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Abstract—Samples from a high-dimensional AR[1] process are
quantized and sent over a time-slotted communication channel
of finite capacity. The receiver seeks to form an estimate of
the process in real-time. We consider the slow-sampling regime
where multiple communication slots occur between two sampling
instants. We propose a successive update scheme which uses com-
munication between sampling instants to update the estimates of
the latest sample. We show that there exist quantizers that render
the fast but loose version of this scheme, which updates estimates
in every slot, universally optimal asymptotically. However, we
provide evidence that most practical quantizers will require a
judiciously chosen update frequency.

I. INTRODUCTION

We consider the setting of real-time decision systems based
on remotely sensed observations. In this setting, the decision
maker needs to track the remote observations with high
precision and in a timely manner. These are competing require-
ments, since high precision tracking will require larger number
of bits to be communicated, resulting in larger transmission
delay and increased staleness of information. Towards this
larger goal, we study the following problem.

Consider a discrete time first-order auto-regressive (AR[1])
process Xt ∈ Rn, t ≥ 0. A sensor draws a sample from this
process, periodically once every s time-slots. In each of these
time-slots, the sensor can send nR bits to a center. The center
seeks to form an estimate X̂t of Xt at time t, with small
mean square error (MSE). Specifically, we are interested in
minimizing the time-averaged error

∑T
t=1 E‖Xt − X̂t‖22/T to

enable timely and accurate tracking of Xt.
We propose and study a successive update scheme where the

encoder computes the error in the estimate of the latest sample
at the decoder and sends its quantized value to the decoder. The
decoder adds this value to its previous estimate to update the
estimate of the latest sample, and uses it to estimate the current
value using a linear predictor. We instantiate this scheme with
a general gain-shape quantizer for error-quantization.

Note that we can send this update several times between two
sampling instances. In particular, our interest lies in comparing
a fast but loose scheme where an update is sent every slot
to a slower update every p communication slots. The latter
allows the encoder to use more bits for the update, but the
decoder will need to wait longer. We analyze this scheme for
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a universal setting and show that the fast but loose successive
update scheme, used with an appropriately selected quantizer,
is optimal asymptotically in the dimension.

To show this optimality, we use a random construc-
tion for the quantizer, based on the spherical code given
in [8], [28]. Roughly speaking, this ideal quantizer Q yields
E‖y −Q(y)‖22 ≤ ‖y‖222−2R for bounded y. However, in
practice, at finite n, such quantizers need not exist. Most
practical vector quantizers have an extra additive error, i.e., the
error bound takes the form E‖y −Q(y)‖22 ≤ ‖y‖22θ+nε2. We
present our analysis for such general quantizers. Interestingly,
for such a quantizer (which is all we have at a finite n), the
optimal choice of p can differ from 1. Thus, we present a
theoretically sound guideline for choosing the frequency of
updates 1/p for practical quantizers.

There is a large body of prior work on related problems.
The structure of real-time encoders for source coding have
been studied in [9], [11], [23]–[25], [27], [29]. Closer to
our work, remote estimation problem under communication
constraints of various kind have been studied in [1], [10], [16]–
[18], [22], [26]. Recursive state estimation algorithms under
communication constraints have been considered in [2], [14],
[20], [21]. In [6], [12], [13], [30], authors discuss encoding
and reconstruction of a stationary source using noisy, rate-
limited samples. More recently, [5] considers the problem of
quantizing a Gauss-Markov process.

To the best of our knowledge, none of these prior works
consider communication delays or study the tradeoff between
accuracy and delay that our analysis brings out. The closest
related work to our setting is [5], where the authors use a
Gaussian codebook for quantization. Note that after the first
round of quantization, the error vector need not be Gaussian,
and the analysis in [5] can only be applied after showing a
closeness of the error vector distribution to Gaussian in the
Wasserstein distance of order 2. While the original proof [5]
overlooks this technical point, this gap can be filled using a
recent result from [7] if spherical codes are used. However,
we follow an alternative approach and show a direct analysis
using vector quantizers. In fact, our analysis is valid for any
AR[1] process with bounded fourth moment increments. Also,
unlike [5], we account for transmission delays and consider
fixed-length coding schemes.

