
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020 4609

Minimizing Latency for Secure Coded Computing
Using Secret Sharing via Staircase Codes

Rawad Bitar , Member, IEEE, Parimal Parag , Member, IEEE, and Salim El Rouayheb, Member, IEEE

Abstract— We consider the setting of a Master server, M, who
possesses confidential data and wants to run intensive computa-
tions on it, as part of a machine learning algorithm for example.
The Master wants to distribute these computations to untrusted
workers who volunteered to help with this task. However, the data
must be kept private in an information theoretic sense. Some
of the workers may be stragglers, e.g., slow or busy. We are
interested in reducing the delays experienced by the Master.
We focus on linear computations as an essential operation in
many iterative algorithms. We propose a solution based on new
codes, called Staircase codes, introduced previously by two of
the authors. Staircase codes allow flexibility in the number of
stragglers up to a given maximum, and universally achieve the
information theoretic limit on the download cost by the Master,
leading to latency reduction. We find upper and lower bounds
on the Master’s mean waiting time. We derive the distribution of
the Master’s waiting time, and its mean, for systems with up to
two stragglers. We show that Staircase codes always outperform
existing solutions based on classical secret sharing codes. We val-
idate our results with extensive implementation on Amazon EC2.

Index Terms— Distributed computing, data privacy, secret
sharing, secure coded computing, machine learning.

I. INTRODUCTION

WE consider the setting of distributed computing in
which a server M, referred to as Master, possesses

confidential data (e.g., personal, genomic or medical data)
and wants to perform intensive computations on it. M wants
to divide these computations into smaller computational tasks

Manuscript received September 9, 2019; revised February 6, 2020; accepted
April 6, 2020. Date of publication April 17, 2020; date of current version
August 14, 2020. The work of the first and last authors was supported
in part by NSF Grants CCF 1817635 and CNS 1801630 and by ARL
Grant W911NF-17-1-0032. The work of the second author was supported in
part by the Science and Engineering Research Board (SERB) under Grant
No. DSTO-1677, the Department of Telecommunications, Government of
India, under Grant DOTC-0001, the Robert Bosch Center for Cyber-Physical
Systems, the Centre for Networked Intelligence (a Cisco CSR initiative)
of the Indian Institute of Science, Bangalore. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding agencies. This
article was presented in part at the 2017 IEEE International Symposium on
Information Theory (ISIT). The associate editor coordinating the review of
this article and approving it for publication was G. Durisi. (Corresponding
author: Rawad Bitar.)

Rawad Bitar and Salim El Rouayheb are with the ECE Department, Rutgers
University, New Jersey, NJ 08854 USA (e-mail: rawad.bitar@rutgers.edu;
salim.elrouayheb@rutgers.edu).

Parimal Parag is with the Department of Electrical Communication Engi-
neering, Indian Institute of Science, Bengaluru 560012, India (e-mail:
parimal@iisc.ac.in).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2020.2988506

and distribute them to n untrusted worker machines that can
perform these smaller tasks in parallel. The workers then return
their results to the Master, who can process them to obtain the
result of its original task.

In this paper, we are interested in applications in which the
worker machines do not belong to the same system or cluster
as the Master. Rather, the workers are online computing
machines that can be hired or can volunteer to help the
Master in its computations, e.g., crowdsourcing platforms like
the SETI@home [3] and folding@home [4] projects. The
additional constraint, which we worry about here, is that the
workers cannot be trusted with the sensitive data, which must
remain hidden from them. Privacy could be achieved using
fully homomorphic encryption that allows computing over
encrypted data. However, homomorphic encryption incurs high
computation and storage overheads [5], which may not be
feasible in certain applications.

We propose information theoretic security to achieve the
privacy requirement. Information theoretic security is typically
used to provide privacy with no constraints on the com-
putational power of the adversary (compromised workers).
Our main motivation for information theoretic security is
the low complexity of the resulting schemes (compared to
homomorphic encryption). The assumption that we have to
make here is a limit on the number of workers colluding
against the Master.

We focus on linear computations (matrix multiplication)
since they form a building block of many iterative algorithms,
such as principal component analysis, support vector machines
and other gradient-descent based algorithms [6], [7]. The
workers introduce random delays due to the difference of
their workloads or network congestion. This causes the Master
to wait for the slowest workers, referred to as stragglers in
the distributed computing community [8], [9]. Our goal is to
reduce the aggregate delay experienced by the Master.

Privacy can be achieved by encoding the data, with random
keys, using linear secret sharing codes [10] as illustrated in
Example 1. However, these codes are not specifically designed
to minimize latency as we will highlight later.

Example 1: Let the matrix A denote the data set owned
by M and let x be a given vector. M wants to compute Ax.
Suppose that M gets the help of 3 workers out of which at
most 1 may be a straggler. M generates a random matrix R
of same dimensions as A with entries drawn over the same
alphabet as the entries of A. M encodes A and R into 3 shares
S1 = R, S2 = R+A and S3 = R+2A using a secret sharing

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4421-1024
https://orcid.org/0000-0002-3757-904X

4610 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020

Fig. 1. Secure distributed matrix multiplication with 3 workers. The Master encodes its data using a linear secret sharing code, e.g., Shamir’s codes (given
in the caption) [11], [12] or Staircase codes (given in Table I) [13], [14]. Decoding Ax follows from the linearity of the code.

TABLE I

THE SHARES SENT BY M TO EACH WORKER WHEN USING STAIRCASE

CODES. IN THIS EXAMPLE, EACH SHARE IS DIVIDED INTO TWO

SUB-SHARES. THE OPERATIONS SHOWN ARE IN GF (5)

scheme [11], [12]. M sends share Si to worker Wi (Figure 1a)
and then sends x to all the workers. Each worker computes
Six and sends it back to M (Figure 1b). M can decode Ax after
receiving any 2 responses. For instance, if the first two workers
respond, M can obtain Ax = S2x−S1x. No information about
A is revealed to the workers, because A is one-time padded
by R.

In the previous example, even if there were no stragglers,
M still has to wait for the full responses of two workers, and
the response of the third one will not be used for decoding.
In addition, M always has to decode Rx in order to decode Ax.
Hence, more delays are incurred by spending communication
and computation resources on decoding Rx, which is only
needed for privacy. We overcome those limitations by using
Staircase codes introduced in [13], [14] which do not always
require decoding Rx. Thus, possibly reducing the computation
load at the workers and the communication cost at the Master.
In addition, Staircase codes allow more flexibility in the
number of responses needed for decoding Ax, as explained
in the next example.

Example 2 (Staircase codes): Consider the same setting as
Example 1. Instead of using a classical secret sharing code,
M now encodes A and R using the Staircase code given
in Table I. The Staircase code requires M to divide the
matrices A and R into A =

[
A1 A2

]T
and R =

[
R1 R2

]T
.

