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Abstract— The performance of large-scale distributed compute
systems is adversely impacted by stragglers when the execution
time of a job is uncertain. To manage stragglers, we consider a
multi-fork approach for job scheduling, where additional parallel
servers are added at forking instants. In terms of the forking
instants and the number of additional servers, we compute the
job completion time and the cost of server utilization when the
task processing times are assumed to have a shifted exponential
distribution. We use this study to provide insights into the
scheduling design of the forking instants and the associated
number of additional servers to be started. Numerical results
demonstrate orders of magnitude improvement in cost in the
regime of low completion times as compared to the prior works.

Index Terms— Straggler mitigation, distributed computing,
shifted exponential distribution, completion time, scheduling,
forking points.

I. INTRODUCTION

LARGE scale computing jobs require multi-stage com-
putation, where computation per stage is performed in

parallel over a large number of servers. The execution time of
a task on a machine has stochastic variations due to many con-
tributing factors such as co-hosting, virtualization, hardware
and network variations [1]. A slow server can delay the onset
of next stage computation, and we call it a straggling server.
One of the key challenges in cloud computing is the problem
of straggling servers, which can significantly increase the job
completion time [2]–[4]. Straggler mitigation is a particularly
important problem, considering this the organizations such as
VMWare and Amazon have spent substantial effort optimizing
the operation of virtualization technologies for massive-scale
systems [2]. This paper aims to find efficient scheduling
mechanisms for straggler mitigation by analyzing how the
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replication of straggling tasks affects the mean service com-
pletion time and the mean server utilization cost of computing
resources.

The idea of replicating tasks in parallel computing has been
adopted at a large scale via the speculative execution in both
Hadoop MapReduce [1], and Apache Spark [5]. The use of
redundancy to reduce mean service completion time has also
attracted attention in other contexts such as cloud storage
and networking [6], [7]. These works focus on the queuing
aspects at the storage servers. Replication is a special case
of general redundancy mechanism and is considered in this
paper. Replication is also referred to as forking in popular
scheduling parlance. Replicating a job on multiple servers
affords us the parallelism gains, while it comes at the cost of
server utilization. We consider a dynamic replication strategy,
where an unfinished task is sequentially forked over multiple
servers at certain forking times. We thus provide an efficient
tradeoff between the mean service completion time and the
mean utilization cost of computing resources.

Recently, the authors of [8] provided a framework for
analyzing straggling tasks for a computing job. The authors
of [8] considered executing K jobs (or tasks), where one
copy for each job was started at time t = 0. They had a
single forking point at the instant of job completion of a
fraction (1 − p) of all K jobs. At this forking point, each
of the remaining pK incomplete jobs is replicated r times.
Two variants, where the original tasks were killed or kept at
the forking point were considered. In this setting, the mean
service completion time and the mean server utilization cost
of computing resources per job were computed in the limit as
K → ∞, where the execution time follows either a shifted
exponential or a Pareto distribution. The analysis assumes a
single forking point, corresponding to the time where multiple
replicas are run for an unfinished job.

In contrast, we provide a multi-fork analysis of the com-
puting jobs, with a selection of number of servers for repli-
cation at each forking point. Specifically, we assume K jobs,
all starting at t0 = 0 and an identical sequence of m forking
points for each job, denoted by ti for i ∈ [m] � {1, . . . , m}.
We initialize each task on n0 parallel servers at instant
t0 = 0. At each forking point ti, we start additional ni

replicas for each unfinished job. If a job is unfinished for
any time t ∈ [ti, ti+1), then it has Ni =

�i
j=0 nj active

replicas. This procedure is illustrated in Fig. 1, where we
plot the time-evolution of number of active replicas for a
single unfinished task. With multiple forking points, the mean
service completion time and average server utilization cost
are evaluated where the server execution times are assumed
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Fig. 1. We illustrate the two-forking for a single task with total number
of servers N = 12, by plotting the time-evolution of number of active
replicas N(t). We consider the example when the sequence of number of
forked servers is (n0, n1, n2) = (4, 5, 3), the sequence of forking times is
(t0, t1, t2) = (0, 2, 4), and the service completion time is S1 = 5. For this
case, the server utilization cost W = n0S1 + n1(S1 − t1) + n2(S1 − t2).

to be i.i.d. following a shifted exponential distribution, and
the forking points are separated by at least the shift of the
distribution.

The results of single forking point analysis show that
starting with multiple copies per job at time t0 = 0 can
perform much better than starting with a single copy per job
as proposed in [8], when the forking time is below a certain
threshold. Numerical evaluations show orders of magnitude
improvement in the average server utilization cost for a fixed
service completion time. The proposed framework thus shows
that the single forking point strategies used in the literature
may be significantly suboptimal, and one must judiciously
select the number of servers to run at each forking time.
Further, having more forking points help achieve a better
tradeoff between the mean service completion time and the
mean server utilization cost.

A. Related Work

It has been observed that task execution times have signif-
icant variability, partly due to resource sharing by multiple
jobs [9]. The slowest tasks that determine the job execution
time are known as “stragglers”. One of the key approaches
to mitigate the effect of stragglers is to either re-launch a
delayed task, or pre-emptively assigning each such task to
multiple servers and taking the result of first completing server
per task and canceling the same completed task at remaining
servers. It is known that cancellation overhead can reduce
the parallelism gains afforded by the additional servers [10].
However, for simplicity of analysis and to obtain insight into
optimistic performance gains, we assumed idealized assump-
tion of negligible cancellation overhead.

Speculative execution have been studied in [11], which
acts after the tasks have already slowed down. Proactive
approaches launch redundant copies of a task in a hope that
at least one of them will finish in a timely manner. The
authors of [12] perform cloning to mitigate the effect of
stragglers. The authors of [8] analyzed the latency and cost for
replication-based strategies for straggler mitigation. A machine
learning approach for predicting and avoiding these stragglers
has been studied in [13].

The problem of analyzing the completion of replicated par-
allel tasks is equivalent to having multiple redundant requests.
The authors of [14] present an analysis of redundant requests
where each job enters the queue at multiple servers. Service
time completion can be generalized to finding mean waiting
time of a stream of arriving redundant requests, and has been
studied in the context of distributed storage. We note that the
queueing studies for streaming arrival of requests exist only for
fixed redundancy per request, and are difficult to characterize
analytically even for this case. This implies that each job is
forked to the identical number of servers, and job is completed
by joining identical number of service completions. Tight
numerical bounds are provided in [6], analytical bounds are
presented in [7], [15]–[17], analytical approximations appear
in [18], exact analysis for small systems in [19], exact analysis
for random independent scheduling for asymptotically large
number of servers in [20], and an exact analysis of tail index
for Pareto-distributed file sizes in [21].

Even though we are not considering the streaming arrival of
requests, our setting is a generalization of the fixed redundancy
scheduling approach studied in the above-mentioned works,
since the number of parallel servers available to each task is
a time-varying function in our problem setting.

B. Main Contributions

Our main contribution is the design of a multi-forking
straggler mitigation policy that can efficiently trade-off mean
service completion time and mean server utilization cost, by
sequentially starting a number of replicas at forking points.
The key contributions are summarized below.

1) We analytically compute the mean service completion
time and mean server utilization cost for any finite
number of forking points when the completion time of
each job on any server is independent and identically
distributed according to a shifted exponential distribution
with shift c and rate μ, and the inter-forking times
ti − ti−1 � c for each i ∈ [m] � {1, 2, . . . , m}.

2) For a single forking point, the mean service completion
time and mean server utilization cost are analytically
computed for all values of forking instants t1, initial num-
ber of replicas n0, and additional replicas n1. We demon-
strate that for single forking point t1, having initial
number of replicas n0 = 1 is sub-optimal since both
the performance metrics decrease with initial number of
replicas n0 � n∗

0, where the inflection point n∗
0 � 1 when

the forking point t1 � t∗1.
3) Numerical results for multi-forking show orders of mag-

nitude improvement in the tradeoff between the two met-
rics when compared to the baseline case of single-forking
with single replica initialization of [8].

4) We performed numerical studies for single and
multi-forking when the job execution times are assumed
to have heavy-tailed distributions such as Pareto and
Weibull. We also studied single and multi-forking on a
real compute cluster. We verified that the insights derived
from the analytical studies for the shifted exponential
distribution continue to hold in all three cases.
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C. Organization

The rest of the paper is organized as follows. Section II
describes the model used in the paper. Section III provides
the analytical results, where the mean service completion
time and the mean server utilization are characterized for
multiple forking points, with single forking being a special
case. Section IV explores further properties with single forking
point. Sections V and VI provide a tradeoff between the mean
service completion time and the mean server utilization for
single and multiple forking points, respectively. We also com-
pare our approach with that in [8]. Section VII provides the
experimental results on a real compute cluster, Intel DevCloud.
Section VIII concludes the paper, with directions for future
work.

II. SYSTEM MODEL

We consider a distributed computation system with K jobs
and KN identical servers, with the cost of server utilization λ
per unit time. Each server n ∈ [KN ] � {1, . . . , KN} has an
independent and identically distributed (i.i.d.) random service
time Tn with distribution function F for each scheduled
job on this server. Uncertainty in execution time at various
servers due to independent background processes, motivates
our assumption of independently random execution time at
each server. Identical distribution at each server is motivated
primarily by analytical tractability, and the fact that we expect
similar randomness at each identical server in a homogeneous
cloud. Thus, following the existing literature [6]–[8], [10],
[18], [21], we adopted this commonly-used assumption for
analysis.

It has been shown in [7], [17], [22], [23] that shifted expo-
nential well models the service time distribution in distributed
computation networks. That is, it suggests that service time for
each computation task can be modeled by aggregation of two
components: a constant overhead and a random exponentially
distributed component. Motivated by these studies together
with the goal of analytical tractability, we assume the service
time distribution to be a shifted exponential with rate μ and
shift c, such that the complementary distribution function
F̄ = 1 − F can be written

F̄ (x) � P{t0 > x} =

�
1, x ∈ [0, c],
e−μ(x−c), x � c.

