
On the Latency in Vehicular Control using Video
Streaming over Wi-Fi

Pratik Sharma1, Devam Awasare1, Bishal Jaiswal1, Srivats Mohan1, Abinaya N.2, Ishan Darwhekar1,
Anand SVR1, Bharadwaj Amrutur1,2, Aditya Gopalan1, Parimal Parag1, Himanshu Tyagi1

1Department of Electrical Communication Engineering, Indian Institute of Science
2Robert Bosch Centre for Cyber-Physical Systems, Indian Institute of Science

{pratiksharma, devamawasare, bishalj, srivatsmohan, abinayan, ishand, anandsvr, amrutur, aditya, parimal, htyagi}@iisc.ac.in

Abstract—We consider the use of Wi-Fi (IEEE 802.11n/r)
network for remote control of a vehicle using video transmission
on the uplink and control signals for the actuator on the
downlink. We have setup a network with multiple access points
(AP) providing indoor and outdoor coverage, which connects an
unmanned ground vehicle (UGV) to a remote command center.
Additionally, our setup includes a redundant IEEE 802.11p link
for sending control messages over downlink with high reliability
and low latency. We study the end-to-end communication de-
lay and complete a latency profiling for each sub-component,
including the video codec and the Wi-Fi links. Furthermore,
we provide guidelines for practical design choices including the
optimal configuration of the scanning process during handoffs
and the codec parameters for delay optimization. Overall, our
proposed configuration reduces the end-to-end delay significantly
in comparison with the default configuration.

I. INTRODUCTION

We have designed an experimental setup to profile the
end-to-end latency for communication between a remotely
driven UGV and its control center. Autonomous or remote
control driving is possible through multimodal sensing using
techniques such as RADAR (RAdio Detection And Ranging),
LIDAR (Light Detection and Ranging), and video streams,
where video consumes the largest portion of the uplink
throughput. For simplicity, we have setup a vehicle with only
video streaming as sensing mechanism for remote driving
and have connected it to a command center over the Wi-Fi
network.

We present a systematic analysis of the end-to-end latency
in the transmission of video stream over the uplink, including
the video codec delays at both ends, and control command
over the downlink. Based on our analysis, we have identified
the key parameters that are relevant for delays and identify
their best-case scenario values.

In the remainder of this section, we briefly discuss our
setup, the key contributors to latency, prior art, and our specific
contributions. Each of these components is elaborated later.

A. Components of our setup

We consider a scenario where a mobile node with live video
stream and limited computation power is connected over Wi-
Fi to a command center with a powerful server. We consider
remote driving by an operator and autonomous braking by
detection at the command center. Such real-time controls over
network require an uplink with high throughput & low latency

Fig. 1: Block diagram for communication between UGV and
command center.

and a low latency downlink. In addition, edge computing
capability is required at the mobile node to enable local
decision making whenever needed, and Multi-access Edge
Computing (MEC) capabilities in network elements to enable
real-time network optimization. Keeping these requirements
in mind, we have deployed a Wi-Fi network with multiple
access points (APs) connected to the command center with
powerful compute over fiber. Our Wi-Fi network includes both
IEEE 802.11n and IEEE 802.11r, along with IEEE 802.11p.
This testbed is live and will support further research and
development beyond what is being reported. A block view
of our end-to-end setup is depicted in Fig. 1.

B. The main contributors to latency

Low latency is a critical requirement for real-time control
over networks. In spite of significant recent interest in low
latency communication, it is unclear what is the latency
possible using existing network deployments. In this work,
focussing on a Wi-Fi deployment, we have identified three
main contributors to latency: (1) The sampling, encoding, and
decoding delays of the video codec, (2) the transmission delays
for the network, and perhaps most importantly, (3) the delay
caused by handoffs in Wi-Fi. Note that a single Wi-Fi AP can
provide coverage of 50− 100 m in outdoor deployments with
foliage, whereby a mobile node will often encounter handoffs
as it navigates using the network. Thus, the handoff delays
dominate latency in Wi-Fi and must be carefully mitigated. In
comparison, the transmission delays are negligible. In fact, the
video codec delays much exceed the transmission delays and
must be addressed.

