded sub-
tasks.

One of the key approaches to mitigate the effect of stragglers
is to either re-launch a certain task if it is delayed, or
preemptively assign each task to multiple nodes and move
on with the copy that completes first. Speculative execution
have been studied in [15], which acts after the tasks have
already slowed down. In a proactive mitigation approach, one
can launch redundant copies of a task hoping that at least
one of them will finish in a timely manner. The authors
of [16] perform cloning to mitigate the effect of stragglers. The
authors of [17] analyzed the latency and cost for replication-
based strategies for straggler mitigation. A machine learning
approach for predicting and avoiding these stragglers has been
studied in [18]. Recently, coding-theory-inspired approaches
have been applied to mitigate the effect of straggling as
mentioned earlier. Single fork analysis with coding has been
studied in [2], where k coded sub-tasks are started at t = 0.
Further, after a fixed deterministic time ∆, additional n − k
coded sub-tasks are started. Our work differs from [2] since

(i) we allow for general number of starting coded sub-tasks,
(ii) the start time of new coded sub-tasks is random and

based on the completion time of certain number of coded
sub-tasks rather than a fixed constant, and

(iii) our framework allows for an optimization of different pa-
rameters to provide a tradeoff between service utilization
cost and service completion time.

B. Contributions

We characterize the means of the service completion time
and the server utilization cost, for a single (n, k)-MDS coded
job with single forking. The MDS coding implies that the job
is fragmented into k sub-tasks and encoded into n coded sub-
tasks, where completion of any k coded sub-tasks finishes the
job. The single forking implies that the job is started with n0

coded sub-tasks at the job request time, and another n1 coded
sub-tasks are started on completion of `0 < k out of initial n0

coded sub-tasks. Further, the random execution time of each
coded sub-task is assumed to be independent and identically
distributed (i.i.d.) as a shifted exponential distribution, which
is shown as a decent approximation of task completion times
on compute clusters [2], [19].

We compute the two performance metrics for the choice of
system parameters n0, n1, and `0, and demonstrate the quan-
titative tradeoff between these two metrics. For comparison,
we consider the no forking case, when n0 = n. We find there
is no advantage to choose n0 < k for either of the metrics
as compared to no forking case. This is because the service
utilization cost does not change with the value of n0 when
n0 < k while the service completion time increases as n0

decreases. Thus, one should not perform forking with n0 < k,
and thus the only regime of interest is n0 > k.

In this regime n0 > k, we make the following observations.
Keeping parameters `0 and n fixed, we observe that the server
utilization cost is not monotone in the initial number of tasks
n0, whereas the mean service completion time decreases with
n0 as expected. For a fixed n0 and n, increasing the fork
task threshold `0 increases the service completion time while

decreases the server utilization cost. Thus, there is a tradeoff
in the two metrics and efficient choice of parameters can
be decided by the system designer based on the weighted
combination of the two metrics.

II. SYSTEM MODEL

In this section, we describe the different components of the
system model in detail. We consider a distributed compute
system with n identical servers.

A. Coding Model

We assume that each compute job can be divided into k
sub-tasks, which are encoded into n coded sub-tasks and sent
to n distinct servers. We assume the jobs to be MDS coded,
which implies that the coded sub-task completion at any k
out of these n distinct servers results in the completion of the
original job.

B. Single-Fork Scheduling

We assume a single-fork scheduling, where a job starts at
n0 parallel servers at time t0 = 0, and adds n1 = n − n0

servers at a random time instant t1 corresponding to service
completion time of the `0th coded sub-task out of n0 initial
servers. The total service completion time is given by t2 when
the remaining coded sub-tasks at `1 = k − `0 servers are
completed. Since we can’t have more service completions than
the number of servers in service, we have `0 6 n0 and `0 +
`1 = k 6 n.

C. Service Model

We assume the cost of server utilization to be λ per unit
time. Each server i ∈ [n] , {1, . . . , n} has an independent
and identically distributed (i.i.d.) random service time Ti with
distribution function F for each scheduled coded sub-task on
this server. Recent works [4], [19]–[21] suggest that a shifted
exponential distribution is a good fit for modeling the service
time distribution in distributed computation networks. It is sug-
gested that the service time for each computation of coded sub-
task can be modeled by two aggregate components: a constant
server start-time and a random memoryless component. These
studies along with the goal of analytical tractability influenced
us to assume the service time distribution for each coded sub-
task to be a shifted exponential with rate µ and shift c, such
that the complementary distribution function F̄ = 1 − F can
be written

F̄ (x) , P{T1 > x} = 1{x∈[0,c]} + e−µ(x−c)
1{x>c}. (1)

We see that T ′i , Ti− c are i.i.d. random variables distributed
exponentially with rate µ. We denote the jth order statistic of
(T ′1, . . . , T

′
n) by Xn

j .

Remark 1. The jth order statistic of (T1, . . . , Tn) is c+Xn
j .

Remark 2. Let (X1, . . . , Xn) be n i.i.d. random variables with
common distribution function F , and we denote the jth order
statistics of this collection by Xn

j . Then the distribution of Xn
j

is given by P
{
Xn
j 6 x

}
=
∑n
i=j

(
n
i

)
F (x)iF̄ (x)n−i.

Remark 3. Denoting Xn
0 = 0, from the memoryless property

of T ′i , we observe the following equality in joint distribution
of two vectors

(Xn
j −Xn

j−1 : j ∈ [n]) =

(
T ′j

n− j + 1
: j ∈ [n]

)
.

D. Performance Metrics

The service completion time for k coded sub-tasks is
denoted by t2 and the server utilization cost by W . We denote
the service completion time of rth coded sub-task in ith stage
[ti, ti+1) by ti,r where i ∈ {0, 1}. Since each stage consists
of `i service completions, we have r ∈ {0, . . . , `i} such that
ti,0 = ti and ti,`i = ti+1,0 = ti+1.