II. PROBLEM FORMULATION

We begin by providing a formal description of our problem.
For α ∈ (0, 1), we consider a discrete time auto-regressive



process of order 1 (AR[1] process) in Rn,

Xt = αXt−1 + ξt, t > 0, (1)

where (ξt ∈ Rn, t > 1) is an independent and identically
distributed (i.i.d.) random sequence with zero mean and co-
variance matrix σ2(1−α2)In. For simplicity, we assume that
X0 ∈ Rn is a zero mean random variable with covariance
matrix σ2In. This implies that the variance of Xt ∈ Rn is
σ2In for all t > 0. In addition, we assume that there exists
κ > 0 such that supk∈Z+

1
n

√
E‖Xk‖42 6 κ. We denote the

set of processes X satisfying the assumptions above by Xn
and the class of all such processes for different choices of
dimension n as X.

This discrete time process is sub-sampled periodically at
sampling frequency 1/s, for some s ∈ N, to obtain samples
(Xks ∈ Rn, k > 0). The sampled process (Xks, k > 0) is
passed to an encoder which converts it to a bit stream. The
encoder operates in real-time and sends nRs bits between any
two sampling instants. Specifically, the encoder is given by
a sequence of mappings (φt)t≥0, where the mapping at any
discrete time t = ks is denoted by φt : Rn(k+1) → {0, 1}nRs .
The encoder output at time t = ks is denoted by the codeword
Ct , φt(X0, Xs, . . . , Xks). We represent this codeword by an
s-length sequence of binary strings Ct = (Ct,0, . . . , Ct,s−1),
where each term Ct,i takes values in {0, 1}nR. For t = ks
and 0 6 i 6 s− 1, we can view the binary string Ct,i as the
communication sent at time t+ i.

The output bit-stream of the encoder is sent to the receiver
via an error-free communication channel. We assume slotted
transmission with synchronization where in each slot the
transmitter sends nR bits of communication error-free. Note
that there is a delay of 1 time-unit (corresponding to one
slot) in transmission of each nR bits. Therefore, the vector
Cks,i of nR bits transmitted at time ks + i is received at
time instant ks + i + 1 for 0 6 i 6 s − 1. We use the
notation Ik , {ks, . . . , (k + 1)s− 1} and Ĩk = Ik + 1 =
{ks+ 1, . . . , (k + 1)s}, respectively, for the set of transmit
and receive times for the strings Cks,i, 0 6 i 6 s− 1.

We describe the operation of the receiver at time t ∈ Ik,
for some k ∈ N, such that i = t − ks ∈ {0, . . . , s− 1}.
Upon receiving the codewords Cs, C2s, ..., C(k−1)s and the
partial codeword (Cks,0, ..., Cks,i−1) at time t = ks + i, the
decoder estimates the current-state Xt of the process using
the estimator mapping ψt : {0, 1}nRt → Rn. We denote
the overall communication received by the decoder until time
instant t by Ct−1. Further, we denote by X̂t|t the real-time
causal estimate ψt(C

t−1) of Xt formed at the decoder at
time t. Thus, the overall real-time causal estimation scheme is
described by the mappings (φt, ψt)t>0. As a convention, we
assume that X̂0|0 = 0.

We call the encoder-decoder mapping sequence (φ, ψ) =
(φt, ψt)t>0 a tracking code of rate R and sampling period s.
The tracking error of our tracking code at time t for process X
is measured by the mean squared error (MSE) per dimension
given by Dt(φ, ψ,X) , 1

nE‖Xt − X̂t|t‖22. Our goal is to
design (φ, ψ) with low average tracking error DT (φ, ψ,X)
given by DT (φ, ψ,X) , 1

T

∑T−1
t=0 Dt(φ, ψ,X). We restrict

to a finite time horizon setting. Instead of the MSE, a more

convenient parameterization for us is that of the accuracy,
given by δT (φ, ψ,X) = 1− DT (φ,ψ,X)

σ2 .

Definition 1 (Maxmin tracking accuracy). The worst-case
tracking accuracy for Xn attained by a tracking code (φ, ψ) is
given by δT (φ, ψ,Xn) = infX∈Xn

δT (φ, ψ,X). The maxmin
tracking accuracy for Xn at rate R and sampling period s
is given by δTn (R, s,Xn) = sup(φ,ψ) δ

T (φ, ψ,Xn), where the
supremum is over all tracking codes (φ, ψ).