In this setting, M sends two sub-shares to each worker, hence
each task consists of 2 sub-tasks. The Master sends x to
all the workers. Each worker multiplies the sub-shares by
x (going from top to bottom) and sends each multiplication
back to M independently. Now, M has two possibilities for
decoding: 1) M receives the first sub-task from all the workers,
i.e., receives (A1 + A2 + R1)x, (A1 + 2A2 + 4R1)x and
(A1+3A2+4R1)x and decodes Ax which is the concatenation

of A1x and A2x. Note that here M decodes only R1x and
does not need to decode R2x. 2) M receives all the sub-tasks
from any 2 workers and decodes Ax. Here M has to decode
R1x and R2x. Note that if M uses the first three sub-shares,
it only decodes half of Rx, i.e., R1x, and does not need to
decode R2x. This allows the master to save on communication
cost. After receiving enough sub-tasks, the Master sends a
message to the workers instructing them to stop computing
the remaining sub-tasks. One can check that no information
about A is revealed to the workers, because each sub-share
is padded by a random matrix.

A. Contributions

To the extent of our knowledge, this paper is the first work
to analyze latency for private distributed coded computing
under the presence of stragglers. We consider the distributed
computing setting described above in which we require the
workers to learn no information (in an information theoretic
sense) about the Master’s data. We study the waiting time of
the Master caused by delays of the workers. We follow the
literature, e.g., [6], [15], and model the service time at the
workers as a shifted exponential random variable. This service
time includes upload time, computation time and download
time, i.e., computation and network latency. Finding codes that
minimize the delay at the Master is still an open problem in
general. In this work, we take the download communication
cost as a proxy for delay when designing the coding schemes.
More precisely, we study the performance of the recently intro-
duced Staircase codes [13], [14] that achieve the information
theoretic limit on download cost [16] and compare them to
classical secret sharing codes. The encoding and decoding at
the Master add delays that are proportional to inverting a k×k
matrix and multiplying this inverse by a vector of length k. The
encoding and decoding complexities are of order O(k log k)
when the generator matrix is a Vandermonde matrix. However,
since the codes mentioned in this paper have same encoding
and decoding complexities, we do not account for those delays
in our latency analysis. Therefore, our delay analysis (and
comparison to Staircase codes) is the same for codes that
requires a threshold on the number of stragglers, such as
[17], [18], and for classical secret sharing schemes.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

BITAR et al.: MINIMIZING LATENCY FOR SECURE CODED COMPUTING USING SECRET SHARING VIA STAIRCASE CODES 4611

Before we state our contributions, we introduce some nec-
essary notations. We denote by n the number of workers
available to help the Master, k denote the minimum number
of non stragglers and z the maximum number of colluding
workers. We refer to such secure distributed computing system
by an (n, k, z) system. We make the following contributions:

1) General bounds for systems with any number of
stragglers: We derive an upper and a lower bound on the
Master’s mean waiting time when using Staircase codes
(Theorem 1). Moreover, we derive the exact distribution
of the Master’s waiting time when using Staircase codes,
in an integral form (Theorem 4). Using the upper bound,
we compare the performance of Staircase codes to clas-
sical secret sharing codes and characterize the savings
obtained by Staircase codes. We show that Staircase
codes always outperform classical secret sharing codes.

2) Exact characterization for systems with up to 2 strag-
glers: We use the integral expression of Theorem 4 to
find the exact distribution of the Master’s waiting time
for systems with up to n − k = 1 and up to n − k = 2
stragglers (Corollary 5). Moreover, we derive the exact
expressions of the Master’s mean waiting time for these
systems (Theorem 2) and use these expressions to show
the tightness of our upper bound.

3) Simulations and validation: We ran extensive MATLAB
simulations for different system parameters. Our main
observation is that the upper bound, based on Jensen’s
inequality, is a good approximation of the mean waiting
time. Furthermore, we validate our results with extensive
implementation on Amazon EC2 clusters. The savings
obtained on EC2 clusters are within the range of the
values predicted by the theoretical model. To give an
example, for n = 4 workers, large data and high traffic
regime, our implementation shows 59% (Figure 4a)
savings in the mean waiting time while the theoretical
model predicts 66% savings (Figure 3a).

B. Related Work

The problem of stragglers has been identified and studied
by the distributed computing community, see e.g., [8], [9],
[19], [20]. Recently, there has been a growing research interest
in studying codes for straggler mitigation and delay mini-
mization in distributed systems with no secrecy constraints.
The early body of work focused on minimizing latency of
content download in distributed storage systems, see e.g., [15],
[21]–[23] and later the focus has shifted to using codes for
straggler mitigation in distributed computing, see e.g., [6], [7],
[24]–[29].

Secure multiparty computation [30] can be used in this
setting to provide privacy. However, the methods there are
generic and not tailored to matrix multiplication and therefore
do not have efficient communication cost and flexible straggler
mitigation. The work that is closest to ours is [10] that
studies the problem of distributively multiplying two private
matrices under information theoretic privacy constraints using
classical secret sharing codes. Subsequently to our initial result
that have appeared in [1], several other works have studied

different variants of this problem. In particular, [17], [18],
[31]–[36] studied the problem of distributively multiplying
two private matrices and [37]–[39] studied the problem of
running private distributed machine learning algorithm in the
presence of stragglers. In terms of delay analysis, all these
works use schemes that assume a threshold on the number of
stragglers and have similar delays as classical secret sharing
schemes. However, the schemes used to multiply two private
matrices require the master to use codes for both matrices
which results in more tradeoffs between encoding complexity,
straggler tolerance, upload cost and download cost see [18]
for example.

In general, privacy in distributed computing is studied
separately, mostly in the computer science community. Our
work can also be related to the work on privacy-preserving
algorithms, e.g., [40]–[43]. However, the privacy constraint in
this line of work is computational privacy, and the proposed
algorithms are not designed for straggler mitigation.

C. Organization

The paper is organized as follows. We formalize the problem
and define the model in Section II. In Section III, we present
and discuss our main results. We describe the construction
of Staircase codes in Section IV. In Sections V and VI,
we study the probability distribution of the Master’s waiting
time and derive bounds on the mean waiting time. We show,
in Section VII, that the (random) number of workers that
minimizes the waiting time is concentrated around its average.
We evaluate the performance of Staircase codes via simulation
in Section VIII. In Section IX, we give a representative
sample of our implementation on Amazon EC2 clusters and
compare them to our theoretical findings. We conclude the
paper in Section X.

II. SYSTEM MODEL

We consider a Master server M which wants to perform
intensive computations on confidential data represented by
an m × � matrix A (typically m � �). M divides these
computations into smaller computational tasks and assigns
them to n workers Wi, i = 1, . . . , n, that can perform these
tasks in parallel. The division is horizontal, i.e., each worker
gets a given number of rows of A with all their corresponding
columns.

a) Computations model: We focus on linear computa-
tions. The motivation is that a building block in several iter-
ative machine learning algorithms, such as gradient descent,
is the multiplication of A by a sequence of �×1 attribute vec-
tors x1,x2, In the sequel, we focus on the multiplication
Ax with one attribute vector x.

b) Workers model: The workers have the following prop-
erties: 1) The workers incur random delays while executing the
task assigned to them by M resulting in what is known as the
straggler problem [6], [8], [9]. 2) Up to z, z < k, workers can
collude, i.e., at most z workers can share with each other the
data they receive from M. The threshold z could be thought
of as a desired level of security. This has implications on the
privacy constraint described later.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

4612 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020

c) General scheme: M encodes A, using randomness, into
n shares Si sent to worker Wi, i = 1, . . . , n. Any k or more
shares can decode A, and any collection of z workers obtain
zero information about A. For any set B ⊆ {1, . . . , n}, let
SB = {Si, i ∈ B} denote the collection of shares given to
worker Wi for all i ∈ B. The previous requirements can be
expressed as,

H(A|SB) = 0, ∀B ⊆ {1, . . . , n} s.t. |B| ≥ k,

H(A|SZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z.