Assuming that a server is discarded after its coded sub-task
completion, we can write the utilization cost in this case as
the time-integral of number of servers that are ON during the
service completion [0, t2], multiplied by the server utilization
cost per unit time

W = λ
1∑
i=0

[`i−1∑
r=0

(ti,r+1− ti,r)
(i∑
j=0

(nj−`j)+`i−r
)]
. (2)

The total service completion time S = t2 can be written as
the following telescopic sum

S =

1∑
i=0

[
`i∑
r=1

(ti,r − ti,r−1)

]
. (3)

We are interested in the optimal trade-off between the mean
service completion time E [t2] and the mean server utilization
cost E [W] for k coded sub-tasks scheduled in two stages
over these n servers. To this end, we will first analytically
compute the mean service completion time and the mean
server utilization cost.

We note that the problem is important even when there
are stochastic arrivals since this procedure of forking can be
used for any arriving job. The exact queueing analysis for
coded-jobs with forking is not straightforward to extend and
remains open, while the analysis in this paper provide insights
on how to efficiently fork a job in lightly-loaded scenarios.
This scenario arises in the case of low arrival rates so that the
queues are empty with high probability, and hence the system
can be modeled as an M/G/1 queue where the service time of
a job is the completion time computed in this work. Thus, one
can achieve a tradeoff between the two performance metrics
for lightly loaded queueing systems.

III. ANALYSIS OF THE PERFORMANCE METRICS

Recall that we have two contiguous stages. The time interval
[t0, t1) corresponds to the stage 0, and the interval [t1, t2]
corresponds to the stage 1. In stage 0, we switch on n0 initial
servers at instant t0 = 0. This stage is completed at the single
forking point denoted by the instant t1, when `0 coded sub-
tasks out of n0 are completed. At the beginning of stage 1,
additional n1 = n−n0 servers are switched on, each working
on a unique coded sub-task. The job is completed at the end
of this second stage, when remaining k − `0 coded sub-tasks

are completed. The kth service completion time is denoted by
t2. The server utilization cost can be written as sum of the
server utilization cost in each of the two stages as

W = W0 +W1.

We will separately analyze these two stages in the following
subsections.

A. Stage 0 Analysis

To compute mean duration of the stage 0, and the mean
server utilization in this stage, we need to compute the mean
of the interval [t0,r−1, t0,r) for each r ∈ [`0].

Lemma 4. The mean time between two coded sub-task
completions in the single forking scheme for i.i.d. shifted
exponential coded sub-task completion times in stage 0 is

E [t0,r − t0,r−1] =

{
c+ 1

µn0
, r = 1,

1
µ(n0−r+1) , r ∈ {2, . . . , `0} .

(4)

Proof: Since t0,r is the completion time of first r coded
sub-tasks out of n0 parallel coded sub-tasks, we have t0,r =
c+Xn0

r from Remark 1. Hence, for each r ∈ [`0], we have

t0,r − t0,r−1 = (c+Xn0
r)− (c+Xn0

r−1).

The coded sub-tasks are initiated at time t0,0 = t0 = 0 and
hence the first coded sub-task is completed at t0,1 − t0,0 =
c+Xn0

1 .
From Remark 3, we can write the following equality in

distribution

t0,r − t0,r−1 =

{
c+

T ′1
n0
, r = 1,

T ′r
(n0−r+1) , r ∈ {2, . . . , `0} ,

where (T ′1, . . . , T
′
n) are i.i.d. exponentially distributed random

variables with rate µ. Taking expectations on both sides, we
get the result.

Corollary 5. Consider single-forking with i.i.d. shifted expo-
nential coded sub-task completion times and initial number of
servers n0 in stage 0. The mean forking time is given by

E [t1] = c+

`0∑
r=1

1

µ(n0 − r + 1)
. (5)

The mean server utilization cost in stage 0 is given by

E [W0] =
λ

µ
(`0 + µn0c). (6)

Proof: We can write the completion time t1 of `0th coded
sub-task out of n0 in parallel, as a telescopic sum of length of
coded sub-task completions given in (3). Taking expectations
on both sides, the mean forking point E [t1] follows from the
the linearity of expectations and the mean length of each coded
sub-task completion (4).

Taking expectation of the server utilization cost in (2), the
mean server utilization cost E [W0] in stage 0 follows from the
linearity of expectations and the mean length of each coded
sub-task completion (4).

B. Stage 1 Analysis

To compute the mean duration of the stage 1, and the mean
server utilization in this stage, we need to compute the mean
of the interval [t1,r−1, t1,r) for each r ∈ [`1]. The difficulty in
this computation is that additional n1 servers that start working
on coded sub-tasks at the single forking-time t1, have an
initial start-up time of c due to the shifted exponential service
distribution. Hence, none of these additional n1 servers can
complete service before time t1 + c. Whereas, some of the
n0 − `0 servers with unfinished coded sub-tasks from stage 0
can finish their coded sub-task in this time-interval (t1, t1 +c].
In general, the number of coded sub-task completions in the
interval (t1, t1 + c] is a random variable, which we denote by
N(t1, t1 + c) ∈ {0, . . . , n0 − `0}.

To be able to compute the mean length of the stage 1,
and compute the mean server utilization in this stage, we first
need to compute the probability mass function of this discrete
valued random variable N(t1, t1 + c). We denote the event of
j − `0 coded sub-task completions in this interval (t1, t1 + c]
for any `0 6 j 6 n0 by

Ej−`0 ,
{
N(t1, t1 + c) = j − `0, t1 = c+Xn0

`0

}
.