C. Prior work

The paper [1] (see, also, [2]–[4]) studies a city-scale Wi-Fi
deployment for vehicular communication and provides an ex-

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

tensive study of duration of connectivity per AP and coverage
for fast-moving vehicles. At a high-level, the conclusion of this
study is positive, but one must expect short-lasted connections
with several handoffs. In fact, it is well-known that handoffs
constitute the main bottleneck for latency in Wi-Fi during
mobility (cf. [5], [6]). Most of these works have the same
conclusion: scanning constitutes the main component of delay.
Several algorithms have been considered for optimizing the
scan process (cf. [6]–[8], but it remains the bottleneck. Most
of this line of work considered indoor deployments, while our
study is over an outdoor deployment with multiple APs.

Over the past decade, several variants of Wi-Fi 802.11
have emerged that explicitly target handover optimization.
Of these, 802.11r and 802.11k seem to be the most popular
ones. However, the latency reported for these standards in the
literature (cf. [9], [10]) seems still high, and we have included
these standards in our deployment to evaluate the performance
of our outdoor use case.

Another aspect considered in prior work is the effect of a
poorly chosen RSSI threshold for triggering handoff (see, for
instance, [7]). Prior studies have considered the adverse effect
of choosing a conservative threshold resulting in repeated
scans. Our concern is the opposite – a more conservative
threshold results in a poor video quality during handoff.

In another development, 802.11p has emerged as a popular
Wi-Fi solution for vehicular communication, offering both low
latency and long-range. Several recent studies offer latency
and coverage measurements for 802.11p (cf. [11]). Differing
from these works, we evaluate a slightly different aspect of the
802.11p link: its capability to offer a low latency redundant
link for control over Wi-Fi.

In a nutshell, highly optimized and expensive hardware can
give ultra-fast codecs with a few milliseconds of latency. In
particular, there is no comprehensive study of latency for real
deployments with live video upload from a mobile sensor node
with limited computation capabilities over a wireless network.

D. Our contributions

We fill the gaps in the prior work outlined above by
measuring latencies for various components in our end-to-
end setup. Our deployment is live outdoor comprising multiple
APs and a Wi-Fi enabled mobile node with limited computa-
tion. Furthermore, we can access and adjust the parameters of
various functional elements such as video sampling, encoding,
decoding, analytics, and the communication network.

One of our main contributions is to study the interdepen-
dencies between these elements and identification of important
system parameters at each of these elements that can be
adjusted to strike a balance for optimal latency performance in
various channel conditions for our use-case. Specifically, we
have identified the adjustable video codec parameters in H.264
and system parameters in FFmpeg that aided in measurement
and minimization of delays. We also optimized the scanning
and handoff process in 802.11r to smoothen the transition
between APs during uplink transmission. Furthermore, we
have optimized the threshold for RSSI for triggering handoff.

In addition, we show that 802.11p is a preferred network im-
plementation for the downlink time-critical control command
transmission to ensure low latency communication.

As another contribution of this work, we demonstrate that
the latency achieved in our end-to-end system can vary greatly
for different values of the parameters. Since the default values
are set conservatively assuming a heavily loaded system, we
judiciously chose them so that the latency can be significantly
reduced for our use-case of control of a single UGV over the
network.

II. EXPERIMENTAL SETUP

As shown in Fig. 2, our remote driving experimental setup
consists of an outdoor Wi-Fi network infrastructure and a
single remotely driven UGV. The mobile UGV sends video
transmission of the surroundings to a central server connected
to the Wi-Fi network, and located at the Network Operation
Center (NOC). A remote driver was stationed at the NOC to
observe the uplink video feed and send appropriate control
messages over downlink. We used a laptop running on Linux
OS, i5 processor and 8 GB RAM as the controller for remote
driving.