At each iteration, the Master sends x to all the workers.
Then, each worker computes Six and sends it back to the
Master. In the case where the share Si consists of sub-shares,
each worker multiplies the sub-shares by x and sends the
result back to the master independently. Since the scheme and
the computations are linear, the Master can decode Ax after
receiving enough responses. After receiving enough responses
the master sends a stop message to the workers instructing
them to stop computing on the remaining sub-shares. We refer
to such scheme as an (n, k, z) system. We note that our
scheme can be generalized to the cases where the attribute
vectors x contain information about A, and therefore need to
be hidden from the workers. We describe the generalization
of our scheme to such case in [2, Appendix].

d) Encoding: We consider classical secret sharing
codes [11], [12] and universal Staircase codes [13], [14].
We describe their properties that are necessary for the delay
analysis. Secret sharing codes require the division of A into
k − z row blocks each of dimension m

k−z × � and encodes
them into n shares of identical dimension. Any k shares
can decode A. Similarly, Staircase codes encode A into n
shares of m

(k−z) × � each with the additional requirement that
each share is divided into b = LCM{k − z + 1, . . . , n − z}
sub-shares, where LCM{a, b, c} denotes the least common
multiple of a, b and c. Decoding A requires a fraction
αdb sub-shares, αd � (k−z)

(d−z) , from any of the d shares,
d ∈ {k, . . . , n}. We provide a detailed explanation on the
construction of Staircase codes in Section IV. We show that
Staircase codes outperform classical codes in terms of incurred
delays.

e) Delay model: Let TA be the random variable rep-
resenting the time spent to compute Ax at one worker.
We assume a mother runtime distribution FTA(t) that is
shifted exponential with rate λ and a constant shift c. This
is a popular model for modeling service time in a compute
cluster [6], [15], and primarily motivated by its analytical
tractability. Furthermore, the shifted exponential distribution
captures the two parts of the service completion time: the
constant part of the task-dependent service time at each server,
and the stochasticity in service due to uncorrelated background
processes at each server. For each i ∈ {1, . . . , n}, we let Ti

denote the time spent by worker Wi to execute its task. Due
to the encoding, each task given to a worker is k − z times
smaller than A, or Ti = TA

(k−z) . It follows that FTi is a scaled
distribution of FTA . That is, for t ≥ c/(k − z),

FTi(t) � FTA((k − z)t) = 1 − e
−λ(k−z)(t− c

k−z)
. (1)

We assume that the Ti’s, i = 1, . . . , n, are independent and
identically distributed (iid). For an (n, k, z) system using
Staircase codes, we assume that Ti is evenly distributed among
the sub-tasks.1 That is, the time spent by a worker Wi on one
sub-task is equal to Ti/b, and the time spent on bαd = bk−z

d−z
sub-tasks is αdTi.

Let T(i) be the ith order statistic of the Ti’s and TSC(n, k, z)
be the time the Master waits until it can decode Ax. If the
aggregate wait is due to d workers each finishing αd fraction
of its b sub-tasks, then the Master’s waiting time is αdT(d).
We can write

TSC(n, k, z) = min
d∈{k,...,n}

{
αdT(d)

}
. (2)

It is useful for our analysis to look at Ti as the sum of an
exponential random variable T ′

i and a constant offset, i.e. Ti =
T ′

i + c/(k − z), where T ′
i ∼ exp (λ(k − z)).

From this interpretation, it is easy to verify that the dth order
statistic T(d) of (T1, T2, . . . , Tn) can be expressed as

T(d) = T ′
(d) + c/(k − z),

where T ′
(d) is the dth order statistic of n iid exponential random

variables with rate λ(k − z). Therefore, we can write the
Master’s waiting time for Staircase codes as

TSC(n, k, z) = min
d∈{k,...,n}

{
αd

(
T ′

(d) +
c

k − z

)}
. (3)

For an (n, k, z) system using classical secret sharing codes, the
Master’s waiting time TSS(n, k, z) is equal to the time spent
by the fastest k workers to finish their individual tasks. Hence,
we can write

TSS(n, k, z) = T(k). (4)

We drop the (n, k, z) notation from TSC(n, k, z) and
TSS(n, k, z) when the system parameters are clear from the
context.

III. OUR RESULTS

Our results characterize the delay performance of secure
coded computing when using Staircase codes and compare it
to classical secret sharing codes. The performance of Staircase
codes is reflected in the Master’s waiting time TSC. Towards
our goal, we establish in Theorem 1 general bounds on
the Master’s mean waiting time E[TSC(n, k, z)] when using
Staircase codes for all (n, k, z) systems, under the shifted
exponential delay model.

Theorem 1 (Bounds on the Master’s Mean Waiting Time
E[TSC]): Let Hn be the nth harmonic sum defined as Hn �∑n

i=1
1
i , with the notation H0 � 0. The mean waiting time of

1Therefore, we make two assumptions on the service time of the workers:
(1) the distribution of service times at each worker is iid, (2) at each worker,
the service time of a sub-task is proportional to the fraction of the total
task at the worker. Accordingly, the parameters of the sub-task distribution
(shift c and mean 1/λ) vary linearly with the sub-task size. We observe
that the service time of sub-tasks of the task computed at a given worker
are proportional to their fractional size, and therefore are not independent.
These assumptions make the problem more amenable to theoretical analysis.
In Section IX, we compare our model to traces obtained from Amazon cloud
and show that our model provides insightful engineering guidelines.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

BITAR et al.: MINIMIZING LATENCY FOR SECURE CODED COMPUTING USING SECRET SHARING VIA STAIRCASE CODES 4613

Fig. 2. Theoretical upper and lower bounds for systems with rate of the exponential random variable λ = 1, shift c = 1 and no colluding workers, i.e., z = 1.
Figure 2a compares the bounds derived in Theorem 1 to the theoretical mean waiting time for (k + 2, k, 1) derived in Corollary 2. Observe that the upper
bound in (5) is a good approximation of the mean waiting time in (8). Figure 2b compares the bounds in (5) and (6) to the simulated mean waiting time for
(n, k, z) systems with fixed rate k/n = 1/2. We obtain the mean waiting time by averaging over 10000 iterations for each value of n. Figure 2c compares
the upper bound in (5) to the mean waiting time of classical secret sharing in (9). The savings are computed as the normalized difference between the waiting
time of Staircase codes and classical secret sharing codes, i.e., (E[TSS] − E[TSC]) /E[TSS].

the Master E[TSC] for an (n, k, z) Staircase coded system is
upper bounded by

E[TSC] ≤ min
d∈{k,...,n}

(
Hn − Hn−d

λ(d − z)
+

c

d − z

)
. (5)

The lower bounded is given in (6), as shown at the bottom of
this page.