The maxmin tracking accuracy δTn (R, s,Xn) is the fun-
damental quantity of interest for us. Recall that n denotes
the dimension of the observations in Xt for X ∈ Xn
and T the time horizon. However, we will only charac-
terize δTn (R, s,Xn) asymptotically in n and T . Specifi-
cally, we define the asymptotic maxmin tracking accuracy
as δ∗(R, s,X) = lim supT→∞ lim supn→∞ δTn (R, s,Xn). We
will provide a characterization of δ∗(R, s,X) and show the
existence of a tracking code that attains it.

III. THE SUCCESSIVE UPDATE SCHEME

In this section, we present our main contribution in this
paper: namely the Successive Update tracking code. Before
we describe the scheme completely, we present its different
components.

Decoder structure. Once the quantized information is sent
by the transmitter, at the receiver end, the decoder estimates
the state Xt using the codewords received until time t. Since
we are interested in forming estimates with small MSE,
the decoder simply forms the minimum mean square error
(MMSE) estimate using all the observations until that point.
Specifically, for t > u, denoting by X̃u|t the MMSE estimate
Xu formed by the communication Ct−1 received until time t,
given by (cf. [19]) X̃u|t = E[Xu|Ct−1]. The following result
presents a simple structure for X̃u|t for our AR[1] model. The
simple proof is given in the extended version.

Lemma 1 (MMSE Structure). The MMSE estimates X̃t|t and
X̃t−i|t, respectively, of samples Xt and Xt−i at any time t ∈
Ik and i = t− ks using communication Ct−1 are related as

X̃t|t = αiX̃t−i|t = αiE[Xks|Ct−1].

Encoder structure: Refining the error successively. The
structure of the decoder exposed in Lemma 1 gives an im-
portant insight for encoder design: The communication sent
between two sampling instants is used only to form estimates
of the latest sample. This principle can be applied (as a
heuristic) for any estimate X̂ks|t for Xks formed at the receiver
at time t (which need not be the MMSE estimate X̃ks|t).
Our encoder computes and quantizes the error in the receiver
estimate of the latest process sample at each time instant
t = ks+ i and sends it as communication Cks,i.

Even within this structural simplification, a very interest-
ing question remains. Since the process is sampled once
in s time slots, we have, potentially, nRs bits to en-
code the latest sample. At any time t ∈ Ĩk, the receiver
has access to (C0, . . . , C(k−1)s) and the partial codewords
(Cks,0, . . . , Cks,i−1) for i = t − ks. A simple approach for
the encoder is to use the complete codeword to express the



latest sample and the decoder can ignore the partial codewords.
This approach will result in slow but accurate updates of the
sample estimates. An alternative fast but loose approach will
send nR quantizer codewords to refine estimates in every
communication slot. Should we prefer fast but loose estimates
or slow but accurate ones? Our results will shed light on this
conundrum.

The choice of quantizers. In our description of the encoder
structure above, we did not specify a key design choice,
namely the choice of the quantizer. We will restrict to using
the same quantizer to quantize the error in each round of com-
munication. Roughly speaking, we allow any gain-shape [3]
quantizer which separately sends the quantized value of the
gain ‖y‖2 and the shape y/‖y‖2 for input y. Formally, we use
the following abstraction.

Definition 2 ((θ, ε)-quantizer family). Fix 0 < M < ∞. For
0 ≤ θ ≤ 1 and 0 ≤ ε, a quantizer Q with dynamic range
M specified by a mapping Q : Rn → {0, 1}nR constitutes an
nR bit (θ, ε)-quantizer if for every vector y ∈ Rn such that
‖y‖22 6 nM2, we have E‖y −Q(y)‖22 6 ‖y‖22θ(R) + nε2.

Further, for a mapping θ : R+ → [0, 1], which is a
decreasing function of rate R, a family of quantizers Q =
{QR : R > 0} constitutes an (θ, ε)-quantizer family if for
every R the quantizer QR constitutes an nR bit (θ(R), ε)-
quantizer.