(1)

We assume that KN servers are partitioned into K disjoint
sets of N servers, where each set of N servers can be utilized
by a single job. The service completion time for job k ∈ [K]
sequentially scheduled over N servers is denoted by Sk and
its server utilization cost is denoted by Wk. Then the service
completion time for all K jobs (also known as the makespan
of the jobs) is the maximum of service completion times of
all K jobs, and is denoted by

S = max
k∈[K]

Sk. (2)

Similarly, the average server utilization cost for K indepen-
dent jobs is defined as the average of server utilization cost

for all K jobs, and is denoted by

W =
1
K

�
k∈[K]

Wk. (3)

We are interested in the optimal trade-off between mean
service completion time ES and mean server utilization cost
EW for K jobs over these KN servers. We will see that
starting all the servers initially minimizes the mean service
completion time, whereas it leads to maximum server utiliza-
tion cost. Hence, we adopt an identical sequential policy for
each of the K jobs. A job k ∈ [K] starts with n0 parallel
servers at time t0 = 0, and sequentially adds ni servers at
instant ti > ti−1 until we utilize all the N servers. We let m
denote the number of sequential addition of servers such that
n0 + · · · + nm = N .

That is, we are considering K parallel jobs, where each job
is replicated on N servers sequentially. Sequential addition
of servers is motivated by the fact that service times are
random and there is a cost associated with the on-time of each
server. Hence, we should commission additional service only
when absolutely necessary. For analytical tractability, we have
further assumed K parallel jobs to be uncoupled and we
add extra servers in an identical fashion for each unfinished
job at the same forking times. One can couple the K jobs,
by adding additional servers performing coded version of the
tasks, such that any K task completions suffice [7], [15], [29].
However, this can incur encoding and decoding delay of the
computational tasks [10], and requires mixing of K sub-tasks
which may not always be desirable.

We will consider the general case of m � 1, and find the
mean service completion time and the mean server utilization
cost for the case when the inter server addition interval
ti − ti−1 � c. Next, we will consider the specific case of
single forking when m = 1 and ti − ti−1 > 0.

We note that the problem is important even when there are
stochastic arrivals since this procedure of forking can be used
for any arriving job. Even though the exact queueing analysis
for multi-forking with stochastic arrivals remains open, we
provide insights on sequential scheduling of K initial jobs
assigned to total N servers each. In particular, the results in
this paper can provide an understanding of how many servers
to use at each forking time to optimize the mean service
completion time ES and the mean server utilization cost EW .

III. ANALYSIS

We observe that service completion time Sk for each job
k ∈ [K] is independent due to independence of server com-
pletion times. Further, since we employ the identical forking
strategy for each job, the service completion time Sk for each
job k ∈ [K] has an identical distribution as well. From the
i.i.d. service completion times for individual job, it follows
from (2) that FS(x) = FK

S1
(x). From the positivity of service

completions times, we have

ES =
�

R+

F̄S(x)dx =
�

R+

(1 − (1 − F̄S1(x))K )dx. (4)

From the similar arguments, we can conclude that the server
utilization costs (Wk : k ∈ [K]) are i.i.d., and from the
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linearity of expectations, we have

EW = EW1. (5)

It follows that we should first find the complementary distrib-
ution of service completion time FS1(x) and the mean server
utilization cost EW1 for any single task.

A. Single Task

At instant ti, we switch on ni servers that continue being
utilized until the service completion time S1 for a single task.
Hence, the total cost of server utilization in terms of service
completion times S1 for single task is

W1 = λ
m�

i=0

ni(S1 − ti)+, (6)

where (x)+ � max{x, 0}.
Let the time-interval Ii � [ti, ti+1) and we define

tm+1 = ∞. Clearly, the disjoint intervals Ii partition the
positive reals and any t ∈ R+ belongs to a unique interval
Ii for some i ∈ [m]0 = {0, 1, . . . , m}. Let t ∈ Ii, then we
have n� servers switched on at time t� for l � i. The event
that the service completion time is longer than duration t is
identical to the event that none of the servers started before
this time t have finished until this time t. Let T�,p denote the
service completion time for the pth server started at time t�,
then for time t ∈ Ii we can write

P{S1 > t} = P

i�
�=0

{ min
p∈[n�]

(T�,p + t�) > t}

= P

i�
�=0

�
p∈[n�]

{T�,p > t − t�}.

From the i.i.d. service completion time for all servers, we can
write the complementary distribution function of service com-
pletion time S1 as

F̄S1(t) =
i�

�=0

F̄ (t − t�)n� , t ∈ Ii. (7)

For a single task, we have Ni �
�i

�=0 n� servers working in
parallel during the interval [ti, ti+1). If the task is unfinished
until time ti, then n� servers switched on at instant t� < ti
have been working on this task since then. Hence the server
utilization until time ti is denoted by

τi �
i�

�=0

n�(ti − t�). (8)

Shifted exponential distribution of server completion time Tn

defined in (1), is akin to a constant start-up time c for the
server after which the random service time Tn−c is distributed
exponentially with rate μ. Hence, the servers switched on at
time instant ti only begin the random part of the service at
time ti + c. Accordingly, we define shifted intervals Ĩi � [ti +
c, ti+1 + c) = c+ Ii where Ni servers are working in parallel.
In the following, we use the notation [m]0 = {0, 1, . . . , m}.

Lemma 1: Consider a single task being served by N
servers started sequentially at times (tj : j ∈ [m]0) in
batches of (nj : j ∈ [m]0). When the job completion time
for each server has an i.i.d. shifted exponential distribution as
defined in (1), then the complementary distribution of service
completion time for a single task is given by

F̄S1(t) = e(−μNi(t−ti−c)−μτi), t ∈ Ĩi. (9)
Proof: Let t ∈ Ĩi, then from the definition of service

completion time, we can write

P{S1 > t} = P

i�
�=0

n��
p=1

{T�,p > c + (t − t� − c)}.

Since the job completion time at each server is i.i.d. with the
common shifted exponential distribution defined in (1), we get

P{S1 > t} = exp(−μ

i�
�=0

n�(t − t� − c)), t ∈ Ĩi.

The result follows from the definition of τi from equation (8),
and the definition of aggregate number of forked servers
Ni =

�i
�=0 n� at ith forking time ti.

Lemma 2: Consider a single task being served by N
servers started sequentially at times (tj : j ∈ [m]0) in batches
of (nj : j ∈ [m]0). When the job completion time for each
server has an i.i.d. shifted exponential distribution as defined
in (1), then the mean server utilization cost is given by

EW1 = λ
m�

i=0

ni

� ti+c

ti

F̄S1(t)dt + λ
m�

i=0

Ni

�
Ĩi

F̄S1(t)dt.

(10)

Proof: From the equation (6) for the service utilization
cost for a single task, the linearity of expectations, and
positivity of random variables (S1 − ti)+, we can write the
mean server utilization cost as

EW1 = λ
m�

i=0

niE(S1 − ti)+ = λ
m�

i=0

ni

� ∞

ti

F̄S1(t)dt.

We can write the integral over [ti,∞) as the sum of integrals
over its partition {[ti, ti + c), Ĩi, Ĩi+1, . . . , Ĩm}. Exchanging
summations over indices i ∈ [m]0 and j � i, we get the
result.

For general m, there is no straightforward way to evaluate
the integral

� ti+c

ti
F̄S1(t)dt when ti+1 − ti ∈ (0, c). This is

because the integration has to account for the servers started
between ti and ti + c, which makes the integral evaluation
cumbersome. For simplicity, we stick with the case when
ti+1 − ti � c for all i ∈ [m]0. The results for ES and
EW in this case will be provided in Corollary 2. However
for the single forking case when m = 1, we will derive the
results when t1 − t0 > 0 and not necessarily larger than c in
Section III-C.

B. Parallel Tasks

Next, we find the mean of service completion time and
the mean of server utilization cost for K parallel tasks on
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N servers each, using the complementary service distribution
F̄S1 for a single task, defined in (9). Formally, we describe
our setup below.

Problem 1: Consider K parallel tasks, where each single
task is being served by N servers starting in batches of
(nj : j ∈ [m]0), sequentially at times (tj : j ∈ [m]0) such
that the total number of servers is N and timing thresholds
are at least c distance apart. That is, we have the following
constraints, t0 = 0, tm+1 = ∞, and

m�
j=0

nj = N, tj+1 − tj � c, j ∈ [m]0.

When the job completion time for each server has an i.i.d.
shifted exponential distribution as defined in (1), find the mean
of the service completion time to finish all K parallel tasks
and the mean of the server utilization cost.

The time evolution of number of active replicas for a single
task Sk is illustrated in Fig. 1. When a task is completed
from any replica, the number of active replicas for that task
becomes zero. The overall service completion time S of the
K tasks is the maximum of the completion of each of the K
tasks, i.e. S = maxk∈[K] Sk. We need the following Lemma to
evaluate the mean service completion time.

Lemma 3: We can write the following integrals for comple-
mentary distribution of service completion times. For i ∈ [m]0,
we have�

t∈Ĩi

F̄S(t)dt=− 1
Niμ

K�
k=1

	
K

k



(−1)k

k

�
e−kμτi−e−kμτi+1

�
.

(11)

For 1 � i � m, we can write� ti+c

ti

F̄S(t)dt = −
K�

k=1

	
K

k



(−e−μτi)k

kNi−1μ

�
ekμNi−1c − 1

�
,

(12)

where the total number of active servers in interval Ĩi is
Ni =

�i
�=0 n� and server utilization until time ti + c is

τi =
�i

�=0 n�(ti − t�).
Proof: From the fact that FS(x) = FK

S1
(x) and the

binomial expansion of (1 − x)K , we can write

F̄S(t) = 1 − (1 − F̄S1(t))
K = −

K�
k=1

	
K

k



(−1)kF̄ k

S1
(t).

Using the definition of single task service distribution in (9)
and definitions of Ni and τi, we can integrate F̄ k

S1
(t) over

interval Ĩi, to get�
t∈Ĩi

F̄ k
S1

(t)dt =
1

kNiμ
(e−kμτi − e−kμτi+1).

To integrate F̄ k
S1

(t) over the interval [ti, ti +c), we notice that
[ti, ti+c) ⊆ Ĩi−1 since ti−1+c � ti by hypothesis. Therefore,
we can write� ti+c

ti

F̄ k
S1

(t)dt =
1

kNi−1μ
(e−kμ(τi−Ni−1c) − e−kμτi).

The result follows from combining the above expressions.

Corollary 1: We can futher simplify the above integrals
for complementary distribution of service completion times of
Lemma 3. For integers 0 � i ∈ m, we have�

t∈Ĩi

F̄S(t)dt=
1

Niμ

K�
k=1

1
k

�
(1−e−μτi+1)k−(1−e−μτi)k

�
.