We derive in Section VI a general integral expression (19)
leading to the CDF FTSC(t) of TSC, the waiting time of the
Master for all (n, k, z) systems. Using the general integral
expression, we derive the exact expression of the CDF FTSC(t)
for systems with n = k + 1 and n = k + 2 as stated in the
next theorem.

Theorem 2 (Exact Expression of E[TSC] for Systems With
Up to 2 Stragglers): The mean waiting time of the Master for
(k + 1, k, z) and (k + 2, k, z) systems is given in (7) and (8),
as shown at the bottom of this page, respectively.

To give insights into the theoretical bounds above, we com-
pare in Figure 2a bounds (5) and (6) for the case of n = k+2
to the exact expression in (8). We see that the upper bound in
(5) is closer to the actual value and the gap between the two
bounds closes as n increases. We also establish the comparison
for fixed rate regimes, in particular rate k/n = 1/2. Since here
n ≥ k + 2, we compare in Figure 2b the bounds to numerical
results obtained by simulation and observe the same behavior
as before. We also plot in the same figure the mean waiting
time for classical secret sharing codes obtained from (4) and

given by

E[TSS] =
Hn − Hn−k

λ(k − z)
+

c

k − z
. (9)

This allows to verify that Staircase codes always outperform
classical secret sharing codes. In Figure 2c, we plot the lower
bound on the relative savings brought by Staircase codes for
systems with rate k/n = 1/2, 1/4, 1/5. For instance, for rate
1/4, the savings are lower bounded by 40% for large n.
We supplement our theoretical results in Section VIII with
an extensive array of simulations in addition to measurement
results obtained by implementation on Amazon EC2 clusters.
The savings obtained in the implementation on Amazon cloud
are within the savings predicted by the theoretical model.

IV. STAIRCASE CODES

We briefly explain the encoding and decoding of Staircase
codes. Let A be an m × � matrix with elements drawn
uniformly at random from a finite alphabet, e.g., a finite
field2 GF (q). An (n, k, z) Universal3 Staircase code [13],
[14] allows the Master to encode A into n shares and
distribute them to n workers. In addition to privacy against
any z colluding workers, Staircase codes enjoy the secret
reconstruction with minimum communication cost property.
The Master can reconstruct the secret by contacting any set

2The computation can be carried over the reals by using unbiased quanti-
zation as in [38] and references within.

3We only describe Universal Staircase codes [14] and shall refer to them
as Staircase codes.

E[TSC] ≥ c

n − z
+ max

d∈{k,...,n}

k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
2(−1)j

λ (2(n − i + j)(d − z) + (n − d)(n − d + 1))
. (6)

E [TSC(k + 1, k, z)] =
c

k − z + 1
+

1
λ

k+1∑
i=1

(−1)i

(
k + 1

i

)⎡
⎣ i exp

(
−λc
k−z

)
(k − z)i + 1

− 1
(k − z + 1)i

⎤
⎦ . (7)

E[TSC(k + 2, k, z)] = E[TSC(k + 2, k + 1, z)] +
k+2∑
i=2

(−1)i

λ

(
k + 2

i

)(
i

2

)⎡
⎣exp

(
− 4λc

k−z

)
(k − z)i + 4

−
2 exp

(
− 3λc

k−z

)
(k − z)i + 3

⎤
⎦ . (8)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

4614 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020

TABLE II

THE STRUCTURE OF THE MATRIX MSC THAT CONTAINS THE SECRET AND
KEYS IN THE UNIVERSAL STAIRCASE CODE CONSTRUCTION [14]

of d, k ≤ d ≤ n, workers and downloading a part of their
shares. The information theoretic lower bound on the amount
of information downloaded from each worker is referred to as
communication cost CC(d) and is given [16] by

CC(d) =
k − z

d − z
. (10)

Encoding: Let V be an n × n Vandermonde matrix defined
over GF (q), q ≥ n. Let MSC be the matrix defined in Table II
and detailed next. The encoding of Staircase codes consists of
multiplying V by MSC to obtain the matrix C = V MSC. The
n rows of C form the n shares.

To construct the matrix M defined in Table II, an (n, k, z)
Staircase code requires dividing the data matrix A into b(k−z)
matrices A1, . . . , A(k−z)b each of dimension4 m/b(k−z)× �,
where b = LCM{k + 1, . . . , n − z}. Let d1 = n, d2 =
n − 1, . . . , dh = k denote the number of workers contacted
by the Master, with h = n − k + 1. Let bi � di − z for i =
1, . . . , h. The data matrices are arranged in a b1m/(k− z)b×
�(k−z)b/b1 matrix S. To ensure secrecy, the construction uses
zb matrices R1, . . . , Rzb of dimension m/b(k−z)×� each and
with elements drawn independently and uniformly at random
from GF (q). The random matrices R1, . . . , Rzb are parti-
tioned into h matrices Ri, i = 1, . . . , h, each of dimension
zm/(k − z)b × �(k − z)b/bibi−1 with b0 = 1. The matrix
MSC is the concatenation of h matrices Mi, i = 1, . . . , h.
Each matrix Mi consists of the bi sub-tasks downloaded by
the Master when decoding from di workers, i.e., when there
are n − di stragglers.

The elements appearing in each matrix Dj are the elements
of the (n − j + 1)th row of

[
M1 M2 . . .Mj

]
rearranged to

obtain the dimension of Dj as mbj+1/(k − z)b × �(k −
z)b/bjbj+1 for j = 1, . . . , h − 1. The 0’s are the all zero
matrices used to complete the Mi’s to nm(k − z)b rows.

The structure of the matrix MSC, called Staircase structure,
allows the Master to decode the secret and achieve optimal
communication and read overheads CO and RO for all d, k ≤
d ≤ n.

Decoding: The Master contacts any di workers, i = 1, . . . , h
and downloads

[
M1 . . . Mi

]
from each contacted worker. The

Master is guaranteed [14, Theorem 2] to decode the secret.

4If the number of rows in A is not divisible by b, one can use zero
padding or the representation of A in a smaller field GF (q1) such that q = qb

1.

In the setting of secure distributed computing, the Master
encodes A and sends the n shares to the workers. To compute
Ax, M sends x to the workers and waits for the first d,
k ≤ d ≤ n, workers to send part of their shares multiplied
by x. Since the multiplication is linear, the Master can decode
Ax and part of the random matrices Rix, i = 1, . . . , zb.

V. BOUNDS ON THE MASTER’S MEAN WAITING

TIME FOR ALL (n, k, z) SYSTEMS

We derive an upper and a lower bound on the Master’s mean
waiting time E[TSC(n, k, z)] for all (n, k, z) systems, i.e., we
prove Theorem 1.