Lemma 6. The probability distribution of the number of coded
sub-task completions N(t1, t1 + c) in the interval (t1, t1 + c]
for `0 6 j 6 n0 is given by pj−`0 , P (Ej−`0) where

pj−`0 =

(
n0 − `0
j − `0

)
(1− e−µc)j−`0e−(n0−j)µc. (7)

Proof: Let the number of service completions until time
t1 + c be j ∈ {`0, . . . , n0}. From Remark 1, we can write the
event of j − `0 service completions in the interval (t1, t1 + c]
as {

Xn0
j −X

n0

`0
6 c
}
∩
{
Xn0
j+1 −X

n0

`0
6 c
}c
.

From the definition of order statistics for continuous random
variables, we have Xn0

j < Xn0
j+1. This implies that the inter-

section of events
{
Xn0
j −X

n0

`0
6 c
}

and
{
Xn0
j+1 −X

n0

`0
6 c
}

is
{
Xn0
j+1 −X

n0

`0
6 c
}

.
Therefore, from the disjointness of complementary events

and probability axiom for summation of disjoint events, it
follows

pj−`0 = P
{
Xn0
j −X

n0

`0
6 c
}
− P

{
Xn0
j+1 −X

n0

`0
6 c
}
.

From Remark 3, we can write the above as

pj−`0 = P
{
Xn0−`0
j−`0 6 c

}
− P

{
Xn0−`0
j+1−`0 6 c

}
.

From Remark 2 for exponentially distributed random variables
with rate µ, we get the required form of pj−`0 .

We next provide a definition that will be used in the analysis.

Definition 7. We denote the Pochhammer function (a)n ,
Γ(a+n)

Γ(a) to define the z-transform of hypergeometric series as

pFq(z) , pFq

[a1, . . . , ap
b1, . . . , bq

; z
]

=

∞∑
n=0

∏p
i=1(ai)nz

n∏q
j=1(bj)n(n)!

. (8)

Because generalizations of the above series also exist [22], this
series is referred to here as the hypergeometric series rather
than as the generalized hypergeometric series.

Recall that in the duration (t1, t1 + c), there are n0 − `0
parallel servers in their memoryless phase, since the additional
n1 servers started at time t1 are still in their start-up phase. In
this duration, the event of j − `0 ∈ {0, 1, . . . , n0 − `0} coded
sub-task completions is Ej−`0 .

Let {s1, s2, . . . , sn0−`0} be the coded sub-task completion
times in stage 1 after the forking time t1, which in definition
correspond to {t1,1 = t1 + s1, t1,2 = t1 + s2, . . . , t1,n0−`0 =
t1 + sn0−`0}. In stage 1, the coded sub-task completions
numbered r ∈ [j− `0] are finished only by the n0− `0 servers
within time t1 + c, since none of the n1 servers started at
forking point t1 are able to finish even a single coded sub-task
with in the time t1+c, whereas the coded sub-task completions
numbered r ∈ {j − `0 + 1, . . . , k − `0} are finished by n− j
servers which include subset of combination of both left over
initial servers and all forked servers.

We next find mean of rth completion time in stage 1
conditioned on the event Ej−`0 .

Lemma 8. For any r ∈ [j − `0] and α = 1− e−cµ, we have

E [sr|Ej−`0] =

3F2

(
1,1,r+1

2,j−`0+2 ;α
)

rα
µ(j−`0+1) , r < j − `0,

c
[
1− α−r +

∑r
i=1

αi−r

icµ

]
, r = j − `0.

Proof: The detailed proof is provided in Appendix B.
In stage 1, for 1 6 r 6 j − `0, we have

t1,r − t1,r−1 = (Xn0−`0
r −Xn0−`0

r−1)1Ej−`0 .

For j − `0 + 2 6 r 6 k − `0, the difference t1,r − t1,r−1 is
equal to

(Xn−j
r−j+`0 −X

n−j
r−j+`0−1)1Ej−`0 . (9)

When r = j − `0 + 1, we write the time difference between
rth and (r − 1)th coded sub-task completion instants as

t1,r − t1,r−1 = t1,r − (t1 + c) + (t1 + c)− t1,r−1.

For r = j − `0 + 1, we have t1,r−1 6 t1 + c < t1,r. In
the disjoint intervals [t1,r−1, t1 + c) and [t1 + c, t1,r), there
are n0 − j and n − j i.i.d. exponentially distributed parallel
servers respectively. Since the age and excess service times of
exponential random variables are independent at any constant
time, we have independence of t1,r − (t1 + c) and (t1 + c)−
t1,r−1 for r = j − `0 + 1.

Conditioned on the event Ej−`0 of j − `0 coded sub-task
completions in the interval (t1, t1 + c], the conditional mean
of inter-coded sub-task completion time in stage 1 is

E [(t1,r − t1,r−1)|Ej−`0] = E[(sr − sr−1)(1{j−`0>r−1}

+ 1{j−`0=r−1} + 1{j−`0<r−1})|Ej−`0].

Lemma 9. For any r ∈ [k − `0], and α = 1 − e−cµ the
conditional mean E [(t1,r − t1,r−1)|Ej−`0] equals

2F1

(
1,r

j−`0+2 ;α
)

rα
µ(j−`0+1) , r < j − `0 + 1,

c
[

1
α(r−1) −

r−1∑
i=1

αi−r+1

icµ

]
+ 1

µ(n−j) , r = j − `0 + 1,

1
µ(n−`0−r+1) , r > j − `0 + 1.

(10)

Proof: Recall that, we have n0−`0 parallel servers in their
memoryless phase working on individual coded sub-tasks in
the interval (t1, t1 + c]. In this duration, N(t1, t1 + c) coded
sub-tasks are completed and additional n1 parallel servers start
their memoryless phase at time t1 + c.