(13)

For 1 � i � m, we can write� ti+c

ti

F̄S(t)dt =
(eμNi−1c − 1)

Ni−1μ

K�
k=1

1
k

(1 − (1 − e−μτi)k).

(14)
Proof: We define the following integrals as a function of

number of tasks

h1(K) =
�

t∈Ĩi

F̄S(t)dt, h2(K) =
� ti+c

t=ti

F̄S(t)dt.

We next observe the following identity for binomial
coefficients

1
k

	
K

k



=

1
k

	
K−1

k



+

1
K

	
K

k



, k ∈ [K].

Multiplying with a geometric term in k and summing over all
k ∈ [K], we get

−
K�

k=1

	
K

k



αk

k
=−

K−1�
k=1

	
K−1

k



αk

k
+

1−(1+α)K

K
.

Hence, we conclude that

h2(K) = h2(K−1)+
(1−e−μτi)K−(1−e−μ(τi−Ni−1c))K

KNi−1μ
,

h1(K) = h1(K − 1) +
(1 − e−μτi+1)K − (1 − e−μτi)K

KNiμ
.

The results follow by taking the summation of h1(k) and
h2(k) over k ∈ [K] with initial conditions h1(0) = h2(0) = 0.

Now, we have all the necessary results to compute the means
of service completion time and cost server utilization for K
parallel tasks.

Theorem 1: For the Problem 1, the mean service comple-
tion time is

ES = c +
1
μ

K�
k=1

1
k



1

Nm
+

m�
i=1

ni

NiNi−1
(1 − e−μτi)k

�
,

(15)

and the mean server utilization cost is

EW1 = λcn0 +
λ

μ
+

λ

μ

m�
i=1

nie
−μτi

	
eμNi−1c − 1

Ni−1



.

(16)
Proof: We will first find the mean server utilization cost

for single task. From (10), we have

1
λ

EW1 = n0

� t0+c

t0

F̄S1(t)dt +
m�

i=1

ni

� ti+c

ti

F̄S1(t)dt

+
m�

i=0

Ni

�
Ĩi

F̄S1(t)dt.
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First, we notice that
� t0+c

t0
F̄S1(t)dt = c since t0 = 0 and

there is initial startup delay of c for all shifted exponential
job completion times. Taking K = 1, and substituting equa-
tion (11) for integers 0 � i � m and equation (12) for integer
1 � i � m, in the above equation, we get

1
λ

EW1 = n0c +
1
μ

m�
i=1

nie
−μτi

Ni−1
(eμNi−1c − 1)

+
1
μ

m�
i=0

(e−μτi − e−μτi+1).

The result for mean server utilization cost follows from the
telescopic sum and the fact that τ0 = 0, τm+1 = ∞.

To compute the mean of service completion time S, we use
its positivity to write ES =

�
R+

F̄S(t)dt. By writing the
integral over positive reals, as the sum of integrals over the
partition {[0, t0 + c), Ĩ0, Ĩ1, . . . , Ĩm}, we get

ES =
� t0+c

0

F̄S(t)dt +
m�

i=0

�
Ĩi

F̄S(t)dt.

Substituting the fact that t0 = 0, τ0 = 0, τm+1 = ∞,� c

0
F̄S1(t) = c, and equation (13) in the above equation,

followed by exchanging summations over indices k and i,
we get the result.

As a special case of Theorem 1, we can obtain the mean
service completion time and the mean server utilization cost
for a single task, as is given in the following corollary.

Corollary 2: For a single task served by N servers with
multiple forks, the mean service completion time is

ES = c +
1

Nμ
+

1
μ

m�
i=1

ni

NiNi−1
(1 − e−μτi), (17)

and the mean server utilization cost for single task is

EW = λcn0 +
λ

μ
+

λ

μ

m�
i=1

nie
−μτi

	
eμNi−1c − 1

Ni−1



. (18)

We show that making the forking instants smaller and
increasing number of servers at any forking instant can reduce
the service completion time, irrespective of the common
service time distribution.

Proposition 1: For K parallel tasks, each forked sequen-
tially on N identical servers with random i.i.d. execution
times with the common distribution function F , the following
statements are true.

(i) Consider two increasing sequences of forking times t =
(t0, . . . , tm) and t′ = (t′0, . . . , t′m) each with identical
sequence of forked replicas such that t′i � ti at each
stage 0 � i � m. Then ES(t) � ES(t′).

(ii) Consider sequences of forked replicas n = (n0, . . . , nm)
and n′ = (n′

0, . . . , n
′
m) with identical sequence of

forking instants t = (t0, . . . , tm) such that n′
j � nj for

stages 0 � j � m. Then ES(n) � ES(n′).
Proof: The detailed proof is given in Appendix A, which

uses stochastic dominance.
Second condition in the above theorem is very strict in that

for a fixed forking time sequence t, the two forked replica

sequence is such that the number of forked replicas at each
forking time are always larger for one sequence. We would like
the theorem to hold for the following weaker condition: for
a fixed forking time sequence t and the two server sequences
n, n′ such that the cumulative number of server sequences
N � N ′ are point-wise ordered. Notice that, in this case
we would have to use specific properties of the service-time
distribution at each server, and it links the forking instant
sequence and the server sequence. In the following result,
we will show that the result could be refined for the shifted
exponential distribution.

Theorem 2: Let there be K parallel tasks, each forked
sequentially on N identical servers with random i.i.d. exe-
cution times with the common distribution function F being
the shifted exponential as defined in (1). Consider sequences
of forked replicas n = (n0, . . . , nm) and n′ = (n′

0, . . . , n
′
m)

with identical sequence of forking instants t = (t0, . . . , tm)
such that for each stage 0 � i � m,

i�
j=0

n′
j �

i�
j=0

nj , and
i�

j=0

n′
jtj �

i�
j=0

njtj .

Then ES(n) � ES(n′).
Proof: Following the arguments in Theorem 1, it suffices

to show the monotonicity of the complementary distribution
function of service times for single task. It follows from the
theorem hypothesis that Ni =

�i
�=0 n� �

�i
�=0 n′

� = N ′
i and

τ ′
i =

�i
�=0 n′

�(ti − t�) �
�i

�=0 n�(ti − t�) = τi for all stages
i ∈ [m]0. Therefore, for any time u ∈ Ĩi,

F̄
S

(n)
1

(u) = e−μNi(u−ti−c)−μτi

� e−μN ′
i(u−ti−c)−μτ ′

i = F̄
S

(n′)
1

(u).

Hence, the result follows.
Remark 1: For single-fork case starting with forking points

0 = t0 < t1, the condition
�i

j=0 n′
jtj �

�i
j=0 njtj in

Theorem 2 reduces to n′
1 � n1. Hence, if both the systems

have identical number of servers, i.e. n0 +n1 = n′
0 +n′

1, then
n′

0 � n0, and both the theorem conditions hold.

C. Single Forking Parallel Tasks

We consider the single forking case for K parallel tasks
when m = 1 and t1 > 0. Formally, we define the problem
below.

Problem 2: Consider K parallel tasks, where each single
task is being served by N servers starting in two batches of
(n0, n1), sequentially at times (0, t1) such that the total num-
ber of servers is N = n0 +n1. When the job completion time
for each server has an i.i.d. shifted exponential distribution as
defined in (1), find the mean of the service completion time to
finish all K parallel tasks and the mean of the server utilization
cost.

Since n1 = N−n0, we have only two variables n0 and t1 in
this case. Further, we have t2 = ∞ and we can write τ = n0t1.
For the ease of further analysis, we would define following
normalized constants. We define the amount of work done
by all servers N1 = N in parallel each having independent
random execution time distributed exponentially with rate μ

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 08,2020 at 07:33:23 UTC from IEEE Xplore.  Restrictions apply. 



BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 715

in the shift-interval c as α � cμN . We denote the normalized
forking time by u � t1/c and the initial fraction of servers by
x � n0/N .

Theorem 3: For the Problem 2, the scaled mean service
completion time is

1
c
ES = 1 +

1
α

K�
k=1

1
k

	
1 +

1 − x

x
(1 − e−αxu)k



, (19)

and the scaled and shifted mean server utilization cost
μ
λEW1 − (1 + α) for single task equals⎧⎪⎪⎨
⎪⎪⎩

α(1 − x)
	

e−αx(u−1) − e−αxu)
αx

− 1



, u � 1,

α(1 − x)
	

(1 − e−αxu)
αx

− u



, u � 1.

(20)

Proof: The result for the mean service completion time
ES can be obtained by substituting m = 1 in the equation (15).
To compute the mean server utilization cost for t1 � c,
we substitute m = 1 in the equation (16). For t1 < c, we need
to evaluate the integral

� t1+c

t1
F̄ k

S1
(t)dt. In this case, we have� t1+c

t1

F̄S1(t)dt =
� c

t1

F̄S1(t)dt +
� t1+c

c

F̄S1(t)dt.

Since F̄S1(t) = 1 for t � c due to initial startup delay c,
and there are n0 parallel independent servers working at the
exponential rate μ in the interval [t1, t1 + c), we have� t1+c

t1

F̄S1(t)dt = c − t1 +
1

n0μ
(1 − e−μn0 t1).

The result follows from aggregating both the cases.

IV. OPTIMAL SINGLE FORKING

We have the expression for mean of service completion
and server utilization for single forking case in Theorem 3.
We study the impact of forking time and initial number of
servers on these two performance metrics.

Proposition 2: Consider the single forking for K parallel
tasks, each forked sequentially over N parallel servers, each
forked task having i.i.d. random service times with the common
shifted exponential distribution with shift c and rate μ.

The partial derivative of the mean service completion time
with respect to normalized forking time u is

∂ES

∂u
= c(1 − x)(1 − (1 − e−αxu)K).

The partial derivative of the mean service completion time
with respect to the initial fraction of servers x is

∂ES

∂x
= − c

αx2

K�
k=1

1
k

(1 − e−αxu)k +
u

x

∂ES

∂u
.

The partial derivative of the mean server utilization cost
with respect to the normalized forking time u is

∂EW1

∂u
=

⎧⎪⎨
⎪⎩

−λ

μ
α(1 − x)e−αxu(eαx − 1), u � 1,

−λ

μ
α(1 − x)(1 − e−αxu), u � 1.