A. Proof of the Upper Bound on the Mean Waiting Time

Proof: We use Jensen’s inequality to upper bound the
mean waiting time E[TSC]. Since min is a convex function,
we can use Jensen’s inequality to upper bound the mean
waiting time,

E[TSC] = E

[
min

d∈{k,...,n}

{
αdT

′
(d) +

c

d − z

}]

≤ min
d∈{k,...,n}

{
αdE

[
T ′

(d)

]
+

c

d − z

}
. (11)

We need the following theorem in order to derive an exact
expression of the mean of the dth order statistic of n iid
exponential random variables.

Theorem (Renyi [44]): The dth order statistic T ′
(d) of n

iid exponential random variables T ′
i is equal to the following

random variable in the distribution

T ′
(d) �

d∑
j=1

T ′
j

n − j + 1
.

Using Renyi’s theorem, the mean of the dth order statistic

E

[
T ′

(d)

]
can be written as

E[T ′
(d)] = E[T ′

j]
d−1∑
j=0

1
n − j

=
Hn − Hn−d

λ(k − z)
. (12)

From equations (11) and (12), the mean waiting time is upper
bounded by

E[TSC] ≤ min
d∈{k,...,n}

{
Hn − Hn−d

λ(d − z)
+

c

d − z

}
.

We give an intuitive behavior of the upper bound. The har-
monic number can be approximated by Hn ≈ log(n) + γ,
where γ ≈ 0.577218 is called the Euler-Mascheroni constant.
Alternatively, we can use the upper and lower bounds log(n) <
Hn < log(n+1) on the Harmonic number Hn, to upper bound
the mean waiting time

E[TSC] < min {Ψ1, Ψ2} ,

Ψ1 � min
d∈{k,...,n−1}

{
1

λ(d − z)
log

(
n + 1
n − d

)
+

c

d − z

}
,

Ψ2 � 1
λ(n − z)

log (n + 1) +
c

n − z
.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

BITAR et al.: MINIMIZING LATENCY FOR SECURE CODED COMPUTING USING SECRET SHARING VIA STAIRCASE CODES 4615

B. Proof of the Lower Bound on the Mean Waiting Time

Proof: Recall that TSC = min{αdT(d) : d ∈
{k, . . . , n}} = min{αdT

′
(d) +

c

d − z
: d ∈ {k, . . . , n}}.

Since the minimum of the sum is greater than the sum of the
minimums, we can lower bound the waiting time TSC in terms
of residual waiting time T ′

SC � min{αdT
′
(d) : d ∈ {k, . . . , n}},

as

TSC = min
d∈{k,...,n}

{αdT
′
(d) +

c

d − z
} ≥ T ′

SC +
c

(n − z)
.

Since the mean of a continuous random variable can be
computed by integrating the tail probability, we lower bound
E[T ′

SC] by lower bounding the tail probability of T ′
SC exceed-

ing any threshold value t. We observe that T ′
SC is greater than

t, if and only if the dth order statistic T ′
(d) is greater than t

αd

for each d ∈ {k, . . . , n}. That is,

{T ′
SC > t} =

n⋂
d=k

{
T ′

(d) >
t

αd

}
.

Recall that tα−1
d (k − z) = t(d− z) is increasing in d, and so

is T ′
(d). For the residual service times T ′

1, . . . , T
′
n, we consider

Cd(t) defined as the following set{
T ′

(k) >
t

αd

} n⋂
i=d+1

{
T ′

(i) − T ′
(i−1) >

t

αi
− t

αi−1

}
.

For each d ∈ {k, . . . , n}, we observe that Cd(t) ⊆ {T ′
SC > t}

since {T ′
(k) > tα−1

d } ⊆ ∩d
j=k{T ′

(j) > tα−1
j }. It follows that,

Pr {T ′
SC > t} ≥ maxd∈{k,...,n} Pr(Cd(t)). Next, we evaluate

Pr(Cd(t)) explicitly. To this end, we first observe that αj
−1−

αj−1
−1 = (k − z)−1 identically for each j ∈ {1, . . . , n}. Fur-

ther, we apply Renyi’s theorem and independence of residual
times T ′

i s to write

Pr (Cd(t)) = Pr
{

T ′
(k) >

t

αd

}
n∏

j=d+1

Pr
{

T ′
j

n − j + 1
>

t

(k − z)

}
. (13)

In the following, we would use F (t) = 1 − e−λt for t ≥ 0
to represent the cumulative distribution function (CDF) and
F̄ (t) = 1 − F (t) to represent the complementary cumulative
distribution function (CCDF), of an exponential random vari-
able with rate λ. It follows that the CCDF for the residual
service time T ′

j is Pr{T ′
j > t} = F̄ ((k − z)t). Utilizing the

exponential form, we can write (14), as shown at the bottom
of this page.

From definition, it follows that αk = 1. Further, the kth

order statistic of n residual service times exceeds a threshold
if and only if at most k − 1 different residual service times
are less than the threshold, c.f., Lemma 3. That is,

Pr
{
T ′

(k) > t
}

=
k−1∑
i=0

(
n

i

)
F ((k − z)t)i

F̄ ((k − z)t)n−i
.

(15)

Since F (t) = 1−F̄ (t), using the binomial expansion, we have

F ((k − z)t)i =
i∑

j=0

(
i

j

)
(−1)jF̄ ((k − z)t)j . (16)

Exploiting the exponential form of F̄ (t), aggregating results
from (14), (15) and (16), we can re-write (13) as (17), shown
at the bottom of this page. The proof follows from the integral∫∞
0

e−xtdt = 1
x , the linearity of integrals, and the lower

bound (18), as shown at the bottom of this page.
Lemma 3: Marginal complementary distribution of dth

order statistic T ′
(d) of n iid random variables (T ′

1, . . . , T
′
n)

with common distribution fT ′(t) is given by

Pr{T ′
(d) > t} =

d−1∑
i=0

(
n

i

)
FT ′(t)F̄T ′ (t)n−i.

We note the cumulative distribution function (CDF) of f
by FT ′(t) � fT ′(T ′ < t) and the complementary cumulative
distribution function (CCDF) of f by F̄ � fT ′(T ′ > t) =
1 − FT ′(t).

Proof: The dth order statistic is greater than t, if and only
if at most d − 1 out of n iid random variables (T1, . . . , Tn)
can be less than t, and the rest are greater than t.

VI. DISTRIBUTION OF THE MASTER’S WAITING

TIME FOR ALL (n, k, z) SYSTEMS

Now we are ready to derive an integral expression for the
probability distribution of TSC, the Master’s waiting time when
using Staircase codes.

Theorem 4 (Integral Expression Leading to FTSC(t)): The
distribution of the Master’s waiting time TSC of an (n, k, z)
system using Staircase codes is given in (19), as shown at the
bottom of the next page.