Wireless network infrastructure consists of three 802.11n
Wi-Fi access points (AP) in a triangulated set-up across the
testbed at the following landmarks: (i) roof of the building at
Site A, (ii) mounted on a lamp post at Site B in the center of
the testbed, and (iii) roof of the building at Site C. All three
APs are connected via ethernet to the central compute server.
To obtain good quality seamless video transmission from UGV
to the central server, during handover between two APs, a
suitable Received Signal Strength Indicator (RSSI) value has
to be maintained at all times. Accordingly, the three APs were
positioned at an average distance of 50 m from each other. We
have also placed the 802.11p based Roadside Units (RSU) at
the same sites as the APs and have mounted the on-board units
(OBU) on the UGV.

As a compute platform on-board the UGV, we experimented
with two processors: (i) Raspberry Pi Model 3B+ with Broad-
com chipset (RPi) and (ii) Nvidia Jetson TX2. In instances
where the processor speed didn’t have a significant impact on
the latency, we have used the RPi as the default processor.

We used the kernel log to measure scanning time and
enabled monitor mode on IEEE 802.11 using Aircrack-ng
package with Wireshark to measure roaming time. We mea-
sured the video codec delays on the RPi by invoking a timer
as soon as the frame is captured and subsequently stopping the
timer as soon as the frames are encoded and sent for relay. A
similar process is followed on the receiver end wherein as soon
as the frame enters the decoder buffer, the timer is started. It
is then stopped at the moment the frame is sent for rendering.

Finally, we measure end-to-end latency for our use-case by
triggering a red light at the mobile node, detecting this light
using an algorithm running on the video received at the control
center, and sending the control signal for braking to the mobile
node. The overall latency of the system is the time between a
red light is triggered and the brake is applied.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Left: Representation of the Wi-Fi AP deployment at
sites A, B, C and the control room at NOC in the testbed. Top
Right: UGV deployed in the testbed. Middle Right: Typical
Video feed as seen by driver. Bottom Right: Video Feed for
emergency braking setup.

III. COMMUNICATION LATENCY

In our experimental setup, the UGV sends uplink video
transmission to 802.11n Wi-Fi APs at 2.4 GHz. The mobile
UGV changes its association with the APs depending on
the received signal strength. In this section, we describe this
handover re-association process and present customizations
that can optimize the handover process in our setting.

A. Profiling uplink latency

The handover process can be separated into two parts:
scanning the signal strength of the neighboring APs and
roaming from the source AP to the target AP. We first profile
the handover latency, by profiling the scan and roam latencies.

1) Scanning: We found significant scan latencies at the
RPi mounted on the vehicle. These experiments resulted in
scanning delays upto 2.1 s for scanning the 25 channels across
both 2.4 and 5 GHz frequencies. This delay was substantially
higher as compared to the expected theoretical values. This
is due to continuous hopping between the home and away
channel to maintain a certain Quality of Service (QoS). Recall
that the current channel on which the data is being transmitted
is called the home channel, and rest all channels are referred
to as away channels. The scanning process at RPi consists of
repetition of the following two stages until all the channels
have been scanned. In the away stage, the RPi sends a probe
request to a subset of away channels and then waits for
the probe response. During this listening time, the packets
accumulate at the RPi data buffer. In the home stage, RPi
returns to the home channel for clearing the data buffer. We
found that majority of the 2.1 s scanning time was spent
on away stages (approximately 1.502 s), and minority on

TABLE I: Optimized scanning delays for three channels

Tmax (ms) 11 12 13 14 15 16 17 18 19
APs found 4 5 5 7 7 7 7 7 7
Total time
(ms) 43 46 48 52 54 58 61 64 66

home stages (approximately 0.611 s). There are three main
components of away stage of the scanning [12]:

• Probe time: For the outdoor transmissions, we found that
the average probe transmission time to be 2− 3 ms.

• Channel hold time: The minimum and maximum time
spent on a channel listening to the probe response is
denoted by Tmin and Tmax, respectively. In our setup, Tmin
is lower bounded by 10 ms as specified by Broadcom
chipset of the RPi. The default Tmax value is significantly
high, for the high AP density case.

• Channel hopping time: We found average channel hop-
ping time to be 2− 3 ms.