The scaled partial derivative μ
αλ

∂EW1
∂x of the mean server

utilization cost with respect to the initial fraction of servers x
equals⎧⎪⎨
⎪⎩

1−e−αxu

�
(
1
x
−1)((u−1)eαx−u)+

(eαx−1)
αx2

�
, u � 1

u+(
1
x
−1)ue−αxu− 1

αx2
(1−e−αxu), u � 1.

Proof: Results follow by taking partial derivatives of
mean server utilization and mean service completion task with
respect to normalized forking time u and initial fraction of
servers x.

Even though the initial fraction of servers x lie in the set
{ 1

N , . . . , 1}, we approximate it by a real number x ∈ [ 1
N , 1] to

get insight on the dependence of the above two performance
metrics on this fraction.

Theorem 4: The following statements are true for the single
forking problem.

(i) The mean service completion time is an increasing func-
tion of forking time t1.

(ii) The mean service completion time is a decreasing func-
tion of initial fraction x.

(iii) The mean server utilization cost is a decreasing function
of forking time t1.

(iv) There exists a unique optimal initial fraction of servers
x∗ ∈ [ 1

N , 1] that minimizes the mean server utilization
cost. For normalized forking time u � v3, the optimal
initial fraction is x∗ = 1/N . For normalized forking time
u < v3, the optimal initial fraction is the unique solution
to the following implicit equation, where eαxu equals⎧⎪⎨
⎪⎩

(
1
x
− 1)((u − 1)eαx − u) +

(eαx − 1)
αx2

, u ∈ [1, v3),

−(
1
x
− 1) +

1
αx2u

(eαxu − 1), u < v3 ∧ 1,

(21)

where the normalized forking point threshold v3 is
the unique solution to the implicit equation, where
cμ
N ecμv3 + (N−1)cμ

N equals⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	
cμ(N − 1)(v3 − 1)

N
+ 1



(ecμ − 1),

(1 − cμ

N
)
(ecμ − 1)

cμ
> 1,

1
v3

(ecμv3 − 1),

(1 − cμ

N
)
(ecμ − 1)

cμ
� 1.

Proof: The proof is provided in Appendix B.

V. NUMERICAL STUDIES: SINGLE FORKING

We numerically evaluate the behavior of mean service
completion time and mean server cost utilization for single
forking below, with total number of servers N = 12 for each of
the K = 10 parallel tasks, taking λ = 1. We have analytically
studied the case when service time at each server is an i.i.d.
random variable having a shifted exponential distribution, and
we present the numerical studies for the single forking case
with shifted exponential distribution. We note that the insights
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Fig. 2. Mean service completion time ES as a function of initial number
of servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks at
different forking times t1 ∈ {c, 2c, . . . , 9c}.

Fig. 3. Mean server utilization cost EW as a function of initial number
of servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks at
different forking times t1 ∈ {c, 2c, . . . , 9c}.

obtained from this study hold for heavy-tailed distributions
such as Pareto and Weibull distribution as well, and the
supporting numerical results are presented in Appendix F-A
and Appendix F-B.

We have taken the job completion times at each server to be
an i.i.d. random variable having a shifted exponential distrib-
ution with the shift parameter c = 8 and the exponential rate
μ = 0.01. From the discussion in Appendix E-C, we observe
that cμ = 0.08 < N − 2 = 10 < x′, and hence cv3 � 1.
Specifically, we can numerically compute the forking time
threshold v3 ≈ y

cμ ≈ 47 where ey = 1 + 11y is satisfied
by y ≈ 3.741. That is, for any forking point t1 � 47c, we can
have optimal number of initial servers n∗

0 � 1. For the given
system parameters, we plot the mean service completion time
in Fig. 2 and mean server utilization in Fig. 3 as a function
of initial servers n0 ∈ {1, . . . , 11} for values of forking
times in t1 ∈ {c, 2c, · · · , 9c}. We corroborate the analytical
results obtained in Theorem 4, by observing that mean service
completion time increases and the mean server utilization cost
decreases with increase in the forking time t1. We further
observe that the optimal number of initial servers n∗

0 � 1
for mean server utilization cost for different values of forking
time t1. In addition, we notice the decrease in the mean service
completion time as the number of initial server n0 increases.

These results point to an interesting tradeoff between the
two metrics. First observation is that forking time gives a
true tradeoff between these two metrics. Second and more
interesting observation is that there exist a minimum number of
initial servers for each forking time, until which point we can
decrease both the mean service completion time and the mean
server utilization cost. This also points to the sub-optimality
of single-forking with unit server in [8].

The authors of [8] considered a single fork analysis where
at t = 0, one copy of the task is started and when pn jobs
are complete, each unfinished job is replicated r times. The
analysis considered two possibilities, one where the currently
running job is kept running at the forking point and second
where it is killed. It was shown that keeping the currently
running job performed better for both mean service completion
time and mean server utilization cost, when the service dis-
tribution is shifted exponential. We compare our results with
the baseline results obtained in the [8, Theorem 2] for the
case when the straggler job is kept running at the forking
point. We restate the above-mentioned Theorem, adapted to
our notation, for easy reference.

Lemma 4: [8, Theorem 2] Consider K parallel computing
tasks, each started on a single server each, i.e. t0 = 0, n0 = 1.
If r replicas of each unfinished task are started, after (1−p)K
tasks are completed, and the execution time of each task is
assumed to be i.i.d. ShiftedExp(c, μ), then the mean service
completion time and the mean server utilization cost metrics
for K → ∞, are

ES =
2r + 1
r + 1

c +
1

(r + 1)μ
(ln K−r ln p + γEM )

EW = c +
1
μ

+ pc + pr
(1 − e−μc)

μ
,

where γEM ≈ 0.577 is the Euler-Mascheroni constant.
Though our model is quite different than the one studied

here, we will make broad comparisons. We let n0 = 1 for this
model and let t1 to be the mean time to finish (1− p)K tasks
with K parallel servers working at rate μ. Then

μK(t1 − c) ≈ K(1 − p).

Further, at instant t1, we have n1 = N − 1 = rp new
servers being started per job. Therefore, we can take the
forking point to be t1 = c + (1−p)

μ and the total number of
servers to be N = 1 + rp. Given total number of available
servers N and forking time t1, we can compute the fraction
of completed tasks p = 1−μ(t1−c) and the number of replicas
r = (N−1)

p . In Fig. 4, we have plotted the mean of service
completion times with respect to mean server utilization cost
when λ = 1 for the single forking proposed in [8] as the
baseline curve and our proposed single forking varying the
initial number of servers n0 ∈ {1, . . . , 11}, when the forking
time t1 ∈ {2c, 4c, 6c, 8c}. We see that our trade-off curves
are well inside the baseline curve. Specifically, we observe
significant reduction in the mean server utilization cost for
optimal server initialization when compared to single-server
initialization of [8], for the identical mean service completion
time in both the cases.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 08,2020 at 07:33:23 UTC from IEEE Xplore.  Restrictions apply. 



BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 717

Fig. 4. Mean server utilization cost EW as a function of mean service
completion time ES when we vary the number of initial servers n0 ∈
{1, . . . , 11} for single forking of K = 10 parallel tasks at different forking
times t1 ∈ {2c, 4c, 6c, 8c}. The service distribution of each replica is
assumed to be i.i.d. shifted exponential with shift parameter c = 8 and
exponential rate μ = .01. We have plotted the same curve for initial servers
n0 = 1 for single forking for K = 10 parallel tasks for these different
values of forking times t1, for the baseline (r, p) model where r = (N−1)

p
and p = 1 − μ(t1 − c).

VI. NUMERICAL STUDIES: MULTIPLE FORKING

In a multi-forking scenario the free variables are number
of forked servers (n0, . . . , nm−1, nm) under the constraint of
finite number of servers N per task, i.e.

�m
i=0 ni = N , and the

forking instants (t0 = 0, t1, . . . , tm). It is a multi-dimensional
optimization problem and not easy to evaluate. The single
forking results in Section IV leads us to believe that even
for the general case of multiple forking points with i.i.d.
execution times having shifted exponential distribution, there
should be a tradeoff between the two metrics of mean server
utilization cost EW and the mean service completion time ES.
We attempt two approaches to understand this tradeoff.

A. Joint Cost for Large N

To explore this tradeoff, we formulate the joint optimization
in terms of a tradeoff parameter β as

MP : min ES + βEW

such that (15), (16), t0 = 0
variables n0, · · ·nm, t0, · · · , tm (22)

We note from Fig. 4 that based on the value of β, the
tradeoff point chosen will be different. Thus, finding the
forking instants and the number of servers added at each
forking point, are important. For the optimization problem,
we chose the total number of servers N , to be unbounded.
For (n0, . . . , nm) an integer sequence, the above problem
is a mixed-integer programming problem, and known to be
hard. As such, we relax the integer constraints and allow ni

to be real valued, in which case the problem reduces to a
linear programming problem and can be solved using interior
point algorithm [24]. We round off the values of ni to nearest
integers to get a heuristic integral solution.

For this multi-objective optimization defined in (22), chang-
ing the value of β provides a tradeoff between the two metrics.

Fig. 5. Tradeoff between mean service completion time and mean server
utilization cost, obtained by changing the value of β. The service distribution
of each replica is assumed to be i.i.d. shifted exponential with shift parameter
c = 1 and exponential rate μ = 1.

For numerically solving the multi-objective optimization, we
take the parameters of shifted exponential distribution as shift
c = 1 and service rate μ = 1, the server utilization cost
per unit time λ = 1, the number of parallel tasks K = 25,
and the number of forking points m = 4. We depict the
tradeoff between mean service completion time and mean
server utilization cost for the proposed heuristic algorithm in
Fig. 5.

We compare the performance of multi-forking obtained by
the proposed heuristic algorithm to the baseline single-forking
approach proposed in [8]. We can compute the linear cost of
the optimization problem in (22) for any tradeoff parameter β,
by obtaining the mean service completion time and the mean
server utilization cost from Lemma 4. Fig. 5 shows a signifi-
cant improvement of the proposed model as compared to that
in [8] for the tradeoff between the two metrics. For a service
completion time lower than 2, there is significant reduction
in the mean server utilization cost, thus showing the huge
savings that the multi-forking can provide. The performance
gains are due to two factors, initializing the task on multiple
servers at time t = 0 and multi-forking. We observed that the
improvement due to multi-forking was small in this setting
and the corresponding tradeoff curve for single forking looks
very similar, and hence we do not provide the tradeoff curve
for single-forking in this setting.