We denote the residual service time at each worker Wi, i =
1, . . . , n, by the random variable T ′

i = Ti − c
k−z , and

the associated distribution by F (yi) � FT ′ (yi) = 1 −
exp(−λyi) for yi > 0. For i = k, . . . , n, we define ti as

n∏
j=d+1

Pr
{

T ′
j

n − j + 1
>

t

(k − z)

}
= F̄

⎛
⎝ n∑

j=d+1

(n − j + 1)t

⎞
⎠ = F̄

(
(n − d)(n − d + 1)t

2

)
. (14)

Pr (Cd(t)) =
k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
(−1)jF̄

(
t(n − i + j)(d − z) + t(n − d)(n − d + 1)/2

)
. (17)

E[T ′
SC] =

∫ ∞

0

Pr{T ′
SC > t} dt≥

∫ ∞

0

max
d∈{k,...,n}

Pr(Cd(t))dt≥ max
d∈{k,...,n}

∫ ∞

0

Pr(Cd(t))dt. (18)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

4616 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020

ti � max
{(

i−z
k−z

)(
t − c

i−z

)
, 0

}
. We denote by A(t) the set

of ordered variables (yk, . . . , yn) defined as
{0 ≤ yk ≤ yk+1 ≤ · · · ≤ yn : tk < yk, . . . , tn < yn}.

We apply Theorem 4 to get the mean waiting time of
the Master and the exact distribution of the waiting time for
systems with n = k + 1 and n = k + 2 in Theorem 2 and
Corollary 5, respectively.

Corollary 5 (Exact Expression of FTSC(t) for Systems With
Up to 2 Stragglers): The distribution of the Master’s waiting
time for (k +1, k, z) and (k +2, k, z) systems is given in (20)
and (21), as shown at the bottom of this page, respectively.
Both distributions are defined for t > 0, and FT ′(t) � 1 −
exp(−λ(k − z)t).

We omit the proof of Corollary 5 since it follows from
simply integrating (19) and defer the proof of Theorem 2 to
the technical report [2].

Proof of Theorem 4: Let T ′
i denote the residual ser-

vice time of worker i with the offset c
k−z . The sequence

(T ′
1, . . . , T

′
n) of residual service times of n workers is assumed

to be iid and distributed exponentially with rate λ(k − z)
with the tail-distribution function F̄T ′(t) � e−λ(k−z)t

for t > 0.
Since the common distribution of residual service times is

absolutely continuous with respect to the Lebesgue measure,
the corresponding probability density exists and is denoted
by fT ′(t) = dFT ′ (t)/dt = λ(k − z)e−λ(k−z)t for t � 0.
Further, we know that the order statistics (T ′

(1), . . . , T
′
(n))

of residual times (T ′
1, . . . , T

′
n) is identical for all their n!

permutations. Hence, for any 0 ≤ y1 ≤ . . . ≤ yn, we can
write fT ′

(1),...,T
′
(n)

(y1, . . . , yn) = n!fT ′
1,...,T ′

n
(y1, . . . , yn) =

n!
∏n

i=1 fT ′(yi). The product form of joint density follows
from the independence of the residual service times.

In terms of αj = k−z
j−z , the order statistics of residual times

T ′
(j), and the offset c

k−z , we can write

{TSC > t} =
n⋂

j=k

{
T ′

(j) >
t

αj
− c

j − z

}
.

For each k ≤ j ≤ n, we define tj �
max

{
t

αj
− c

j−z , 0
}

, yn+1 � ∞, and Â(t) � ∩n+1
j=k {tj <

yj ≤ yj+1} ∩k−1
j=1 {0 ≤ yj ≤ yj+1}. In terms of tj , yn+1 and

Â(t), we can write the tail distribution as in (22), as shown
at the bottom of this page.

First, we compute the integral with respect to ordered
non-negative real variables (y1, . . . , yk−1) over the region

Bk−1 � ∩k−1
j=1{0 ≤ yj ≤ yj+1}, a projection of Â(t) on

(k − 1) dimensional space spanned by (y1, . . . , yk−1).
Claim 6: For each k > 1, we have

Ik �
∫

Bk−1

dFT ′(yk−1) . . . dFT ′(y1)

=
∫ yk

0

· · ·
∫ y2

0

k−1∏
i=1

dFT ′ (yi) =
FT ′(yk)k−1

(k − 1)!
.

Since the projection of Â(t) on (n − k + 1) dimensional
space spanned by (yk, . . . , yn) is equal to A(t), it follows that
the integration of the first part is equal to n!

∫
(yk,...,yn)∈A(t)

dFT ′(yn) . . . dFT ′(yk), giving us the result. �

VII. INTERPLAY BETWEEN CODE DESIGN AND LATENCY

Universal Staircase codes allows the master to decode Ax
from any random number d of workers, k ≤ d ≤ n. The
downside is that the universal construction requires a large
number of sub-tasks b = LCM{k − z + 1, . . . , n − z}.
In many applications, there may be an overhead associated
with excessive divisions into sub-tasks. We show that we can
reduce the number of sub-tasks at the expense of a small
increase of the Master’s waiting time. Using the so-called Δ-
Universal Staircase codes [14] reduces the number of sub-tasks
at the expense of limiting the Master to a set Δ ⊆ {k, . . . , n}
of number of workers allowing the Master to decode Ax.
In other words, the Master can decode Ax by downloading
enough information from any d workers, d ∈ Δ. The number
of sub-tasks assigned to each worker is reduced from b =
LCM{k − z + 1, . . . , n− z} to the least common multiple of
all di ∈ Δ. It remains to prove that d is concentrated around
its mean. Hence, restricting d to an interval Δ centered around
its mean, leads to a reduction in the Master’s waiting time.

Next, we prove that the number of workers d that minimize
the waiting time is concentrated around its average.

Lemma 7: For an (n, k, z) system, the probability distribu-
tion of the distance between d and its average is

Pr{|d − E[d]| > t} ≤ 2e−2t2/n(n−k)2 .
We prove Lemma 7 by showing that the number of workers

d that first finish the aggregate computation is concentrated
around its mean, using McDiarmid’s inequality. Recall that
d : R

n
+ → {k, . . . , n} is a function of the compute times

T1, . . . , Tn.

d(T1, . . . , Tn) � argmin
{

k − z

i − z
T(i) : i ∈ {k, . . . , n}

}
.

FTSC (t) = 1 − n!
∫

(yk,...,yn)∈A(t)

FT ′(yk)k−1

(k − 1)!
dFT ′(yk) . . . dFT ′(yn) for t > 0. (19)

FTSC(k+1,k,z)(t) = FT ′(tk+1)k+1 + FT ′(tk)kF̄T ′(tk+1)(k + 1). (20)

FTSC(k+2,k,z)(t) = FT ′(tk+2)k+2 + (k + 2)F̄T ′(tk+2)
[
FT ′(tk+1)k+1 + (k + 1)FT ′(tk)k(F̄T ′(tk+1) − 1

2
F̄T ′ (tk+2))

]
. (21)

Pr{TSC > t} =
∫

y∈Â(t)

dFT ′
(1),...,T

′
(n)

(y) = n!
∫ ∞

tn

· · ·
∫ yk+1

tk

n∏
i=k

dFT ′(yi)

(∫ yk

0

· · ·
∫ y2

0

k−1∏
i=1

dFT ′(yi)

)
. (22)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

BITAR et al.: MINIMIZING LATENCY FOR SECURE CODED COMPUTING USING SECRET SHARING VIA STAIRCASE CODES 4617

Fig. 3. Savings for the fixed rate regime, k/n = 1/2 and 1/4. The lower bound on the savings of Staircase codes obtained from (24) is compared to the
numerical values obtained by simulations. We consider systems with no colluding workers, i.e., z = 1, we fix λ = 1 and vary c. For instance, for systems
with rate k/n = 1/2 and λc = 100 Staircase codes can provide up to 66% reduction in the mean waiting time.