We first consider the case when r − 1 > N(t1, t1 + c) =
j − `0. This implies that t1,r−1 > t1 + c and there are n −
`0− r+ 1 parallel servers in their memoryless phase working
on remaining coded sub-tasks. From Remark 3, the following
equality holds in distribution

t1,r − t1,r−1 =
T ′r

n− `0 − r + 1
.

Recall that Ej−`0 ∈ σ(T ′1, . . . , T
′
j−`0+1), and since (T ′i :

i ∈ N) is an i.i.d. sequence, it follows that t1,r − t1,r−1 is
independent of the event Ej−`0 for r > j − `0 + 1 and hence
E [t1,r − t1,r−1|Ej−`0] = E [t1,r − t1,r−1]. The result follows
from the fact that E [T ′i] = 1

µ .
We next consider the case when r − 1 = N(t1, t1 + c) =

j−`0. By definition of N(t1, t1+c), we have t1,r−1 6 t1+c <
t1,r. In the disjoint intervals (t1,r−1, t1 + c] and (t1 + c, t1,r],
there are n0−j and n−j i.i.d. exponentially distributed parallel
servers respectively. Therefore, writing t1,r− t1,r−1 as (t1,r−
(t1+c))+((t1+c)−t1,r−1), and using Remark 3, we compute
the conditional mean of the first part as

E
[
t1,r − (t1 + c)

∣∣ Ej−`0] = E
[
T ′r+1

n− j

]
=

1

µ(n− j)
.

By using the fact t1,r−1 = t1 + sr−1, we can
write the conditional mean of the second part as
E
[
t1 + c− t1,r−1

∣∣ Ej−`0] = c − E
[
sr−1

∣∣ Ej−`0] , where
E
[
sr−1

∣∣ Ej−`0] is given by Lemma 8. Summing these two
parts, we get the conditional expectation for r = j − `0 + 1.

For the case when r ∈ [j − `0], the result follows from
Lemma 8 and the fact t1,r = t1 + sr.

We next compute the unconditional mean of inter-coded
sub-task completion time E [(t1,r − t1,r−1)] by averaging out
the conditional mean E [(t1,r − t1,r−1)|Ej−`0] over all possi-
ble values of j. We denote m = j − `0 for convenience.

Corollary 10. For each r ∈ [k − `0], by considering all
possible values of m from the set {0, 1, . . . , n− `0}, the mean
inter-service completion time in stage 1, is

E [t1,r − t1,r−1] =
∑

m:m+1<r

pm
1

µ(n− `0 − r + 1)

+
∑

m:m+1=r

pm

[
c
[1

α(r−1)
−
r−1∑
i=1

αi−r+1

icµ

]
+

1

µ(n− j)

]

+
∑

m:m+1>r

2F1

(1, r

m+ 2
;α
) rα

µ(m+ 1)
pm.

Proof: The result follows by using Lemma 9 and from
the tower property of nested expectations

E [(t1,r − t1,r−1)] = E [E [(t1,r − t1,r−1)|Ej−`0]] ,

and the fact that N(t1, t1 + c) ∈ {0, . . . , n0 − `0} and pm
is defined in (7), as the probability of the number of service
completions N(t1, t1 + c) in the interval (t1, t1 + c] being
m = j − `0 where t1 is the time of `0 completions of initial
n0 coded sub-tasks.

We have all the necessary results to compute the means of
service completion time and server utilization cost. Next, we
consider two possibilities for the initial number of servers n0:
when n0 < k and otherwise. Note that when n0 < k, then
t2 > t1 + c almost surely, since k coded sub-tasks can never
be finished by initial n0 servers.

1) Case n0 < k:
In this case, the initial n0 servers are always less than

required number of coded sub-tasks k. There are `0 6 n0 < k
completed coded sub-tasks at time instant t1 and hence we
need additional servers to be switched on at this instant t1
to finish the remaining k− `0 coded sub-tasks. The additional
number of coded sub-task completions in the duration (t1, t1+
c] is denoted by N(t1, t1 + c) = j− `0 ∈ {0, 1, . . . , n0 − `0}.
These j − `0 coded sub-tasks are completed only by the
remaining n0 − `0 servers out of initial n0 servers. Since
n0 < k, the service completion time t2 > t1 + c and the
remaining k − j coded sub-tasks are completed by n − j
parallel servers working on individual coded sub-tasks. From
the memoryless property of exponential random variables,
the excess service of each of these n − j parallel servers is
exponentially distributed with rate µ.

We now compute the mean service completion time and
mean server utilization cost for n0 < k case.

Theorem 11. For the single forking case with n total servers
for k sub-tasks and initial number of servers n0 < k, the mean
server utilization cost is

E [W] = λnc+
λk

µ
, (11)

and the mean service completion time is

E [t2] = c+ E [t1] +
1

µ

n0∑
j=`0

pj−`0

k−1∑
i=j

1

(n− i)
, (12)

where E [t1] is given in (5) and pj−`0 is given in (7).

Proof: The detailed proof is provided in Appendix C.

From the Theorem 11, we observe that the mean server
utilization cost remains same for all values of initial number
of servers n0 < k and forking threshold `0. We further observe
that the mean service completion time decreases as we increase
the number of initial servers n0 < k. Hence, it follows that for
the case when n0 < k, the optimal number of initial servers is

n∗0 = k−1 at time t = 0. Further, since increasing `0 increases
the mean service completion time for any n0 and the mean
service utilization cost does not depend on `0, it follows that
`∗0 = 1 is the best choice for n0 < k. Thus, the joint best
choices for (n∗0, `

∗
0) in this regime are (k − 1, 1).