We note that the lowest mean service completion point
in Fig. 5 corresponds to starting large number of servers at
t = 0 since having large number of servers at t = 0 achieves
the lowest completion time. However, if the number of total
servers is bounded by a number N as is the case in our
single forking analysis, the points on the very left in the mean
service completion time may not be achievable. In other words,
the curve will get truncated on the left side with an upper
bound on N .

B. Comparison With Optimal Single Forking

In general, finding the optimal forking points and the
corresponding number of servers to be forked at each forking
point, is not an easy task. In the following, we compare
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Fig. 6. This figure illustrates achievable points with shifted exponential
execution times for mean server utilization cost and mean service completion
time for two-forking with different values of forked servers m0, m1 and
N − m0 − m1 at forking points t0 = 0, s ∈ {c, 2c, 3c, 4c, 5c} and
t = 9c, respectively. For comparison, we also plot the tradeoff points of
single-forking at forking time t = 9c varying the number of initial servers
n0.

optimal single forking to sub-optimal two-forking to quantify
potential gains of multi-forking for i.i.d. shifted exponential
execution times. We assume the system parameters to be
c = 8, μ = 0.01, K = 10, N = 12, λ = 1. We consider two
different setups for the comparison, depending on the location
of the other forking with respect to t. The single forking can
be thought of as two-forking with zero forked servers at this
other forking point.

As a first case, we take the other forking point s < t. In this
case, the single forking can be thought of as a two-forking
sequence ((0, n0), (s, 0), (t, N − n0)). For all possible values
of 0 � m0, m1 such that m0 + m1 � N , we consider
two-forking sequences ((0, m0), (s, m1), (t, N − m0 − m1)).
We plot the tradeoff curve between mean service completion
time and mean server utilization cost for the single and
two-forking sequences in Fig. 6 for the values of forking points
t = 9c and s ∈ {c, 2c, 3c, 4c, 5c}, varying the number of
forked servers n0 ∈ [N ] in single-forking case and m0, m1 in
two-forking case. We observe that for some feasible choice
of forked servers m0, m1 and forking point s < t, the
two-forking system achieves better tradeoff points as compared
to the single-forking system.

For the other case, we take the second forking point
s > t. In this case, the single forking can be thought of as
a two-forking sequence ((0, n0), (t, N − n0), (s, 0)). For all
possible values of 0 � m0, m1 such that m0 + m1 � N ,
we consider two-forking sequences ((0, m0), (t, m1), (s, N −
m0 −m1)). We plot the tradeoff curve between mean service
completion time and mean server utilization cost for the single
and two-forking sequences in Fig. 7 for the values of forking
points t = 9c and s ∈ {10c, 12c, . . . , 18c}, varying the number
of forked servers n0 ∈ [N ] in single-forking case and m0, m1

in two-forking case. We observe that for any choice of forked
servers m0, m1 and forking point s > t, the two-forking
system achieves better tradeoff points as compared to the
single-forking system.

Looking closely, we observe that setting the other forking
point s < t in two-forking can achieve better tradeoff points
for the mean service completion time below a threshold.

Fig. 7. This figure illustrates achievable points with shifted exponential
execution times for mean server utilization cost and mean service com-
pletion time for two-forking with different values of forked servers m0,
m1 and N − m0 − m1 at forking points t0 = 0, t = 9c and s ∈
{10c, 12c, . . . , 18c}, respectively. For comparison, we also plot the tradeoff
points for single-forking at forking time t = 9c varying the number of initial
servers n0.

In contrast, setting the other forking point s > t helps
two-forking achieve significantly better tradeoff points when
the mean service completion time is above that threshold. We
also remark that at this threshold, the mean server utilization
cost is minimum for single-forking. Hence, two-forking can
further reduce the mean server utilization cost when compared
to single-forking. Thus, an investigation of optimal forking
points and the number of forked-servers at the different
forking points is an important future research direction. We
observe that the insights obtained for the shifted exponential
distribution continue to hold for heavy-tailed distributions such
as Pareto and Weibull as well, and the supporting numerical
results are presented in Appendix G-A and Appendix G-B.

VII. EXPERIMENTS ON INTEL DEVCLOUD SERVERS

Intel DevCloud is a cloud computing service made available
by Intel [25] for several profiles of researchers, students and
professional engineers.1 Intel DevCloud is a compute cluster,
consisting of multiple servers called compute nodes, storage
servers, and the login node. Each node has Intel Xeon proces-
sor of the Skylake architecture (Intel Xeon Scalable Processors
family), an Intel Xeon Gold 6128 CPU, on-platform memory
of 192 GB and a Gigabit Ethernet interconnect. To maximize
the utilization of the compute cluster, one can submit jobs
either by running Jupyter Notebook session on one of the
compute nodes or by accessing the login node using an SSH
client in a text-based terminal to a job queue dedicated to the
authenticating account. For best performance, we created new
environments with core Python 3 using Intel Distribution for
Python. When a job is submitted to the queue, the scheduler
picks the first available compute node for that job.

A. Setup

In our experiment, we reserved one node per job and submit-
ted multiple single-node jobs at forking points by launching a
distributed-memory parallel job explicitly requesting multiple

1The authors would like to thank Intel for giving us access to the cluster
for this project.
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compute nodes, which correspond to the servers on which
the job is forked. This ensures that all the forked jobs start
at the same forking time on the compute nodes to which
the jobs are forked. Single node jobs are submitted through
a job script file using the qsub command. We submitted a
parallel job using the command mpirun, which launches the
single node job at multiple nodes, by creating MPI program
using Message Passing Interface (MPI) library called Intel MPI
which is installed on all nodes. From here after, in this section,
we refer parallel job to replicated single-node jobs which is
requesting multiple compute nodes at once.

B. Objective

In this experimental set up, we have K jobs. For both
single-forking and two-forking, we take each of the K jobs to
be an identical algebraic computation with approximate mean
completion time of 600 seconds. As a test-case, each algebraic
job is taken as the repeated addition of two numbers in a loop,
that runs 6 × 109 times. This section aims at answering the
following questions.

1) Given K jobs, KN servers, and a forking mechanism,
is it possible to get a tradeoff between the avearge server
utilization cost and average service completion time on
real cloud setup?

2) Are the tradeoff curves for this practical setup qualita-
tively similar to the one predicted by the analytical study
for random execution times modeled to be distributed as
a shifted exponential?

C. Experiment

To cater to this requirement, we initialized a parallel job
requesting n0 compute nodes at time t0 = 0 for each of
the K jobs. In the single-forking experiment, at time t1
seconds, we initialized a parallel job requesting n1 compute
nodes for each of the unfinished jobs and waited for the
completion. Similarly, in the two-forking experiment, at times
t1, t2 seconds, we again initialized parallel jobs requesting
n1, n2 compute nodes, respectively, for each of the unfinished
jobs and waited for the completion. As soon as one of the
replica of a ith job is finished we logged that time stamp Si

into a log file and killed the other replicas of that particular
ith job immediately using the qdel command.

Using the observed job completion times (Si) and forking
time and server sequences, we compute the two performance
metrics: the server utilization cost and the service completion
time, by using the equations (6), (3), and (2) for each run
j ∈ [J ] for J = 1 × 104 runs. In addition, we also computed
the empirical distribution of job completion times, which is
plotted in Fig. 8.

D. Evaluations

We evaluate the single forking setup on Intel DevCloud with
K = 10 parallel tasks and with each task being replicated
on total number of N = 12 servers. We ran this experiment
J = 1 × 104 times for the given system parameters. For the
kth task in jth run, we denote the service completion time
and the server utilization cost by S

(j)
k and W

(j)
k respectively.

Fig. 8. This figure illustrates the empirical distribution of job completion
times that are collected during the Intel DevCloud experiments. The job here
is a algebraic computation of addition of two numbers, repeated 6 × 109

times.

Fig. 9. Empirical average of service completion time Ŝ as a function of
initial number of servers n0 ∈ {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 ∈ {10, 20, . . . , 90} when jobs are
executed on Intel DevCloud.

Hence, we computed the empirical average of service comple-
tion time and server utilization costs as

Ŝ � 1
J

J�
j=1

max
k∈[K]

S
(j)
k , Ŵ � 1

J

J�
j=1

1
K

K�
k=1

W
(j)
k . (23)

We plot the empirical average of service completion time Ŝ
in Fig. 9 and empirical average of server utilization cost Ŵ
in Fig. 10 as a function of initial servers n0 ∈ {1, . . . , 11}
for values of forking times t1 ∈ {10, 20, · · · , 90} seconds. In
Fig. 11, we plot the empirical average of service completion
times with respect to empirical average of server utilization
cost when λ = 1 for the single forking varying the initial
number of servers n0 ∈ {1, . . . , 11} for the forking times t1 ∈
{10, 20, · · · , 90} seconds. We also evaluate the two-forking
setup on Intel DevCloud with the same parameters. Given the
first forking point at t, the second forking point at s > t,
two-forking sequences ((0, m0), (t, m1), (s, N − m0 − m1)),
the tradeoff is plotted in Fig. 12.

E. Results

From Fig. 8, we observe that the empirical distribution of
the job execution times at each node has characteristics of a
shifted exponential distribution. The empirical distribution has
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Fig. 10. Empirical and task average of server utilization cost Ŵ as a function
of initial number of servers n0 ∈ {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 ∈ {10, 20, . . . , 90} when jobs are
executed on Intel DevCloud.

Fig. 11. Empirical and task average of server utilization cost Ŵ as a function
of empirical average of service completion time Ŝ by varying the number of
initial servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks
at different forking times t1 when jobs are executed on Intel DevCloud.

Fig. 12. This figure illustrates achievable points on Intel DevCloud cluster
for empirical and task averaged server utilization cost and empirical average
of service completion time for two-forking with different values of forked
servers m0, m1 and N − m0 − m1 at forking points t0 = 0, t = 30 and
s ∈ {40, 50, 60, 70}, respectively. For comparison, we also plot the tradeoff
points for single-forking at forking time t = 30 varying the number of initial
servers n0.

a distinct constant shift corresponding to the start delay, and
the random part of the job execution time doesn’t have long
tails.