Fig. 4. Empirical complementary CDF of the Master’s waiting time (and its average) observed on Amazon EC2 clusters for systems with rate k/n = 1/2.
The data matrix A is a 378000 × 250 matrix with entries generated uniformly at random from {1, . . . , 255}. Staircase codes bring 59% reduction in the
mean waiting time for n = 4. Those numbers were obtained by repeating the multiplication process 1000 times.

Claim 8: The number of workers d that minimize the wait-
ing time is a bounded difference function of compute times
with constants (n − k, . . . , n − k). That is, for each i ∈ [n]
taking t, ti ∈ R

n
+ such that tj = tij for each j ∈ [n] \ {i} and

ti = tii,

sup{|g(t) − g(ti)| : t, ti ∈ R
n
+} ≤ n − k. (23)

The claim follows from the fact that d ∈ {k, . . . , n}.
Therefore, we can apply the McDiarmid’s inequality to obtain
the concentration bound on d.

VIII. SIMULATIONS

We use the normalized difference between the mean waiting
time of Staircase codes and classical secret sharing codes as a
performance metric for Staircase codes. We refer to this metric
as the savings. Using the result of Theorem 1, we can get a
lower and an upper bound on the savings brought by Staircase
codes. The lower bound on the savings is given in (24).

1 − E[TSC]
E[TSS]

≥ 1 − min
d∈{k,...,n}

{
(k − z)(λc + Hn − Hn−d)
(d − z)(λc + Hn − Hn−k)

}
.

(24)

To get an idea of the actual savings and the tightness of
the bound in (24), we ran numerical simulations of the mean
waiting time induced by the use of Staircase codes. By looking
at (24), we notice that the bound depends on λ and c only
through5 λc (our simulations show that the actual savings also
have a strong dependency on λc). Therefore, we consider three
cases for λc : large values of λc (λc = 100), medium values

5Note that for c = 0 we go to the exponential model and the savings would
depend only on λ.

of λc (λc = 1) and small values of λc (λc = 0.001). We ran
the simulations for two regimes:

• Fixed rate k/n: the plots can be seen in Figure 3.
We deduce from the plots that the lower bound is tighter
for large values of λc. Moreover, the savings increase
with the decrease of the rate k/n and the increase of λc.
Note that for large values of λc, the lower bound in (24)
converges to 1 − k/n.

• Fixed number of parities n−k: We deduce from the plots
that similarly to the fixed rate regime the lower bound is
tight for large values of λc and that the savings increase
with the increase of the number of parities n−k and with
the increase of λc. However, we observe that the savings
vanish asymptotically with n in this regime. Due to space
constraints, the plots are omitted and can be found in [2].

IX. IMPLEMENTATION AND VALIDATION

OF THE THEORETICAL MODEL

We describe a representative sample of our implementa-
tion on Amazon EC2 clusters and discuss our observations.
We present traces for systems with fixed rate k/n = 1/2
(Figure 4). We noticed that the straggler behavior, and there-
fore the savings, can depend on the date and time of the
implementation. We refer interested readers to [2] where we
highlight this dependence by presenting traces of one system
implemented at different date and times.

Discussion on the theoretical model: Before giving the
details, we summarize our findings. We observe that the
savings of the system on EC2 can surpass the numerical
values resulting from our theoretical model in Section II for

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

4618 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 8, AUGUST 2020

large sizes of the matrix A. However, for small sizes of A,
the savings in practice can be less.

The difference between the theoretical results and the
implementations can be attributed to several reasons. First,
in our model we assume in (2) that the total service time of
a task does not change when divided into b sub-tasks, each
requiring the same service time. Whereas, our implementation
on Amazon shows that the download time decreases faster
than linearly with the size of the sub-task for large sub-tasks.
Second, for small sub-tasks, we noticed an additional overhead
of sending the results of multiple sub-tasks. This overhead
becomes non-negligible when the task is small. Third, we have
assumed a homogeneous setting where all workers have the
same behavior which is not always the case in practice.

Despite these differences, our adopted theoretical model is
more amenable to theoretical analysis and provides insightful
engineering guiding principles.

We present the implementation of (4, 2, 1), (10, 5, 1) and
(20, 10, 1) systems on Amazon EC2 clusters. We use M4.large
EC2 instances [45] from Amazon web services (AWS) for our
implementation. We assign the Master’s job to an instance
located in Virginia and the workers job to instances located
in Ohio. We plot in Figures 4a, 4b and 4c the empirical
complementary CDF of the Master’s waiting time for Staircase
codes and classical secret sharing codes for (4, 2, 1), (10, 5, 1)
and (20, 10, 1) systems, respectively. The average savings
brought by Staircase codes are 59%, 42% and 32% for systems
with n = 4, n = 10 and n = 20 workers, respectively. Note
that for this set of implementation, the Master’s data A is a
matrix of size 378000× 250 with entries generated uniformly
at random from {1, . . . , 255}. We run 1000 multiplications of
A by a randomly generated vector x. In the technical report [2]
we present the trace of a (4, 2, 1) system implemented at
different dates and times on Amazon EC2 clusters.

X. CONCLUSION AND OPEN PROBLEMS

We consider the problem of secure coded computing.
We propose the use of a new family of secret sharing codes
called Staircase codes that reduces the delays caused by
stragglers. We show that Staircase codes always lead to smaller
waiting time compared to classical secret sharing codes, e.g.,
Shamir secret sharing codes. The reason behind reducing the
delays is that Staircase codes allow flexibility in the number
of stragglers up to a given maximum, and universally achieve
the information theoretic limit on the download cost by the
Master, leading to latency reduction. We consider the shifted
exponential model for the workers’s response time. In our
analysis, we find upper and lower bounds on the Master’s mean
waiting time. We characterize the distribution of the Master’s
waiting time, and its mean, for systems with n = k − 1 and
n = k − 2. Moreover, we derive an expression that can give
the exact distribution, and the mean, of the waiting time of the
Master. We supplement our theoretical study with extensive
implementation on Amazon EC2 clusters.

While Staircase codes reduce the Master’s waiting time
by minimizing the download cost, they are not designed
to minimize latency. The problem of designing codes that
minimize the latency remains open in general. Another open

problem, which we leave for future work, is when malicious
workers corrupt the results sent to the Master.

REFERENCES

[1] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900–2904.

[2] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for
secure coded computing using secret sharing via staircase codes,”
2018, arXiv:1802.02640. [Online]. Available: http://arxiv.org/abs/1802.
02640

[3] SETI at Home. Accessed: Feb. 5, 2017. [Online]. Available: https://
setiathome.berkeley.edu

[4] Folding at Home. Accessed: Feb. 5, 2017. [Online]. Available: https://
foldingathome.stanford.edu

[5] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM J. Comput., vol. 43, no. 2,
pp. 831–871, 2014.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. 29th
Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2016, pp. 2092–2100.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, p. 74, Feb. 2013.