Here, the expectation is taken with respect to the random-
ness in the quantizer, which is assumed to be shared between
the encoder and the decoder for simplicity. The parameter
M , termed the dynamic range of the quantizer, specifies
the domain of the quantizer. When the input y does not
satisfy ‖y‖2 ≤

√
nM , the quantizer simply declares a failure,

indicated by a symbol ⊥.
Description of the successive update scheme. All the

conceptual components of our scheme are ready. We use the
structure of Lemma 1 and focus only on updating the estimates
of the latest observed sample Xks at the decoder. Our encoder
successively updates the estimate of the latest sample at the
decoder by quantizing and sending estimates for errors in the
estimate.

To decide on the appropriate frequency of update, we opt for
a more general scheme where the nRs bits available between
two samples are divided into m = s/p sub-fragments of length
nRp bits each. We use an nRp bit quantizer to refine error
estimates for the latest sample Xks (obtained at time t = ks)
every p slots, and send the resulting quantizer codewords as
partial tracking codewords (Cks,jp, ..., Cks,(j+1)p−1), 0 6 j ≤
m−1. Specifically, the kth codeword transmission interval Ik
is divided into m sub-fragments Ik,j , 1 ≤ j ≤ m given by
Ik,j , {ks+ jp, . . . , ks+ (j + 1)p− 1} , 0 ≤ j ≤ m − 1,
and (Cks,jp, ..., Cks,(j+1)p−1) is transmitted in communication
slots in Ik,j .

At time instant t = ks+ jp+1 the decoder receives the jth
sub-fragment (Cks,t−ks, t ∈ Ik,j) of nRp bits, and uses it to
refine the estimate of the latest source sample Xks. Note that
the fast but loose and slow but accurate regimes described
above correspond to p = 1 and p = s, respectively. In the
middle of the interval Ik,j , the decoder ignores the partially

received quantization code and retains the estimate X̂ks of
Xks formed at time ks + (j − 1)p + 1. It forms an estimate
of the current state Xks+i by simply scaling X̂ks by a factor
of αi, as suggested by Lemma 1.

Finally, we impose one more additional simplification to
the decoder structure. Instead of using MMSE estimates for
the latest sample, we simply update the estimate by adding to
it the quantized value of the error. Thus, the decoder has a
simple linear structure.

Recall that we denote the estimate of Xu formed at the
decoder at time t > u by X̂u|t. We start by initializing
X̂0|0 = 0 and then proceed using the encoder and the decoder
algorithms outlined above. Note that our quantizer Qp may
declare failure symbol ⊥, in which case the decoder must still
yield a nominal estimate. We will simply declare the estimate
as 0 once a failure happens. We give a formal description of
our encoder and decoder algorithms below.
The encoder.

1 Initialize k = 0, j = 0, X̂0|0 = 0.
2 At time t = ks + jp, use the decoder algorithm (to

be described below) to form the estimate X̂ks|t and
compute the error Yk,j , Xks − X̂ks|t, where we use
the latest sample Xks available at time t = ks+ jp.

3 Quantize Yk,j to nRp bit as Qp(Yk,j).
4 If quantize failure occurs and Qp(Yk,j) = ⊥, send ⊥ to

the receiver and terminate the encoder.
5 Else, send a binary representation of Qp(Yk,j) as

the communication (Cks,0, . . . , Cks,p−1) to the receiver
over the next p communication slots1.

6 If j < m−1, increase j by 1; else set j = 0 and increase
k by 1. Go to Step 2.

The decoder.
1 Initialize k = 0, j = 0, X̂0|0 = 0.
2 At time t = ks+jp, if encoding failure has not occurred

until time t, compute X̂ks|ks+jp = X̂ks|ks+(j−1)p +

Qp(Yk,j−1), and output X̂t|t = αt−ksX̂ks|t.
3 Else, if encoding failure has occurred and the ⊥ symbol

is received declare X̂u|t = 0 for all subsequent time
instants u > t.

4 At time t = ks+ jp+ i, for i ∈ [p− 1], output2 X̂t|t =

αt−ksX̂ks|ks+jp.
5 If j < m−1, increase j by 1; else set j = 0 and increase
k by 1. Go to Step 2.

IV. MAIN RESULTS

Characterization of the maxmin tracking accuracy. To
describe our result, we define functions δ0 : R+ → [0, 1] and
g : R+ → [0, 1] as

δ0(R) ,
α2(1− 2−2R)

(1− α22−2R)
, g(s) ,

(1− α2s)

s(1− α2)
.