In addition, we note that if n0 = n and all the n coded sub-
tasks are started at t = 0, the mean service utilization cost can
be easily shown to be λnc+λk

µ which is the same as that for all
n0 < k. Thus, as compared to no forking (n0 = n), the single
forking with n0 < k has the same mean server utilization
cost while it has higher mean service completion time. Thus,
this regime doesn’t provide any tradeoff point between service
completion time and server utilization cost which is worse than
no-forking, and hence the only region of interest for a system
designer is n0 > k.

2) Case n0 > k:
In this case, the initial number of servers n0 is always

greater than the required number of coded sub-tasks k, and
hence the number of completed coded sub-tasks `0 at the
forking point t1 are in {0, 1, . . . , k}. There are three different
possibilities for completing k coded sub-tasks. First possibility
is `0 = k, when all the required k coded sub-tasks are finished
on initial n0 servers without any forking. In this case, t2 = t1.
For the next two possibilities, `0 < k and hence forking is
needed.

Second possibility is `0 < k and `0 +N(t1, t1 + c) = j 6
k− 1, where j− `0 service completions occur in the duration
[t1, t1 + c) and `0 6 j 6 k− 1. This implies that even though
n0 > k, the total coded sub-tasks finished until instant t1 + c
are still less than k and remaining k − j > 0 coded sub-tasks
among the required k are completed only after t1 + c, when
n − j parallel servers are in their memoryless phase. In this
case, t2 = t1 + c + Xn−j

k−j for N(t1, t1 + c) = j − `0 ∈
{0, . . . , k − `0 − 1}.

Third possibility is when `0 < k and `0 +N(t1, t1 + c) >
k. That is, even though the coded sub-tasks are forked on
additional n1 servers at time t1, the job is completed at k out
of n0 initial servers before the constant start-up time of these
additional n1servers is finished. This happens when sk−`0 6 c
and in this case, t2 = t1 + sk−`0 for N(t1, t1 + c) > k −
`0. Recall that sk−`0 is the (k − `0)th service completion in
stage 1 after t1. Summarizing all the results, we write the
service completion time in the case n0 > k and N(t1, t1+c) =
j − `0 as

t2 = t1 + sk−`01{`0<k6j} + (c+Xn−j
k−j)1{`06j<k}.

For n0 > k, the mean service completion time and the mean
server utilization cost are given in the following theorem.

Theorem 12. In single forking scheme, for n0 > k case, the
mean service completion time E [t2] is

E [t1] +
[k−`0∑
r=1

E [t1,r − t1,r−1]
]
1{`0<k} (13)

and the mean server utilization cost E [W] is

E [W0]+λ

k−`0∑
r=1

(n−`0−r+1)E [t1,r − t1,r−1]1{`0<k}. (14)

Where E [t1,r − t1,r−1] in the above expressions is given by
Corollary 10.

Proof: In Corollary 5, we have already computed the
mean completion time E [t1] of stage 0, and the mean server
utilization cost E [W0] in stage 0. Recall that since completion
of any k coded sub-tasks suffice for the job completion, the
forking threshold `0 6 k.

We first consider the case when `0 = k. In this case, we do
not need to add any further servers because all the required
tasks are already finished in stage 0 itself. Hence, there is no
need of forking in this case, and the mean service completion
time is given by E [t1] and the mean server utilization cost is
given by E [W0].

We next consider the case when `0 < k. In this case, the
job completion occurs necessarily in stage 1. Thus, we need to
compute E [t2 − t1] and E [W1] in order to evaluate the mean
service completion time E [t2] and the mean server utilization
cost E [W0 +W1]. The duration of stage 1 can be written as
a telescopic sum of inter service times

t2 − t1 =

k−`0−1∑
r=1

(t1,r − t1,r−1).

Further for `0 < k, the number of servers that are active in
stage 1 after (r− 1)th service completions are n− `0 − r+ 1
and the associated cost incurred in the interval [t1,r−1, t1,r) is
λ(t1,r − t1,r−1)(n− `0 − r+ 1). Therefore, we can write the
server utilization cost in stage 1 as

W1 = λ

k−`0−1∑
r=1

(n− `0 − r + 1)(t1,r − t1,r−1).

The result follows from taking mean of the duration t2− t1
and server utilization cost W1, from the linearity of expecta-
tions, and considering both possible cases.

We observe that when n0 > k, the mean service utilization
cost depends on the initial number of servers n0 as well as
the total number of servers n, unlike the case n0 < k where
this cost depends only on the total number of servers n. In
the following section, we numerically investigate the tradeoff
between the two performance metrics, which allows us the
proper choice of system parameters to work in a specified
regime.

IV. NUMERICAL STUDIES

For numerical evaluation of mean service completion time
and mean server cost utilization for single forking systems, we
choose the following system parameters. We select the sub-
task fragmentation of a single job as k = 12, and a maximum
redundancy factor of n/k = 2. That is, we choose the total
number of servers n = 24. We take the server utilization cost
rate to be λ = 1. Coded-task completion time at each server

was chosen to be an i.i.d. random variable having a shifted
exponential distribution. For numerical studies in this section,
we choose the shift parameter c = 1 and the exponential rate
µ = 0.5. We compare the two cases n0 < k and n0 > k with
no-forking case n0 = n, where all the available servers are
used as initial servers.

We first study the impact of number of initial servers n0

on the mean service completion time, when n0 < k. To
this end, we plot the mean service completion time as a
function of fork-task threshold `0 ∈ [n0] in Figure 1, for
different values of initial servers n0 ∈ {3, 5, 7, 9, 11} such that
n0 < k. The analytical results in Theorem 11 are substantiated,
by observing that the mean service completion time E [S]
increases with increase in fork-task threshold `0 and decreases
with increase in initial number of servers n0. Since the mean
service utilization cost in n0 < k is constant for any choice
of n0 and `0, it is not depicted.