We substantiate the analytical results obtained in Theorem 4
for single-forking, by observing that the mean service

completion time ES decreases with increase in initial number
of servers n0. Further, the tradeoff suggests that the number of
initial servers n0 is an important consideration for an efficient
system design. The insights obtained in this experiment for
two-forking are identical to those obtained from the shifted
exponential service distribution.

VIII. CONCLUSIONS AND FUTURE WORK

This paper considers a multi-fork analysis for running cloud
computing jobs. We analytically computed the mean service
completion time and the mean server utilization cost for
multiple computation jobs, when the job execution time at
each server is assumed to be i.i.d. with a shifted exponential
distribution. We show that having multiple forking points for
speculative execution of jobs provide significantly improved
tradeoff between the two performance metrics. As a special
case, we also show that starting with a single server in specu-
lative execution of tasks is sub-optimal. This paper considers
replication as a strategy for speculative execution.

We empirically verified that the insights derived from the
shifted exponential distribution continue to hold when the
job execution times at individual servers have heavy-tailed
distributions such as Pareto and Weibull. We also conducted
this study on a real compute cluster, and verified that the
empirical distribution of the job execution time has a constant
shift and light tails. This implies that a shifted exponential
distribution capture the service time well in real compute
clusters. As a result, the insights derived from the analytical
study continue to hold on the studied compute cluster as well.

Recently, coding-theory-inspired approaches have been
applied to mitigate the effect of stragglers [26]–[28]. Single
fork analysis with coding has been studied in [27], [29]. In [27]
k tasks of a job are started at t = 0 whereas in [29] the
authors considered starting multiple jobs at t = 0 for a better
tradeoff. Considering multi-fork analysis with such general
coding flexibilities remains an important future direction. We
hope that the framework provided in this article can be
utilized to quantify the performance gains of multi-forked
coded replicas.

Further, this work considers the performance metrics for a
single job system. Analysis of overall completion time of jobs
when there is a sequence of job arrivals is an open problem.
When the system load is low, the request queue has a single
job with high probability, and our work provides insights for
the queueing system in this regime.
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APPENDIX A
PROOF OF THEOREM 1

We know that ES =
R
u2R+

F̄S(u)du, and we will show the
monotonicity on the complementary distribution function of
service times in the two cases. Since F̄S = 1� (1� F̄S1)

K is
a monotonically increasing function of F̄S1 , it suffices to show
the monotonicity of the complementary distribution function
of service times for single task in the two cases.

(i) From the hypothesis on two forking time sequences t, t0,
and denoting t0�1 = t0 = 0, we can write

Ii(t) ✓ [i
j=0Ij(t

0).

That is, for any time u 2 Ii(t) = [ti, ti+1), we can write
t 2 Ij(t0) for some j 6 i. Let j(u) and i(u) denote the
forking stage at time u for the two forking sequences
t0, t respectively, then j(u) 6 i(u) for all times u.
Furthermore, since t` 6 t0` for each stage `, and the
complementary distribution function F̄ is non-increasing,
we have F̄ (u�t`) 6 F̄ (u�t0`) for u > t0`. Therefore, we
can write the following inequality for the complementary
distribution for the service time of a single task for two
forking instant sequences as

F̄
S(t)
1
(u) =

i(u)Y

`=0

F̄ (u�t`)
n` 6

j(u)Y

`=0

F̄ (u�t0`)
n` = F̄

S(t0)
1

(u).

(ii) For any time u 2 Ii, from the hypothesis n0
j 6 nj , it

follows that

F̄
S(n)
1

(u) =
iY

`=0

F̄ (u�t`)
n` 6

iY

`=0

F̄ (u�t`)
n0
` = F̄

S(n0)
1

(u).

APPENDIX B
PROOF OF THEOREM 4

For the proof of this theorem, we utilize Proposition 2 for
the partial derivatives of two performance metrics, with respect
to initial fraction of servers and normalized forking time for
single forking.

(i) Since @ES
@t1

= 1
c
@ES
@u > 0 for forking time t1 > 0, the

result follows.
(ii) We can write the derivative of mean service completion

time with respect to initial number of servers as @ES
@n0

=
1
N

@ES
@x . We write the scaled partial derivative of mean

service completion time with respect to initial fraction
of servers x as a function of number of parallel tasks as

h(K) , 1

c

@ES
@x

(K) + u(1� (1� e�↵xu)K).

We will show that h(K) 6 0 for all K > 1, which would
give us the result. From the partial derivative of mean
service completion time with respect to initial fraction
of servers x, we get

h(K) = �
KX

k=1

(1� e�↵xu)k

k↵x2
+

u

x
(1� (1� e�↵xu)K).

Since ex > 1 + x for all x 2 R, we see that h(1) =

� (1�(1+↵xu)e�↵xu)
↵x2 < 0 for forking instant u > 0.

Furthermore, we can write

h(K)� h(K � 1)

(1� e�↵xu)K�1
= � (1� e�↵xu)

K↵x2
+

u

x
e�↵xu

We see that the right hand side of the above equa-
tion is an increasing function of K. Let K⇤ =
inf {K 2 N : h(K)� h(K � 1) > 0}. Then h(K) �
h(K�1) < 0 for all K < K⇤, and h(K)�h(K�1) > 0
for all k > K⇤. It follows then h(K) 6 h(1) _ h(1).
We observe that the limiting value

lim
K!1

h(K) = �
X

k2N

(1� e�↵xu)k

k↵x2
+

u

x

=
u

x
+

1

↵x2
ln(e�↵xu) =

u

x
� u

x
= 0

(iii) Since @EW1
@t1

= 1
c
@EW1
@u < 0 for forking time t1 > 0, the

result follows.
(iv) We show in Appendix C, that the mean server utiliza-

tion EW1 is a strict convex function of initial server
fraction x. Hence, it follows that there exists a unique
optimal initial fraction x⇤ 2 [ 1N , 1] that minimizes the
mean server utilization cost. Convexity of mean server
utilization cost with respect to initial fraction of servers
x implies that @EW1

@x is increasing in x for any fixed
forking instant u > 0. Next, we show in Appendix D
that the @EW1

@x

��
x=1

> 0 for all forking instants u > 0.
In Appendix E, we show that partial derivative of mean
server utilization cost at initial fraction of servers x = 1

N ,
defined as a function of normalized forking time u

g(u) ,
⇣ µ

↵�

⌘ @EW1

@x

����
x= 1

N

can take both positive and negative values depending on
the normalized forking time u. In particular, we show
that

sgn (g(u)) = {u>v3} � {u<v3}.

Therefore, for u > v3, we have g(u) > 0, and hence
the mean server utilization cost EW1 is an increasing
function of initial server fraction x 2 [ 1N , 1]. It follows
that the mean server utilization cost EW1 is minimized at
the unique optimal initial fraction x⇤ = 1

N . In the other
case when u < v3, we have g(u) < 0, and the mean
server utilization cost is minimized at the unique optimal
initial server fraction x⇤ 2 [ 1N , 1] is given by the solution
of the implicit equation (21) such that @EW1

@x

��
x=x⇤ = 0.

APPENDIX C
CONVEXITY OF MEAN SERVER UTILIZATION WITH INITIAL

FRACTION OF SERVERS

We show the strict convexity of mean server utilization
with respect to initial fraction of servers, by showing that the



2

second partial derivative is always positive. For u > 1, we can
compute this second partial derivative @2EW1

@x2 to be equal to

=
2�e�↵xu

x3µ

h
↵x(u� 1)(e↵x � 1� ↵x) +

↵2x3

2
(2u� 1)

+
↵2x2(1� x)

2
(u� 1)2(e↵x � 1) + e↵x � 1� ↵x� ↵2x2

2

i
.

The second partial derivative of mean server utilization @2EW1
@x2

for single task with respect to fraction of initial servers for
normalized forking time u < 1 is equal to

2�e�↵xu

x3µ


e↵xu � (1 + ↵xu+

↵2x2u2

2
) +

↵2x3u2

2

�
.

From the Taylor series expansion of exponential function e↵x,
we obtain that @2EW1

@x2 > 0 for all initial fraction x 2 [1/N, 1]
and normalized forking time u > 0.

APPENDIX D
POSITIVITY OF PARTIAL DERIVATIVE OF MEAN SERVER
UTILIZATION WITH INITIAL FRACTION OF SERVERS AT

UNIT FRACTION

We will show that the partial derivative @EW1
@x

��
x=1

> 0 for
all forking instants u > 0. To this end, we observe that at
x = 1, we can write

@EW1

@x

����
x=1

=

(
↵�
µ

h
1� e�↵u

↵ (e↵ � 1)
i
, u > 1

�
µ [e�↵u � 1 + ↵u] , u 2 (0, 1].

We observe that @EW1
@x > 0 at x = 1 for u 2 (0, 1], since

e�↵u > 1�↵u. For u > 1, we observe that e�↵u 6 e�↵ and
hence

1� e�↵u

↵
(e↵ � 1) > 1� 1

↵
+

e�↵

↵
> 0,

where the last inequality follows from the fact that e�↵ >
1 � ↵. Therefore, we deduce that @EW1

@x > 0 at x = 1 for
u > 1.

APPENDIX E
PARTIAL DERIVATIVE OF MEAN SERVER UTILIZATION WITH

INITIAL FRACTION OF SERVERS AT SMALLEST FRACTION

We will show that the sign of g(u) = @EW1
@x

��
x= 1

N
depends

on the normalized forking time u, the constant cµ and the
number of servers N . Recall that ↵

N = µc, and we observe
that for u > 1 the function g(u) equals

1�e�cµu

✓
(N � 1)(u� 1) +

N

cµ

◆
(ecµ�1)+(N�1)e�cµu.

Further, we have for u 6 1

g(u) = u+ (N � 1)ue�cµu � N

cµ
(1� e�cµu).

We observe that the limiting values are limu#0 g(u) =
0, limu!1 g(u) = 1. Further, we observe that g is continuous
at u = 1, such that

g(1) = 1 + (N � 1)e�cµ � N

cµ
(1� e�cµ).

We observe that limcµ!0 g(1) = 0 and limcµ!1 g(1) = 1. In
general, g(1) > 0 if and only if

(N � cµ)(ecµ � 1) 6 cµN.