Optimization of the transmit probe time, minimum channel
time, and channel hopping time were not possible due to
either hardware constraints or non-discovery of APs. Thus,
only parameter that we can optimize in our setting is Tmax,
keeping in mind that Tmax ≥ Tmin. For the default Tmax value
in the RPi, we computed the average scan time for the three
Wi-Fi APs operating on three non-overlapping channels 1, 6,
and 11, and four out-of-network APs not controlled by us. We
found the average scan time as 144.44 ms with a standard
deviation of 9.76 ms.

2) Roaming: We found that the average roaming latency in
802.11n was around 42 ms.

B. Customizing uplink latency

We introduce customizations that result in significant reduc-
tions in the scan and roam latencies in the 802.11n network
for our use case.

1) Scanning: In our experiment, we designed the wireless
network such that the UGV is always covered by an AP with
a good communication link, and hence we expect minimal
retransmissions. We experimentally found the optimal Tmax by
scanning the APs at different values of Tmax and selecting the
one that leads to minimum scan delay while discovering all
seven APs. Table I shows the relation between Tmax, the scan
latency, and the number of APs discovered. We observed that
the scan latencies increase monotonically with Tmax, however
Tmax ≤ 14 ms leads to the discovery of less than 7 APs.
Therefore, we chose Tmax = 14 ms, and the corresponding
scan delay was around 52 ms.

2) Roaming: For successful completion of the handover
process, there are mainly three courses of action that are
required to be completed during the roam stage: (1) association
request and response, (2) re-association request and response,
and (3) EAPOL key exchange. EAPOL key exchange requires
several retransmissions in 802.11n for a secure key exchange,
and this process is further optimized in 802.11r. This optimiza-
tion is achieved by pre-sharing of the PMK-R0 key among all

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

APs in the same mobility domain resulting in the generation
of the R1 key [13], and elimination of the authentication step.
Hence, we enabled 802.11r at the APs by OpenWrt, and at
the RPi by wpasupplicant2.6 to reduce the roam delay.

Our next customization was changing the default RSSI
threshold for the handover initiation. The default RSSI thresh-
old of −89 dBm is unsuitable for real-time video transmission,
and the video had multiple lags at this RSSI value and the
Quality of Experience (QoE) for the remote driver was too
poor to make any meaningful control decisions based on the
video feed. We experimentally found that an RSSI threshold
of −68 dBm for the handover initiation leads to a good video
quality experience.

With these customizations, we found that the roaming delay
ranges in 20−32 ms, and we reduced the average roam delay
from 42 ms to 26 ms.

C. Downlink customization

In the remote driving application, the controller sends
control messages over the downlink that require low latency.
For the 802.11r network, the average downlink communication
latency is found to be 9 ms when associated with an AP, and
35 ms during the handover. As an alternative, we experimented
with 802.11p network for the downlink communication, which
eliminates the need for association [14].

To enable this, we mounted an OBU on the UGV and
RSUs on the periphery of the road to communicate with the
OBU. All the RSUs are connected by a wired backbone to
the command center. The OBU broadcasts beacon messages
consistently at predefined intervals to announce its presence to
the RSUs. The command center sends the same control mes-
sage redundantly through multiple RSUs to ascertain packet
delivery to the OBU. Subsequently, the OBU acknowledges
all the control commands it receives. For 802.11p, the average
round trip time was found to be 2.8309 ms with a standard
deviation of 0.086 ms. In addition, we observed no packet
loss for the UGV mobility over a straight-line path in the
experimental testbed with three RSUs.

IV. VIDEO CODEC LATENCY PROFILING AND
OPTIMIZATION ON UPLINK

Low-latency video transmission over the uplink is crucial
for remote driving. This section details profiling studies of the
sensitivity of the uplink video pipeline to various parameters,
along with customizations of the parameters for best achiev-
able latency performance.

Implementation note: We use the FFmpeg [17] video
transmission platform for our remote driving use-case. For
video coding, we use the H.264/AVC [15] or MPEG−4
standard for video coding – the current industry standard for
video compression1 and an ideal video codec choice for the
computation-limited processor on the remotely driven vehicle.

1A newer H.265/HEVC coding standard has been released, but its adoption
has been slow primarily because it consumes about 10X processing power
for encoding and decoding from H.264, without a considerable reduction in
bitrate below 1080p resolution [16]

In our experiments, we set parameters like video resolution,
constant rate factor (CRF), preset value, and frames per second
(FPS) for H.264 using FFmpeg.