Our main result are as follows.

1For simplicity, we do not account for the extra message symbol needed
for sending ⊥.

2We ignore the partial quantizer codewords received as
(Cks,jp+1, Cks,jp+2, . . . , Cks,jp+i−1) until time t.



Theorem 2 (Lower bound for maxmin tracking accuracy: The
achievability). For R > 0 and s ∈ N, the asymptotic maxmin
tacking accuracy is bounded below as

δ∗(R, s,X) ≥ δ0(R)g(s).

Furthermore, this bound can be obtained by a successive
update scheme with p = 1 and an appropriately chosen Qp.

Theorem 3 (Upper bound for maxmin tracking accuracy: The
converse). For R > 0 and s ∈ N, the asymptotic maxmin
tacking accuracy is bounded above as

δ∗(R, s,X) ≤ δ0(R)g(s).

Furthermore, the upper bound is obtained by considering a
Gauss-Markov process.

Thus, δ∗(R, s,X) = δ0(R)g(s) with the fast but loose
successive update scheme being universally (asymptotically)
optimal and the Gauss-Markov process being the most difficult
process to track. Clearly, the best possible choice of sampling
period is s = 1 and the highest possible accuracy at rate R
is δ0(R), whereby we cannot hope for an accuracy exceeding
δ0(R).

Guidelines for choosing a good p. The proof of Theorem 2
entails the analysis of the successive update scheme for p = 1.
In fact, we can analyze this scheme for any p ∈ N and for
any (θ, ε)-quantizer family; we term this tracking code the p-
successive update (p-SU) scheme. This analysis can provide
a simple guideline for the optimal choice of p depending on
the performance of the quantizer.

However, there are some technical caveats. The quantizer
family will operate only as long as the input y satisfies ‖y‖2 ≤
M . If a y outside is observed, the quantizer will declare ⊥
and the tracking code encoder, in turn, will declare a failure.
We denote by τ the stopping time at which encoder failure
occurs for the first time, i.e., τ , min{ks+ jp : Qp(Yk,j) =
⊥, 0 6 k, 0 6 j 6 m − 1}. Further, denote by At the event
that failure does not occur until time t, i.e., At , {τ > t}.
We characterize the performance of a p-SU in terms of the
probability of encoder failure in a finite time horizon T .

Theorem 4 (Performance of p-SU). For fixed θ, ε, β ∈ [0, 1],
consider the p-SU scheme with an nRp bit (θ, ε)-quantizer Qp,
and denote the corresponding tracking code by (φp, ψp). Sup-
pose that for a time horizon T ∈ N , the tracking code (φp, ψp)

satisfies P (τ ≤ T ) ≤ β2. Then, supX∈Xn
D
T

(φp, ψp, X) ≤
BT (θ, ε, β), where BT (θ, ε, β) satisfies

lim sup
T→∞

BT (θ, ε, β) ≤ σ2
[
1− g(s)α2p

1− α2p θ

(
1− ε2

σ2
− θ
)]

+
κβg(s)

(1− α2s)

(
1− α2(s+p) 1− θ

1− α2pθ

)
.

We remark that β can be made small by choosing M to
be large for a quantizer family. Furthermore, the inequality in
the upper bound for the MSE in the previous result (barring
the dependence on β) comes from the inequality in the
definition of a (θ, ε)-quantizer, rendering it a good proxy for
the performance of the quantizer. The interesting regime is that
of very small β where the encoder failure doesn’t occur during

the time horizon of operation. If we ignore the dependence on
β, the accuracy of the p-SU does not depend either on s or
on the bound for the fourth moment κ. Motivated by these
insights, we define the accuracy-speed curve of a quantizer
family as follows.

Definition 3 (The accuracy-speed curve). For α ∈ [0, 1], σ2,
and R > 0, the accuracy-speed curve for a (θ, ε)-quantizer
family Q is given by

ΓQ(p) =
α2p

1− α2p θ(Rp)

(
1− ε2

σ2
− θ(Rp)

)
, p > 0.

By Theorem 4, it is easy to see that the accuracy (precisely
the upper bound on the accuracy) of a p-SU scheme is better
when ΓQ(p) is larger. Thus, a good choice of p for a given
quantizer family Q is the one that maximizes ΓQ(p) over the
set [s]. We conclude by providing accuracy-speed curves for
illustrative examples.