A. Behavior of g0(u)

We can write the derivative g0(u) with respect to normalized
forking time u as
(
e�cµu [cµ(N � 1)((u� 1)ecµ � u) + (ecµ � 1)] , u > 1

1� e�cµu((N � 1)cµu+ 1), u 6 1.

We can verify that the limiting values are limu#0 g0(u) = 0
and limu!1 g0(u) = 0, and g0 is continuous at u = 1. We
can also write the scaled second derivative h(u) , g00(u) e

cµu

cµ
as equal to
(
(N � 2)(ecµ � 1)� cµ(N � 1)((u� 1)ecµ � u), u > 1

(N � 1)cµu� (N � 2), u < 1.

We observe that h(0) = �(N�2) and it is linearly increasing
in the interval [0, 1]. We next observe that h (and hence g00)
is discontinuous at u = 1 for N > 2 with a positive jump
of (N � 2)ecµ, which results in limu#1 h(u) > 0. Further,
limu"1 h(u) > 0 if and only if cµ > 1 � 1

(N�1) . Further, we
observe that h is linearly decreasing in the interval [1,1] with
limu!1 h(u) = �1. We define the following two normalized
time instants

v0 =
1

cµ
� 1

cµ(N � 1)
, v1 = 1 + v0 +

1

ecµ � 1
,

where v0 and v1 are the expressions obtained by setting the
two expressions of h(u) to zero corresponding to u < 1 and
u > 1 cases respectively. We observe that v1 > 1 for all
parameter values c, µ,N , whereas v0 can be larger or smaller
than unity depending on the parameters. In particular, v0 6 1
if and only if cµ > 1� 1

(N�1) . Since g00(u) = e�cµuh(u)/cµ,
we have sgn(g00(u)) = sgn(h(u)), where

sgn(h(u)) = {u2(v0^1,1][[1,v1)} � {u2[0,v0^1)[(v1,1)},

and we conclude that the second derivative of g is discon-
tinuous at unity, and can have one or two zeros. Specifically,
we always have g00(v1) = 0 with v1 > 1 and we can have
g00(v0) = 0 if cµ > 1� 1

(N�1) . We further remark that, g00(u)
is negative in the intervals (0, v0 ^ 1) and (v1,1) and is non-
negative in the interval [v0 ^ 1, v1].

Therefore, the first derivative g0(u) decreases monotonically
from g0(0) = 0 to g0(v0^1), and then monotonically increases
from g0(v0^1) to g0(v1), followed by the decrease to g0(1) =
0. From the continuity of g0, we infer that g0(v1) > 0 >
g0(v0 ^ 1), and hence we can conclude that there exists a
unique v2 2 [v0^1, v1] such that g0(v2) = 0. Further, the first
derivative g0 is negative in the interval (0, v2) and positive in
the interval (v2,1). That is,

sgn(g0(u)) = � {0<u<v2} + {u>v2}.

Note that the unique value of v2 is determined by the solution
to g0(u) = 0 in two complementary cases when v0 6 u 6 1
and u > 1. Hence, we can write this normalized forking time
threshold v2 to be equal to 1� 1

cµ(N�1) +
1

ecµ�1 when v2 > 1

and the solution v2 to the implicit equation k(u) , ecµu �
1� (N � 1)cµu = 0 if v2 2 [v0, 1]. We see that the function
k(u) has a zero in [v0, 1) if and only if v0 < 1 and k(1) > 0.
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We can see that when v0 > 1 then k(1) 6 0 from the Taylor
expansion of exponential function 2, and hence

{v0 < 1} \ {k(1) > 0} = {k(1) > 0} .

Therefore, we can see that v2 > 1 iff k(1) 6 0 iff 1
cµ ln(1 +

cµ(N�1)) > 1, and in this case there is no non-trivial solution
to the above implicit equation in (0, 1]. Hence, we can write
the normalized forking time threshold v2 as
(
1� 1

cµ(N�1) +
1

ecµ�1 ,
1
cµ ln(1 + cµ(N � 1)) > 1,

1
cµ ln(1 + (N � 1)cµv2),

1
cµ ln(1 + cµ(N � 1)) 6 1.

B. Behavior of g(u)
From the behavior of g0(u), we conclude that the function

g is monotonically decreasing from g(0) = 0 to g(v2), and
monotonically increasing from g(v2) to limu!1 g(u) = 1.
Therefore, it follows that there exists a unique v3 2 [v2,1)
such that g(v3) = 0. However, there is no direct relation
between v3 and v1. We conclude that the function g =
@EW1
@x

��
x= 1

N
is negative when the normalized forking time

u < v3 and non-negative otherwise.
We can write the normalized forking time threshold v3 as

the solution to an implicit equation obtained from equating
g(u) = 0 for two cases when u 6 1 and u > 1. Since g is
increasing in [v3,1) with g(v3) = 0, it follows that v3 6 1
if and only if g(1) > 0. From the continuity of g at u = 1,
we can evaluate g(1) and observe that g(1) > 0 if and only
if (N � cµ)(ecµ � 1) 6 cµN . Therefore, we can write the
following implicit equation for the normalized forking time
threshold v3, where ecµv3 +N � 1 is equal to
8
<

:

⇣
(N � 1)(v3 � 1) + N

cµ

⌘
(ecµ � 1), (1� cµ

N ) (e
cµ�1)
cµ > 1,

N
1� cµv3

N
, (1� cµ

N ) (e
cµ�1)
cµ 6 1.

We define f(x) , (N � x)(ex � 1) � Nx, and observe that
v3 > 1 iff f(cµ) > 0. This implies a necessary conditions for
v3 > 1 is to have cµ 2 (0, N). We can verify that the two
derivatives of f are

f 0(x) = (N � 1)(ex � 1)� xex, f 00(x) = (N � 2� x)ex.

It follows that sgn(f 00) = {x<N�2} � {x>N�2} and hence
the first derivative f is increasing for x 2 [0, N � 2) and
decreasing for x > N � 2. That is for N > 2, the first
derivative f 0 increases monotonically from f 0(0) = 0 to
f 0(N�2) = eN�2�(N�1) > 0 and then decreases monotoni-
cally to f 0(N) = �eN�(N�1) < f 0(N�1) = �(N�1). Let
x# 2 (N � 2, N � 1) be the unique point where f 0(x#) = 0,
then sgn(f 0) = {x2(0,x#)} � {x2(x#,N)}. Hence, the func-
tion f is monotonically increasing for x 2 (0, x#) from
f(0) = 0 to f(x#), and then monotonically decreasing in
(x#, N) to f(N) = �N2. Hence, there exists a threshold
x0 2 (N � 2, N) on the rate cµ such that v3 > 1 for
cµ 6 x0, where x0 is the unique non-zero solution to the
implicit equation f(x) = 0.

2If cµ 6 1 � 1
N�1 , then we have ecµ�1

cµ =
P1

k=0
(cµ)k

(k+1! 6
P1

k=0(cµ)
k = 1

1�cµ 6 (N � 1), i.e. k(1) 6 0.

Taking the number of servers N = 12, the shift of the
shifted exponential service as c = 1, we have plotted the
function g, g0, and g00 as a function of normalized forking time
u for the service rate µ = 0.8 in Fig. 13 and for the service
rate µ = 2 in Fig. 14.
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Fig. 13. For a fixed number of servers N = 12, the service shift c = 1, and
the exponential service rate µ = 0.8, this graph plots g(u), g0(u), g00(u) as
a function of normalized forking time u. For this set of system parameters,
we have v0 = 25

22 > 1 and v1 = 1+ 25
22 + 1

e0.8�1
. The discontinuity in g00

at u = 1 is given by (N � 2)cµ = 8. Further, we see that e0.8 � 1 6 8.8
and hence we have v2 = v1 � 5

4 = 1� 5
44 + 1

e0.8�1
.
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Fig. 14. For a fixed number of servers N = 12, the service shift c = 1, and
the exponential service rate µ = 2, this graph plots g(u), g0(u), g00(u) as a
function of normalized forking time u. For this set of system parameters, we
have v0 = 5

11 < 1 and v1 = 1 + 5
11 + 1

e2�1
. The discontinuity in g00 at

u = 1 is given by (N � 2)cµ = 20. Further, we see that e2 � 1 6 22 and
hence we have v2 = v1 � 1

2 = 1� 1
22 + 1

e2�1
.

C. Behavior of normalized forking point threshold v3

We list down the impact of system parameters K,N, µ, c on
this normalized forking point threshold v3, from its analytical
expression. That is, for cµ > x0, the optimal forking threshold
v3 is the solution to the equation

ecµu � 1

cµu
=

1

1� cµu
N

.

For large cµ, the solution for this is v3 = 0, which implies
that when the amount of work done in a single shift by a
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single server is large, starting with a single server is optimal.
Thus, n⇤

0 ! 1 as cµ ! 1. For cµ 6 x0, the optimal forking
threshold v3 is the solution to the equation

ecµu +N � 1 = (ecµ � 1)

✓
(u� 1)(N � 1) +

N

cµ

◆
.

For small cµ the optimal threshold v3 is very large, and can
be written approximately as the solution to the equation

ecµv = 1 + (N � 1)cµv.

The solution of this equation is v = y
cµ where ey = 1+(N �

1)y.
We have plotted the normalized forking point threshold v3

along with its approximation in Fig. 15, as a function of the
product cµ for a fixed number of servers N = 12. Since x0 >
N � 2, we have cµ < x0 in this plot, and we observe that the
approximation matches the numerically computed threshold
v3. We conclude that when the amount of work done in a
single shift by a single server is small, cv3 / 1

µ and for the
forking point t1 6 cv3 ⇡ y

µ the optimal number of initial
servers n⇤

0 > 1.
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Fig. 15. For fixed number of servers N = 12, this graph plots the normalized
forking point threshold v3 and its approximation as a function of cµ. The
service rate µ is set to 0.01 and service shift c is varied.

Since the threshold x0 2 (N�2, N), this threshold increases
as the total number of servers N increases. Therefore for
any finite cµ and large N , we have cµ 6 x0 and hence the
normalized forking point threshold v3 > 1. In this setting, the
normalized forking point threshold v3 is approximately given
by the solution to the equation

ecµu = Nu(ecµ � 1).