From Figure 1, we infer that as compared to the no forking
case of n0 = n, the case of single forking with n0 < k has
higher service completion time for the same server utilization
cost. Thus, the regime n0 < k is not interesting for practical
applications.

2 4 6 8 10 12
2

4

6

8

Fork task threshold `0

M
ea

n
se

rv
ic

e
co

m
pl

et
io

n
tim

e
E

[S
]

n0=3
n0=5
n0=7
n0=9
n0=11
n0=24, No Forking

Figure 1. For the setting n0 < k, this graph displays the mean service
completion time E [S] as a function of fork task threshold `0 for single forking
when the total number of servers n = 24, the required of coded sub-task
completions k = 12, and different initial servers n0 ∈ {3, 5, 7, 9, 11}. The
single coded sub-task execution time at servers are taken as i.i.d. shifted
exponential distribution with shift c = 1 and rate µ = 0.5.

We next study the case when n0 > k. To this end, we
plot the mean service completion time in Figure 2 and mean
server utilization in Figure 3, both as a function of fork-task
threshold `0 ∈ [k], for different values of initial servers n0 ∈
{12, 14, 16, 18, 20}. The analytical results in Theorem 12 are
substantiated by observing that the mean service completion
time E [S] increases with increase in fork-task threshold `0
and decreases with increase in initial number of servers n0.
Further, the mean server utilization cost E [W] decreases with
increase in fork-task threshold `0. Thus, there is a tradeoff
between the two performance measures as a function of fork-
task threshold `0. The tradeoff between the two performance
metrics of interest is plotted in Figure 4, which suggests that

the number of initial servers n0 and the forking threshold `0
affords a true tradeoff between these metrics.

2 4 6 8 10 12
2

3

4

5

6

7

Fork task threshold `0

M
ea

n
se

rv
ic

e
co

m
pl

et
io

n
tim

e
E

[S
]

n0=12
n0=14
n0=16
n0=18
n0=20
n0=24, No Forking

Figure 2. For the setting n0 > k, this graph displays the mean service
completion time E [S] as a function of fork task threshold `0 for single forking
with the total number of servers n = 24, the total needed coded sub-tasks
k = 12, and different numbers of initial servers n0 ∈ {12, 14, 16, 18, 20}.
The single coded sub-task execution time at servers are assumed to be i.i.d.
shifted exponential distribution with shift c = 1 and rate µ = 0.5.

2 4 6 8 10 12

35

40

45

Fork task threshold `0

M
ea

n
se

rv
er

ut
ili

za
tio

n
co

st
E

[W
]

n0=12
n0=14
n0=16
n0=18
n0=20
n0=24, No Forking

Figure 3. For the setting n0 > k, this graph displays the mean server
utilization cost E [W] as a function of fork task threshold `0 for single forking
with the total number of servers n = 24, the total needed coded sub-tasks
k = 12, and different numbers of initial servers n0 ∈ {12, 14, 16, 18, 20}.
The single coded sub-task execution time at servers are assumed to be i.i.d.
shifted exponential distribution with shift c = 1 and rate µ = 0.5.

It is interesting to observe the behavior of mean server
utilization cost as a function of initial number of servers
n0 in Figure 3. We note that for each fork-task threshold
`0, there exists an optimal number of initial servers n0 that
minimizes the server utilization cost. We further observe in
Figure 4 that for n0 = 20, the mean service completion time
increases only 17.635% while the mean server utilization cost
can be decreased 8.3617% by an appropriate choice of `0 as
compared to choosing no forking case of n0 = n. However,
a value of `0 cannot be chosen for n0 = 20 that reduces the
mean server utilization cost beyond 8.3617%. In order to have
further reduction in mean server utilization cost, we can choose
n0 to 18 which helps to decrease mean server completion
time by 12.43% at an expense of 31.888% increase in mean

service completion time as compared to the no forking case
n0 = n. The intermediate points on the curve of n0 = 18
further provide tradeoff points that can be chosen based on
the desired combination of the two measures as required by
the system designer. The choice of n0 = 12 further helps
decrease the mean server utilization cost by 24.976% by
having 207.49% times increase in the mean service completion
time as compared to the no forking case n0 = n. Thus, we see
that appropriate choice of n0 and `0 provide tradeoff points
that help minimizing the mean server utilization cost at the
expense of the mean service completion time.

2 3 4 5 6 7

36

38

40

42

44

46

48

Mean service completion time E [S]

M
ea

n
se

rv
er

ut
ili

za
tio

n
co

st
E

[W
]

n0=12
n0=14
n0=16
n0=18
n0=20
n0=24, No Forking

Figure 4. For the setting n0 > k, we have plotted the mean server
utilization cost E [W] as a function of the mean service completion time
E [S] by varying fork task threshold `0 ∈ [n0] in single forking. The
total number of servers considered are n = 24, the total coded sub-task
needed are k = 12. The single coded sub-task execution time at servers are
assumed to be i.i.d. shifted exponential distribution with shift c = 1 and rate
µ = 0.5. We have plotted the same curve for different values of initial servers
n0 ∈ {12, 14, 16, 18, 20}. For each curve, `0 increasing from left to right.