Example 1. We begin by considering an ideal quantizer family
with θ(R) = 2−2R and ε = 0. In our asymptotic analysis,
we will show roughly that such a quantizer with very small
ε exists. For this ideal case, for R > 0, the accuracy-speed
curve is given by ΓQ(p) = α2p−α2p θ(Rp)

1−α2p θ(Rp) . It can be seen that
ΓQ(p) is decreasing in p whereby the optimal choice of p
that maximizes ΓQ(p) over p ∈ [s] is p = 1. Heuristically,
this justifies why asymptotically the fast but loose successive
update scheme is optimal.

Example 2 (Uniform scalar quantization). In this example,
we consider a coordinate-wise uniform quantizer. Since we
seek quantizers for inputs y ∈ Rn such that ‖y‖2 ≤ M

√
n,

we can only use uniform quantizer of [−M
√
n,M

√
n] for

each coordinate. For this quantizer, we have θ = 0 and
ε2 = nM22−2R, whereby the accuracy-speed curve is given
by ΓQ(p) = α2p(1 − nM22−2R/σ2). Thus, once again, the
optimal choice of p that maximizes accuracy is p = 1.

Example 3 (Gain-shape quantizer). Consider the quantization
of a vector y = ays where a = ‖y‖2. The vector y is quantized
by a gain-shape quantizer which quantizes the norm and shape
of the vector separately to give Q(y) = âŷs. We use a uniform
quantizer within a fixed range [0,M

√
n] in order to quantize

the norm a to â, where an ideal shape quantizer is employed
in quantizing the shape vector ys. Namely, we assume E‖ys−
ŷs‖22 6 2−2R and ‖ŷs‖ 6 1. Suppose, that we allot ` bits out
of the total budget of nR bits for norm quantization and the
rest for shape quantization. Then, we see that

E‖y −Q(y)‖22 6 2a22−2(R−`/n) + nM22−2`−1,

whereby θ(R) = 2−2(R−`/n)+1 and ε2 = M22−2`−1. Thus,
the accuracy-speed curve is given by

ΓQ(p) =
α2p

1− 2α2p2−2(Rp−`/n)
×(

1− 2M22−2`−1

σ2
− 2−2(Rp−`/n)+1

)
.

Here, the choice of M influences the optimal choice of p.



The recipe above can be used to analyze practical quantiz-
ers, such as the recently proposed almost optimal quantizer
in [15].

V. PROOF SKETCHES

Analysis of the Successive Update scheme. Since the
successive update scheme refines the estimate of Xks in
each interval Ĩk successively, we can establish the following
recursion for its MSE.

Lemma 5. For a time instant t = ks+jp+i, j+1 ∈ [m], i ∈
[p] and k > 0, let (φp, ψp) denote the tracking code of a p-SU
scheme employing an nRp bit (θ, ε)-quantizer. Assume that
P (Act) 6 β2. Then, we have

Dt(φp, ψp, X) 6 α2(t−ks)θjDks(φp, ψp, X)+

σ2(1− α2(t−ks)) +
α2(t−ks)(1− θj)ε2

(1− θ)
+ α2(t−ks)κβ.

This recursion is the main tool in the proof of Theorem 4.
Sketch of proof of Theorem 4: We can write the average per
dimension MSE for the p-SU scheme for time-horizon T =
Ks as

DT (φp, ψp, X) =
1

Ks

K−1∑
k=0

m−1∑
j=0

p∑
i=1

Dks+jp+i(φp, ψp, X),

whereby an application of Lemma 5 and some further simpli-
fication gives

DT (φp, ψp, X) 6 σ2 + g(s)
(
κβ − σ2 +

ε2

(1− θ)

)
+

(1− α2p)

s(1− α2)

(1− α2sθm)

(1− α2pθ)

( 1

K

K−1∑
k=0

Dks(φp, ψp, X)− ε2

(1− θ)

)
.

(2)

Next, using Lemma 5 once again, we have

Dks(φp, ψp, X) 6 α2sθmD(k−1)s(φp, ψp, X)+

σ2(1− α2s) + α2sε2
(1− θm)

(1− θ)
+ α2sκβ.