Setting x = �cµu < 0, we can rewrite the above equation
as xex = � cµ

N(ecµ�1) . Further, recall that the equation y =
xex is equivalent to x = W (y) where W is the Lambert-W
relation [30]. Therefore, we have �cµu = W (� cµ

N(ecµ�1) ).
We further note that the Lambert-W is a double-valued relation
on (�1/e, 0). The relation W has two real branches in this
regime, and they are represented by single valued functions
W0 and W�1 with additional constraints W0 > �1 > W�1.
We observe that � cµ

N(ecµ�1) 6 0 and decreases to zero as N
grows large, and hence the interval (�1/e, 0) is of interest for

large number of servers. Since x0 > N �2, and hence for any
fixed cµ, we have cµ < x0 as N increases, and the normalized
forking threshold v3 > 1. This implies that the lower branch
W�1 of the Lambert-W relation gives us the right solution.
Thus, we have

v3 ⇡ � 1

cµ
W�1

✓
� cµ

N(ecµ � 1)

◆
.
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Fig. 16. This graph plots the normalized forking point threshold v3 and its
approximation by Lambert-W relation as a function of number of servers N ,
for shifted exponential service distribution with shift c = 8 and rate µ = 0.01.

We have plotted the numerically computed normalized
forking point threshold v3 along with its approximation from
Lambert-W relation in Fig. 16, as a function of the number of
servers N . The plot suggests that threshold is logarithmically
increasing with the number of servers N . Indeed, the authors
of [31], [32] provided an approximation for the lower branch
of the Lambert-W relation as

W�1(z) ⇡ �1� � � 2

M1

2

641�
1

1 +
M1

p
�/2

1+M2� exp(M3
p
�)

3

75 ,

where � = �1� ln(�z), M1 = 0.3361, M2 = �0.0042, and
M3 = �0.0201. This approximation has a maximum relative
error of only 0.025% [32]. Using this approximation, we can
analytically see that v3 increases logarithmically with total
number of servers N for large N .

APPENDIX F
NUMERICAL RESULTS OF SINGLE FORKING FOR

HEAVY-TAILED DISTRIBUTIONS

It is not straightforward to compute the mean service
completion time and mean server utilization cost analytically
for general distribution of job execution times. In fact these
computations remain challenging for heavy-tailed distributions
such as the Pareto and the Weibull distributions. However, we
can compute these performance metrics empirically to verify
that the insights obtained by the analytical study of shifted
exponential distribution continue to hold in other cases.

For this numerical study, we select the identical system
parameters to those chosen for study with shifted exponential
distribution. That is, we take K = 10 parallel tasks, and the
total available servers per task as N = 12, together with the
cost of server utilization per unit time as � = 1.
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A. Pareto distribution
We take the execution times at each server to be an i.i.d.

random sequence having a Pareto distribution with scale xm

and shape ↵ > 1, such that the complementary execution time
distribution is given by

F̄ (x) = P {X > x} =
⇣xm

x

⌘↵
{x>xm}.

For the following numerical studies, we take mean of the
Pareto distribution as m = xm↵

↵�1 = 0.8, and scale xm =
0.1 ⇤m. We verify that the insights obtained from the shifted
exponential distribution of execution time, continue to hold
in this case. To this end, we plot the empirical mean of
service completion time in Fig. 17, and empirical mean
of server utilization cost in Fig. 18, both as functions of
initial servers n0 2 {1, . . . , 11} for values of forking times
in t1 2 {m, 2m, . . . , 9m}. As expected, the mean service
completion time increases and the mean server utilization
cost decreases with increase in the forking time t1. We also
notice the decrease in the mean service completion time as
the number of initial server n0 increases. Interestingly, we
still have an optimal number of initial servers n⇤

0 > 1 that
minimizes the mean server utilization cost for different values
of forking points t1 > m.
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Fig. 17. This graph displays the mean service completion time ES as a
function of initial number of servers n0 2 {1, . . . , 11} for single forking
of K = 10 parallel tasks at different forking times t1 2 {m, 2m, . . . , 9m}
when the single task execution time at servers are i.i.d. with Pareto distribution
of shift xm = 0.08 and shape ↵ = 10/9.

These insights are identical to the one derived from the
shifted exponential service case, and we have an interesting
tradeoff between the two metrics when we vary the number
of initial servers and the forking time. First observation is that
forking time gives a true tradeoff between these two metrics.
Second and more interesting observation is that there exist
a minimum number of initial servers for each forking time,
until which point we can decrease both the mean service
completion time and the mean server utilization cost. We
demonstrate this tradeoff by plotting the empirical mean of
service completion time with respect to empirical mean of
server utilization cost for � = 1 in Fig. 19 for initial
number of servers n0 2 {1, . . . , 11} and for forking times
t1 2 {m, 2m, . . . , 9m}. It is clear that there is an optimal
number of initial servers for each forking time t1. Further, the
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Fig. 18. This graph displays the mean server utilization cost EW as a function
of initial number of servers n0 2 {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 2 {m, 2m, . . . , 9m} when the
single task execution time at servers are i.i.d. with Pareto distribution of shift
xm = 0.08 and shape ↵ = 10/9.

mean server utilization decreases with forking time t1, though
at the cost of increase in mean service completion time.
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Fig. 19. This graph displays the mean server utilization cost EW as a
function of mean service completion time ES when we vary the number
of initial servers n0 2 {1, . . . , 11} for single forking of K = 10 parallel
tasks at different forking times t1 2 {m, 2m, . . . , 9m} when the single task
execution time at servers are i.i.d. with Pareto distribution of shift xm = 0.08
and shape ↵ = 10/9.

B. Weibull distribution
We take the execution time at each server to be and i.i.d.

random sequence having a Weibull distribution with scale �
and shape �, such that the complementary execution time
distribution is given by

F̄ (x) = P {X > x} = e�(
x
� )

�

{x>0}.

For the following numerical studies, we take scale of the
Weibull distribution as � = 16, and shape � = 2. For this
service distribution, we individually plot the empirical mean
of service completion time in Fig. 20, and the empirical mean
of server utilization cost in Fig. 21, both as functions of initial
servers n0 2 {1, . . . , 11} with values of forking times in
t1 2 {1, 3, 5, . . . , 19}. We demonstrate the tradeoff between
these two performance metrics by plotting the empirical mean
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of service completion time with respect to empirical mean of
server utilization cost for � = 1 in Fig. 22 for initial number
of serves n0 2 {1, . . . , 11} for values of forking times in
t1 2 {1, 3, 5, . . . , 19}.

We reiterate that, as expected, the insights obtained in the
Weibull service distribution case are identical to those obtained
from the light-tailed distribution such as shifted exponential
and heavy-tailed distribution such as Pareto. This suggests
that the insights derived from our analysis applies to random
execution times with heavy tail distributions as well.
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Fig. 20. This graph displays the mean service completion time ES as a
function of initial number of servers n0 2 {1, . . . , 11} for single forking of
K = 10 parallel tasks at different forking times t1 2 {1, 3, 5, . . . , 19} when
the single task execution time at servers are i.i.d. with Weibull distribution of
scale � = 16 and shape � = 2.
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Fig. 21. This graph displays the mean server utilization cost EW as a function
of initial number of servers n0 2 {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 2 {1, 3, 5, . . . , 19} when the single
task execution time at servers are i.i.d. with Weibull distribution of scale
� = 16 and shape � = 2.

APPENDIX G
NUMERICAL RESULTS OF MULTIPLE FORKING FOR

HEAVY-TAILED DISTRIBUTIONS

In this section, we compare the optimal single forking to
sub-optimal two-forking to understand the potential gains of
multi-forking for i.i.d. random execution times for two heavy-
tailed distributions: Pareto and Weibull. For numerical studies
in both the cases, we take K = 10 tasks, sequentially forked on
N = 12 servers each, with server utilization cost rate � = 1.
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Fig. 22. This graph displays the mean server utilization cost EW as a function
of mean service completion time ES when we vary the number of initial
servers n0 2 {1, . . . , 11} for single forking of K = 10 parallel tasks at
different forking times t1 2 {1, 3, 5, . . . , 19} when the single task execution
time at servers are i.i.d. with Weibull distribution of scale � = 16 and shape
� = 2.

A. Pareto distribution

We assume the job execution times to have an i.i.d. Pareto
distribution with the mean m = xm↵

↵�1 = 16 and the shift xm =
0.52⇤m, for the following numerical studies. We compare the
performance of the single forking sequence (0, n0), (t,N�n0)
to that of the two-forking sequence (0,m0), (t,m1), (s,N �
m0 �m1), when the second forking point is s > t.

We plot the tradeoff curve between mean service completion
time and mean server utilization cost for the single and two-
forking sequences in Fig. 23 for the values of forking points
t = 4 and s 2 {5, 6, 7, 8}, varying the number of forked
servers n0 2 [N ] in single-forking case and m0,m1 in two-
forking case.
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Fig. 23. This figure illustrates achievable points with Pareto execution times
for mean server utilization cost and mean service completion time for two-
forking with different values of forked servers m0, m1 and N �m0 �m1
at forking points t0 = 0, t = 4 and s 2 {5, 6, 7, 8}, respectively. For
comparison, we also plot the tradeoff points for single-forking at forking
time t = 4 varying the number of initial servers n0.

We observe that for any choice of forked servers m0,m1

and forking point s > t, the two-forking system achieves better
tradeoff points as compared to the single-forking system.
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B. Weibull distribution
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Fig. 24. This figure illustrates achievable points with Weibull execution times
for mean server utilization cost and mean service completion time for two-
forking with different values of forked servers m0, m1 and N �m0 �m1
at forking points t0 = 0, t = 4 and s 2 {5, 6, 7, 8}, respectively. For
comparison, we also plot the tradeoff points for single-forking at forking
time t = 4 varying the number of initial servers n0.

We assume the system parameters for the Weibull distribu-
tion to be scale � = 16 and shape � = 2. We compare the
performance of the single forking sequence (0, n0), (t,N�n0)
to that of the two-forking sequence (0,m0), (t,m1), (s,N �
m0 �m1), when the second forking point is s > t.

We plot the tradeoff curve between mean service completion
time and mean server utilization cost for the single and two-
forking sequences in Fig. 24 for the values of forking points
t = 4 and s 2 {5, 6, 7, 8}, varying the number of forked
servers n0 2 [N ] in the single-forking and m0,m1 ine th two-
forking case.

In this case of Weibull distribution for job execution time as
well, we observe that for any choice of forked servers m0,m1

and forking point s > t, the two-forking system achieves better
tradeoff points as compared to the single-forking system.
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