V. CONCLUSIONS AND FUTURE WORK

We study the single-forking for a single job that can be
divided into k sub-tasks to be computed over n servers, in
two stages. We assume that k sub-tasks can be coded into n
computation coded sub-tasks using (n, k)-MDS coding, such
that completion of any k coded sub-tasks lead to completion
of the entire job. We assume that only n0 out of n servers are
started at time 0. After completion of `0 out of n0 servers,
remaining n − n0 servers are initiated. Using the shifted
exponential service times of the servers, we derive expressions
for two performance metrics:

(i) the mean service completion time which indicates the
mean time when k servers have finished execution, and

(ii) the mean service utilization cost which indicates the
aggregate mean of times each server is busy processing
the coded sub-tasks.

We show that the mean service completion time and the
mean server utilization cost are respectively increasing and
decreasing function of the fork-task threshold `0. We also note
that though the mean service completion is decreasing function
of the number of initial servers n0, there exists an optimal
number of initial servers n0 for each fork-task threshold `0.

For n0 > k, we find that there is a tradeoff between the
two performance metrics and leads to decrease in mean server
utilization cost at the expense of mean service completion time
and an efficient choice of the parameters is helpful.

Generalization of this study to multi-forking points with
coded sub-tasks remains an important future direction. We
believe that the framework provided in this article can be
utilized to quantify the performance gains of multi-forked
coded jobs.

APPENDIX A
AUXILIARY RESULT

Remark 13. For positive integers p, q and positive reals c, µ,
we have the following identity in terms of the hypergeometric
series pFq defined in Definition 7∫ c

0

xe−µx
(1− e−µx)q(e−µx − e−µc)p−q

(1− e−µc)p+2
dx

=

(
1

(p+ 2)µ2
(
p+1
q+1

)) 3F2

[1, 1, q + 2

2, p+ 3
; 1− e−µc

]
.

Remark 14. For positive integer m and positive reals c, µ, we
have the following identity mµ

∫ c
0
xe−µx(1− e−µx)m−1dx

= c(1−e−µc)m−c+
∑m
i=1

(1−e−µc)i
iµ . Using the definition of

hypergeometric series in (8), it can be verified that expression
in Remark 13 simplifies to the above expression for p = q =
m− 1.

APPENDIX B
PROOF OF LEMMA 8

We denote m = j − `0 for convenience. Let N(t1, t1 +
c) = m, then t1 + s1, . . . , t1 + sm are the coded sub-task
completion times of the first m servers out of n0− `0 parallel
servers in their memoryless phase in the duration [t1, t1 + c).
In the duration [t1,r−1, t1,r) for r ∈ [m], there are n0 − `0 −
r + 1 parallel servers in their memoryless phase, and hence
the inter-service completion times (t1,r − t1,r−1 : r ∈ [m])
are independent and distributed exponentially with parameter
µr , (n0−`0−r+1)µ. Denoting s0 = 0, we have sr−sr−1 =
t1,r − t1,r−1 for each r ∈ [m]. From the definition of µr’s
and pm, the independence of sr − sr−1, and rearrangement
of terms we can write the conditional joint density of vector
s = (s1, s2, . . . , sm) given event Em as

fs1,...,sm|Em =

m∏
i=1

iµe−µsi

1− e−cµ
. (15)

From the definition of the task completion times, the possible
values of the vector s = (s1, . . . , sm) satisfy the constraint
0 < s1 < · · · < sm < c. That is, we can write the set of
possible values for vector s as Am, where Am is a vector of
increasing co-ordinates bounded between (0, c), and can be
written as

Am , {s ∈ Rm : 0 < s1 < · · · < sm < c} .

This constraint couples the set of achievable values for the
vector s, and hence even though the conditional density has

a product form, the random variables (s1, . . . , sm) are not
conditionally independent given the event Em.

To compute the conditional expectation E [sr|Em], we find
the conditional marginal density of sr given the event Em. To
this end, we integrate the conditional joint density of vector
s over variables without sr. In terms of sr ∈ (0, c), we can
write the region of integration as the following intersection of
regions,

A−rm = ∩i<r {0 < si < si+1} ∩i>r {si−1 < si < c} .

Using the conditional density of vector s defined in (15) in the
above equation, and denoting α , 1−e−cµ and αr , 1−e−µsr
for clarity of presentation, we can compute the conditional
marginal density function [?]

fsr|Em =
mµ(1− αr)

αm

(
m− 1

r − 1

)
(αr)

r−1(α−αr)m−r. (16)

The conditional mean E [sr|Em] =
∫ c

0
fsr|Emdsr is obtained

by integrating the conditional marginal density in (16), over
sr ∈ (0, c). For r ∈ [m−1], the result follows from the integral
identity of Remark 13 for x = sr, q = r − 1, p = m− 1 and
α = 1 − e−µc. Similarly, the result for r = j − `0 follows
from Remark 14 for x = sm and m = j − `0.

APPENDIX C
PROOF OF THEOREM 11

We have already computed E [W0] and E [t1] in Corollary 5.
Recall the event Ej−`0 = {N(t1, t1 + c) = j − `0} for j ∈
{`0, . . . , n0}, and we are considering the case n0 < k 6 n.
We first compute the mean service completion time, and it
suffices to show that the mean duration of stage 1 is given by
E [t2 − t1] = c + 1

µ

∑n0

j=`0
pj−`0

∑k−1
i=j

1
n−i . To see this, we

first observe that since n0 < k, service for k coded sub-tasks
can’t be completed in the duration [t1, t1 + c). Conditioned
on the event Ej−`0 , there are n − j parallel servers in their
memoryless phase at instant t1 + c and there are k − j
remaining coded sub-tasks. Hence, we can write t2 = t1 +c+∑n0

j=`0
Xn−j
k−j 1{Ej−`0}. Result follows by taking expectations

on both sides, realizing that pj−`0 = E
[
1{Ej−`0}

]
, and the

fact that E
[
Xn−j
k−j

]
= 1

µ

∑k−1
i=j

1
n−i from Remark 3.