A. Profiling

For a remotely driven vehicle, the total uplink latency is the
delay between the occurrence of an event in the environment
of the vehicle and it being displayed to the remote driver. We
can divide this latency into 4 parts – Sampling, Encoding,
Network, and Decoding & Rendering delays – and study how
each part varies with several parameters that can be changed.

1) Sampling: The sampling delay is simply determined by
the frame rate of the camera. For instance, a camera recording
video at 30 FPS induces a maximum sampling delay of 1/30 s
or 33.33 ms. We show the variation of the encoding time with
frame capture rate (FPS) in Fig. 3a. Note that for the 720p
resolution curve, it stops at 24 FPS because the RPi processor
is not capable of processing higher frame rates.

2) Encoding: The encoding delay of H.264 is determined
by several factors, but is perhaps dominated by the motion
correction component. We modify encoder behavior by chang-
ing parameters such as FPS, constant rate factor (CRF) value,
resolution, and the presets of FFmpeg.

The CRF is a quality and bitrate control setting for the
H.264 encoder. The value ranges from 0 to 51 with lower
values giving a better quality video at the expense of a
higher bitrate, i.e., CRF 0 signifies lossless video, and CRF
51 signifies maximum compression. The specified CRF factor
determines the (roughly) constant output bitrate and perceived
video quality. The effect of CRF value on encoding delay
is presented in Fig. 3c. Note that lower CRF values result
in higher video quality and result in higher encoding delays.
Further, the overall trend remains the same irrespective of the
processor used.

FFmpeg provides collections of settings for video encoding
in the form of presets. Each preset adopts different strategies
for encoding and presents a trade-off between compression
ratio and bitrate. For instance, a slower preset will provide
better compression resulting in lower bitrate than higher pre-
sets for the same video quality. The effect on encoding time
with preset is presented in Fig. 3b for FPS 30, CRF 24 and
480p resolution.

3) Network: Since different parameters result in different
bitrates, the encountered network latency changes. Note that
this component of delay is stochastic and varies with the chan-
nel conditions, channel occupancy, size of each packet, and the
bitrate of each transmission. Fig. 4 illustrates how network
latency varies with CRF for 480p and 720p video resolution.
The indoor values were obtained in the lab environment with
line of sight. A lower CRF value results in better video quality
but results in higher network latency and packet losses. In Fig.
4, the outdoor setting readings for CRF values below 24 have
not been considered since significant packet drop was observed
resulting in extremely poor video quality.

4) Decoding and Rendering: Video frame decoding and
rendering is the final step in the video transmission process

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

(a) Encoding Time vs FPS at 480p/720p ,
CRF 24 and ‘Ultrafast’ Preset on RPi

(b) Encoding Time vs FFmpeg Preset of two
processors at 480p, CRF 24 and 30 FPS.

(c) Encoding Time vs CRF of two processors
at 480p, 30 FPS and ‘Ultrafast’ Preset.

Fig. 3: Encoding time variation when changing different parameters.

Fig. 4: Network latency vs CRF at 480p/720p, 30 FPS and
‘Ultrafast’ preset on RPi.

Fig. 5: Output Bitrate vs CRF at 480p, 30 FPS and ‘Ultrafast’
preset on RPi.

before the video is displayed to the remote terminal. Before
being decoded and rendered, frames are buffered in a queue
which can build up and add delay. During the course of our
experiment, the unoptimized decoding time is found to be
below 10 ms initially and is observed to steadily increase and
stagnate around 50 ms after a while. The rendering time is
approximately 100 ms.

5) Impact of processor type: We conduct our experiment
on both RPi and TX2 CPU platforms, where the latter includes
a more powerful processor and a graphics card. We observe
that irrespective of the processor, the trends of encoding time
and decoding time are similar. The comparison between the
performance of these processors has been illustrated in Fig.

3c and Fig. 3b.