Therefore, DT (φp, ψp, X) can be bounded above further by
replacing the term 1

K

∑K−1
k=0 Dks(φp, ψp, X) on the right-

side of (2) with the supremum of such an average over all
sequences satisfying the previous recursive inequality. We
define BT (θ, ε, β) to be this new bound for DT (φp, ψp, X),
which does not depend on X . In the limit as T goes to infinity,
we can take the limit of the bound as m and K go to infinity
to get the claimed bound. In doing so, we need to take limit
for average of a sequence with terms satisfying a recursive
inequality. The simple observation below gives the required
bound.

Lemma 6. For a sequence (Xk ∈ R : k ∈ Z+) that
satisfies recursive bounds Xk 6 aXk−1 + b with constants
a, b ∈ R such that b is finite and a ∈ (−1, 1), we have
limK→∞

1
K

∑K−1
k=0 Xk 6 b

1−a .

Asymptotic achievability using random quantizer. With
Theorem 4 at our disposal, the proof of achievability can

be completed by fixing p = 1 and showing the existence
of appropriate quantizer. But we need to handle the failure
event. We do this first. The next result shows that the failure
probability depends on the quantizer only through M .

Lemma 7. For fixed T and n, consider the p-SU scheme with
p = 1 and an nR bit (θ, ε)-quantizer Q with dynamic range
M . Then, for every η > 0, there exists an M0 independent of
n such that for all M ≥M0, we get P (AcT ) 6 η.

The bound above is rather loose, but it suffices for our pur-
pose. In particular, it says that we can choose M sufficiently
large to make probability of failure until time T less than
any β2, whereby Theorem 4 can be applied by designing a
quantizer for this M . Indeed, we can use the quantizer of unit
sphere from [8], [28], along with a uniform quantizer for gain
(which lies in [−M,M ]) to get the following performance.

Lemma 8. For every R, ε, γ,M > 0, there exists an nR
bit (2−2(R−γ), ε)-quantizer with dynamic range M , for all n
sufficiently large.

Proof of Theorem 2: For any fixed β and ε, we can make
the probability of failure until time T less than β by choosing
M sufficiently large. Further, for any fixed R, γ > 0, by
Lemma 8, we can choose n sufficiently large to get an nR
bit (2−2(R−γ), ε)-quantizer for vectors y with ‖y‖22 ≤ nM2.
Therefore, by Theorem 4 applied for p = 1, we get that

δ∗(R, s,X) ≥ σ2
[
1− g(s)α2

1− α2 2−2(R−γ)

(
1− ε2

σ2
− 2−2(R−γ)

)]
+

κβ

(1− α2s)

(
1− α2(s+1)g(s)

1− 2−2(R−γ)

1− α22−2(R−γ)

)
.

The proof is completed upon taking the limits as ε, γ, and β
go to 0.

Converse bound. The converse proof makes use of the
standard properties of entropy power N (X) and is similar
to the converse proof in [5]. It can be seen after some basic
manipulations that the tracking error for any tracking code
(φ, ψ) satisfies

DT (φ, ψ,X) >
1

nKs

K−1∑
k=0

s−1∑
i=0

α2iE
[
‖Xks − X̃ks+i‖22

]
+
N (ξ1)

(1− α2)

(
1− (1− α2s)

s(1− α2)

)
.

We relate the MSE terms on the right-side to entropy power
and use properties of entropy power to get

DT (φ, ψ,X) >

α2s(1− α2s2−2Rs)

s(1− α22−2R)
· 1

K

K−1∑
k=0

E[N (X(k−1)s|Cks−1)]

+
N (ξ1)

(1− α2)

(
1 +

(1− α2s)(1− α2s2−2Rs)

s(1− α22−2R)
− (1− α2s)

s(1− α2)

)
.

Finally, we adapt [5, eqn. 11] for our case, to obtain
E[N (X(k−1)s|Cks−1)] > d∗k−1, where d∗0 = 0 and d∗ks are
given by the recursion d∗k = 2−2Rs

(
α2sd∗k−1+N (ξ1) (1−α2s)

(1−α2)

)
.

The proof is completed by taking limits for averaged values of
dks and noting that N (ξ1) is maximized when ξ1 is Gaussian.
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