[10] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra
computations,” in Proc. 5th ACM Symp. Inf., Comput. Commun. Secur.
ASIACCS, New York, NY, USA, 2010, pp. 48–59.

[11] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[12] R. J. McEliece and D. V. Sarwate, “On sharing secrets and Reed–
Solomon codes,” Commun. ACM, vol. 24, no. 9, pp. 583–584, Sep. 1981.

[13] R. Bitar and S. El Rouayheb, “Staircase codes for secret sharing with
optimal communication and read overheads,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2016, pp. 1396–1400.

[14] R. Bitar and S. El Rouayheb, “Staircase codes for secret sharing with
optimal communication and read overheads,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 933–943, Feb. 2018.

[15] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes,” in Proc. IEEE
INFOCOM - IEEE Conf. Comput. Commun., Apr. 2014, pp. 826–834.

[16] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication
efficient secret sharing,” IEEE Trans. Inf. Theory, vol. 62, no. 12,
pp. 7195–7206, Dec. 2016.

[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920–1933,
Mar. 2020.

[18] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distrib-
uted batch computation,” 2019, arXiv:1909.13873. [Online]. Available:
http://arxiv.org/abs/1909.13873

[19] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223–1231.

[20] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisit-
ing distributed synchronous SGD,” 2016, arXiv:1604.00981. [Online].
Available: http://arxiv.org/abs/1604.00981

[21] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proc. IEEE Int. Symp. Inf. Theory
Proc., Jul. 2012, pp. 2766–2770.

[22] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in
Proc. 50th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2012, pp. 326–333.

[23] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download time
of availability codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, 2015, pp. 1467–1471.

[24] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” in Proc. 29th Conf. Neural Inf. Process. Syst. (NIPS), 2016.

[25] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2016, pp. 1–6.

[26] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

BITAR et al.: MINIMIZING LATENCY FOR SECURE CODED COMPUTING USING SECRET SHARING VIA STAIRCASE CODES 4619

[27] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using Reed–Solomon codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2027–2031.

[28] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2017, pp. 2403–2407.

[29] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations
with unreliable components,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3729–3756, Jun. 2017.

[30] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Com-
putation and Secret Sharing, 1st ed. New York, NY, USA: Cambridge
Univ. Press, 2015.

[31] R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes for
secure distributed matrix multiplication,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Feb. 2019, pp. 1107–1111.

[32] W.-T. Chang and R. Tandon, “On the capacity of secure distributed
matrix multiplication,” in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Dec. 2018, pp. 1–6.

[33] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-
robustness through partition in distributed two-sided secure matrix
computation,” 2018, arXiv:1810.13006. [Online]. Available: http://
arxiv.org/abs/1810.13006

[34] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 1, pp. 141–150, Jan. 2019.

[35] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-
downlink tradeoff in secure distributed matrix multiplication,”
2019, arXiv:1910.13849. [Online]. Available: http://arxiv.org/abs/1910.
13849

[36] W.-T. Chang and R. Tandon, “On the upload versus download cost
for secure and private matrix multiplication,” 2019, arXiv:1906.10684.
[Online]. Available: http://arxiv.org/abs/1906.10684

[37] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist. (AISTATS), 2019, pp. 1215–1225.

[38] J. So, B. Guler, A. Salman Avestimehr, and P. Mohassel, “Cod-
edPrivateML: A fast and privacy-preserving framework for distrib-
uted machine learning,” 2019, arXiv:1902.00641. [Online]. Available:
http://arxiv.org/abs/1902.00641

[39] Q. Yu and A. Salman Avestimehr, “Harmonic coding: An opti-
mal linear code for privacy-preserving gradient-type computa-
tion,” 2019, arXiv:1904.13206. [Online]. Available: http://arxiv.org/abs/
1904.13206

[40] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy preserving multi-
party machine learning with homomorphic encryption,” in Proc. 29th
Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2016, pp. 1–5.

[41] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple linear regression
based on homomorphic encryption,” J. Off. Statist., vol. 27, no. 4, p. 669,
2011.

[42] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo, “A new way to protect
privacy in large-scale genome-wide association studies,” Bioinformatics,
vol. 29, no. 7, pp. 886–893, Apr. 2013.

[43] S. Gade and N. H. Vaidya, “Private learning on networks: Part
II,” 2017, arXiv:1703.09185. [Online]. Available: http://arxiv.org/abs/
1703.09185

[44] A. Rényi, “On the theory of order statistics,” Acta Math. Hungarica,
vol. 4, nos. 3–4, pp. 191–231, 1953.

[45] Amazon Web Services. Accessed: Mar. 27, 2018. [Online]. Available:
https://aws.amazon.com/ec2

Rawad Bitar (Member, IEEE) received the Diploma
degree in computer and communication engineering
from the Faculty of Engineering, Lebanese Univer-
sity, Roumieh, Lebanon, in 2013, the M.S. degree
from the Doctoral School, Lebanese University,
Tripoli, Lebanon, in 2014, and the Ph.D. degree
in electrical engineering from Rutgers University,
New Jersey, NJ, USA, in 2020. He is currently a
Post-Doctoral Researcher with the Technical Uni-
versity of Munich. His research interests are in the
broad area of information theory and coding theory

with a focus on coding for information theoretically secure distributed systems
with application to machine learning.

Parimal Parag (Member, IEEE) received the
B.Tech. and M.Tech. degrees from IIT Madras,
India, in 2004, and the Ph.D. degree from Texas
A&M University in 2011, all in electrical engineer-
ing. He was a Senior System Engineer (corporate
R&D) with Assia Inc., Redwood City, CA, USA,
from 2011 to 2014. He is currently an Assistant
Professor with the Department of Electrical Com-
munication Engineering, Indian Institute of Science,
Bengaluru, India. His research interests lie in the
design and analysis of large scale distributed sys-

tems. He was a coauthor of the 2018 IEEE ISIT Student Best Paper. He was
a recipient of the 2017 Early Career Award from the Science and Engineering
Research Board, India.

Salim El Rouayheb (Member, IEEE) received
the Diploma degree in electrical engineering from
the Faculty of Engineering, Lebanese University,
Roumieh, Lebanon, in 2002, the M.S. degree
from the American University of Beirut, Lebanon,
in 2004, and the Ph.D. degree in electrical engineer-
ing from Texas A&M University, College Station,
TX, USA, in 2009. He was a Post-Doctoral Research
Fellow with UC Berkeley from 2010 to 2011 and
a Research Scholar with Princeton University from
2012 to 2013. He was an Assistant Professor with

the ECE Department, Illinois Institute of Technology, from 2013 to 2017.
He is currently an Assistant Professor with the ECE Department, Rutgers
University, New Jersey, NJ, USA. His research interests are in the broad area
of information theory and coding theory with a focus on network coding,
coding for distributed storage, and information theoretic security. He was a
recipient of the NSF Career Award.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 15,2020 at 01:30:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