B. Customization of parameters

The constituent parts described in Fig. 1 have inter-
dependencies, and a trade-off is essential to reduce the overall
latency. We describe below our customized choices for the
tunable parameters of the previous section for achieving low
latency.

1) FPS (Frames per second): FPS has an upper bound
since the computational capability of the encoding processor is
limited. While the reduction in encoding time with an increase
in FPS for 480p resolution is minimal, there is a significant
drop in encoding time for 720p resolution (Fig. 3a). The RPi
does not handle an FPS above 24 for 720p resolution since
the encoding time exceeds the sampling time. Hence, 480p
resolution is considered and the best results are obtained for
30 FPS.

2) CRF: The CRF value is primarily concerned with the
encoding time. However, it also has an impact on network
latency because of its inverse variation with output bitrate (Fig.
5). The encoded video above CRF 35 is not suitable for control
through remote driving. Since there is minimal variation in the
encoding time from CRF 28 to 35, CRF 28 is considered as the
optimum value to achieve a balance between encoding time
and video quality. As seen in the graph, there is an exponential
increase in bitrate as the CRF value decreases beyond 18.
Keeping the scalability issue in mind, a single UGV cannot
be permitted to operate across a bandwidth this large.

3) FFmpeg Preset: The use of a faster preset decreases the
encoding time for both the processors, albeit leading to a lower
compression ratio. It is found that the ’Veryfast’ preset is the
best compromise between output bitrate and encoding time.

4) Decoding and Rendering Algorithm: To reduce the
decoding delay, we reduce the size of the decoder frame buffer
(in the FFmpeg source) to 1 frame from the default of 3
frames. This is observed to not significantly affect the rendered
video output.

V. END-TO-END LATENCY OPTIMIZATIONS AND
CONCLUSIONS

Guided by our latency analysis of video codec outlined in
the previous section, we find that the best performance for

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

Latency value
(ms)

Maximum
Sampling 33.33

Encoding 13.8 ± 2.79
Network 12.4 ± 3.825
Decoding &
Rendering 12.16 ± 3.03

TOTAL 71.68 ± 5.31

TABLE II: Optimized latency values for video transmission
over uplink

Default
(ms)

Optimized
(ms)

Scanning 143.88 ± 9.76 54.5 ± 4.47
Roaming 41.75 ± 8.01 26 ± 8.33
TOTAL 186.63 ± 12.32 80.8 ± 8.53

TABLE III: Delays during handoffs

FFmpeg running over an RPi is attained for 30 FPS, 28 CRF,
’Veryfast’ preset and 480p video resolution. FFmpeg with
these settings, along with decoding buffer-size changes, attains
67.14% reduction in latency in comparison to the default
values; see Table II.

Furthermore, we configure the Wi-Fi network to introduce
selective scanning, reduce the Tmax value appropriately, and
deploy IEEE 802.11r to reduce the communication delays to as
shown in Table III. The total latencies during regular operation
and handoff before and after optimization are given in Table
IV. Also, when we use IEEE 802.11p for communicating con-
trol messages over the downlink, the latency reduces further
to 2.8309 ms; a complete integration of 802.11p link in our
setup is ongoing.

Finally, we measure the end-to-end delay between triggering
a red light at the UGV and receiving the stop command in the
experiment described in Section II. The total time taken to
complete this process is observed to be around 91 ms with a
downlink latency component of approximately 9 ms. We note
that this low downlink latency is attained after switching to
UDP communication and setting the highest preference for
UDP packets. Further, in normal operation, the codec and
network delays are of roughly the same order.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the 5G Testbed Project
of the Department of Telecommunications (DoT), Government
of India, in part by the Robert Bosch Centre for Cyber-Physical
Systems (RBCCPS) at the Indian Institute of Science, and

Default Optimized
Regular
operation
(ms)

Handoff
(ms)

Regular
operation
(ms)

Handoff
(ms)

Uplink 210 ± 16.83 396 ± 12.14 71 ± 5.31 149 ± 5.85
Downlink 12 ± 3.45 198 ± 7.55 9 ± 2.93 89 ± 5.67
Processing 13 ± 1.44 13 ± 1.44 13 ± 1.44 13 ± 1.44
TOTAL 235 ± 16.91 606 ± 15.25 93 ± 5.89 251 ± 7.52

TABLE IV: The end-to-end delay

in part by the Centre for Networked Intelligence (a Cisco
CSR initiative) of the Indian Institute of Science. We thank
Alok Rawat and Chetan Kumar for help with WiFi network
deployment, Venkatesh Bharadwaj and Prateek Jha for the
setup of the mobile UGV, and B. Srikrishna Acharya and
Raghava G.D. for useful discussions.