We next compute the mean server utilization cost, and it
suffices to show that the mean server utilization cost in stage 1
is given by E [W1] = λn1c+ λ

µ (k−`0). To this end, we recall
that the server utilization cost in stage 1 can be written as
W1 = λ

∑k−`0−1
r=0 (t1,r+1 − t1,r)(n− `0 − r).

Step 1: Expansion of server utilization cost. Using the
definition of sr = t1,r− t1, s0 = 0, n = n0 +n1, and denoting
m = j − `0 ∈ {0, . . . , n0 − `0}, we can re-write the server

utilization cost in stage 1 in terms of the indicator to the events
Em = {N(t1, t1 + c) = m}, as

W1 = λn1c+ λ

n0−`0∑
m=0

1{Em}

[m−1∑
r=0

(sr+1 − sr)(n0 − `0 − r)

+ (c− sm)(n0 − j) + (sm+1 − c)(n− j)

+

k−`0−1∑
r=m+1

(sr+1 − sr)(n− `0 − r)
]
.

Step 2: Rearrangement and expectation. With this substi-
tution and re-arrangement of the second and the third term in
the above expression, we get

∑m−1
r=0 (sr+1 − sr)(n0 − `0 −

r) + (c− sm)(n0− j) = c(n0− j) +
∑m
r=1 sr. Therefore, we

can write the mean server utilization cost in stage 1 in terms
of the conditional means E [sr|Em] as

E [W1] = λcn1 + λ

n0−`0∑
m=0

pm

(
c(n0 − j) +

m∑
r=1

E [sr|Em]

+ (n− j)E [(sm+1 − c)|Em]

+

k−`0−1∑
r=m+1

(n− `0 − r)E [(sr+1 − sr)|Em]
)
.

Step 3: Conditional mean of inter-service completion times.
Since there are n − `0 − r parallel servers working in their
memoryless phase after t1 + c, it follows from Remark 3
that E [sm+1 − c|Em] = 1

µ(n−j) and E [(sr+1 − sr)|Em] =
1

µ(n−`0−r) for r > m. Therefore, we have

1

λ
E [W1] = cn1 + c(n0 − `0) +

k − `0
µ

+

n0−`0∑
m=0

pm

[
E

[
m∑
r=1

sr|Em

]
− (c+

1

µ
)(m)

]
.

Step 4: Conditional mean of summation of completion
times. From the conditional joint distribution of the vector
s = (s1, . . . , sm) defined in (15), we can find the moment
generating function of sum Y ,

∑m
r=1 sr conditioned on the

event Em as

ΦY |Em(θ) = E
[
e−θY |Em

]
=
(µ(1− e−(θ+µ)c)

α(θ + µ)

)m
.

Since the conditional expectation E [Y |Em] is equal to
− d
dθΦY |Em(θ)|θ=0, we obtain E [

∑m
r=1 sr|Em] = m

(
c +

1
µ

)
− mc

α . By using this result, we have

1

λ
E [W1] = cn1 + c(n0 − `0) +

k − `0
µ

+

n0−`0∑
m=0

pm
mc

α
.

Step 5: Mean number of completions in [t1, t1 + c).
From Lemma 6, we see that N(t1, t1+c) is a binomial random
variable with parameters (n0− `0, α) for α = 1−e−µc. Thus,
E [N(t1, t1 + c)] =

∑n0−`0
m=0 mpm = (n0−`0)α and the result

E [W1] = λn1c+ λ
µ (k − `0) follows.

REFERENCES

[1] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Int. Conf. Mach.
Learning (ICML), 2017, pp. 3368–3376.

[2] M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
relaunch of tasks,” ACM SIGMETRICS Perf. Eval. Review, vol. 45, no. 2,
pp. 224–231, 2018.

[3] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” ACM SIGMETRICS
Perf. Eval. Review, vol. 42, no. 2, pp. 3–14, Sep. 2014.

[4] Y. Xiang, T. Lan, V. Aggarwal, and Y. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443–2457, Aug 2016.

[5] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 8, pp. 4683–4698, Aug 2019.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Adv. Neural
Inf. Process. Sys., 2016, pp. 2100–2108.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in IEEE Inter. Symp. Inf. Theory (ISIT), June 2018, pp. 2022–
2026.

[9] M. Ye and E. A. Abbe, “Communication-computation efficient gradient
coding,” in Int. Conf. Mach. Learning (ICML). International Machine
Learning Society (IMLS), 2018, p. 9716p.

[10] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in IEEE Inter. Symp. Inf. Theory
(ISIT), 2017, pp. 2413–2417.

[11] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2018.

[12] K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “Fundamental limits of
distributed data shuffling,” in Allerton Conf. Commun., Control, Comp.
(Allerton), 2018, pp. 662–669.

[13] M. A. Attia and R. Tandon, “Near optimal coded data shuffling for
distributed learning,” arXiv preprint arXiv:1801.01875, 2018.

[14] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach
to data shuffling,” in IEEE Inter. Symp. Inf. Theory (ISIT), 2017, pp.
2558–2562.

[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[16] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.” in USENIX Symp. Net. Sys.
Desgn. Impl. (NSDI), vol. 13, 2013, pp. 185–198.

[17] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perf. Eval. Review, vol. 43, no. 3, pp. 7–11, 2015.

[18] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-
task learning for straggler avoiding predictive job scheduling,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 3692–3728, 2016.

[19] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in IEEE Inter. Symp. Inf. Theory (ISIT), Aachen,
Germany, 2017, pp. 2900–2904.

[20] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, March 2018.

[21] A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1921–1932, 2018.

[22] G. Gasper, M. Rahman, and G. George, Basic hypergeometric series.
Cambridge university press, 2004, vol. 96.