REFERENCES

[1] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden,
“A measurement study of vehicular internet access using in situ wi-fi
networks,” in Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’06, 2006, pp.
50–61.

[2] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal, “Vehicular oppor-
tunistic communication under the microscope,” ser. MobiSys ’07, 2007,
pp. 206–219.

[3] A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine, and
J. Zahorjan, “Interactive wifi connectivity for moving vehicles,” ser.
SIGCOMM ’08, 2008, pp. 427–438.

[4] J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: Vehicular
content delivery using wifi,” ser. MobiCom ’08, 2008, pp. 199–210.

[5] A. Mishra, M. Shin, and W. Arbaugh, “An empirical analysis of the ieee
802.11 mac layer handoff process,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 93–102, Apr. 2003.

[6] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne, “Reducing mac
layer handoff latency in ieee 802.11 wireless lans,” in ACM Int. Works.
Mobil. Mgmt. Wireless Acc. Prot., 2004, pp. 19–26.

[7] Y. Liao and L. Gao, “Practical schemes for smooth mac layer handoff in
802.11 wireless networks,” in Int. Symp. World Wireless, Mobile Multim.
Net., 2006, pp. 181–190.

[8] G. Athanasiou, T. Korakis, and L. Tassiulas, “Cooperative handoff in
wireless networks,” in IEEE Int. Symp. Personal, Indoor Mobile Radio
Commun. (PIMRC), 2008, pp. 1–6.

[9] H. Ahmed and H. Hassanein, “A performance study of roaming in
wireless local area networks based on ieee 802.11r,” in IEEE Biennial
Symp. Commun., 2008, pp. 253–257.

[10] S. Feirer and T. Sauter, “Seamless handover in industrial wlan using ieee
802.11k,” in IEEE Int. Symp. Indust. Electr. (ISIE), 2017, pp. 1234–1239.

[11] A. Paier, R. Tresch, A. Alonso, D. Smely, P. Meckel, Y. Zhou, and
N. Czink, “Average downstream performance of measured IEEE 802.11p
infrastructure-tovehicle links,” in IEEE Int. Conf. Commun. (ICC), May
2010.

[12] D. Murray, M. Dixon, and T. Koziniec, “Scanning delays in 802.11
networks,” in IEEE Int. Conf. Next Gen. Mobile App. Serv. Tech.
(NGMAST), 2007, pp. 255–260.

[13] K.-H. Chi, C.-C. Tseng, and Y.-H. Tsai, “Fast handoff among ieee
802.11r mobility domains,” J. Info. Sci. Engg., vol. 26, no. 4, pp. 1345–
1362, 2010.

[14] A. Jafari, S. Al-Khayatt, and A. Dogman, “Performance evaluation of
ieee 802.11 p for vehicular communication networks,” in IEEE Int.
Symp. Commun. Sys. Net. Digital Signal Process. (CSNDSP), 2012, pp.
1–5.

[15] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[16] M. B. Dissanayake and D. L. Abeyrathna, “Performance comparison of
hevc and h. 264/avc standards in broadcasting environments.” J. Info.
Process. Sys., vol. 11, no. 3, 2015.

[17] FFmpeg Developers, “ffmpeg tool (Version be1d324) [Software],” 2016,
Available from http://ffmpeg.org/.

[18] L. Merritt and R. Vanam, “Improved rate control and motion estimation
for h. 264 encoder,” in IEEE Int. Conf. Image Process. (ICIP), vol. 5,
2007, pp. V–309.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 10,2020 at 19:28:24 UTC from IEEE Xplore. Restrictions apply.

		2020-03-30T16:06:52-0400
	Preflight Ticket Signature

