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Abstract—We consider a system of K servers, where customers
arrive according to a Poisson process, and have independent
and identical (i.i.d.) exponential service times and i.i.d. valuations
of the service. We consider the setting where customers leave
when they find all servers busy. Service provider announces a
price to an incoming customer, depending on the number of busy
servers. An incoming arrival enters the system if its valuation
exceeds the price. We find the optimal state dependent pricing,
that maximizes the revenue rate for the service provider.

I. INTRODUCTION

Server farms refer to centrally maintained collections of
computer servers or processors intended to provide a ser-
vice (or a class of services) to customers. Over the past
decade, server farms have mushroomed to keep up with the
massive demand for both data storage and computation, which
continues to increase at breakneck speed. Server farms offer a
cost-effective alternative to customers wherein they need not
spend initial setup and maintenance of a service facility. These
also allow customers to dynamically scale resource utilization
and provide redundancy against failure of specific hardware.
However, service providers incur considerable costs on hard-
ware, cooling, power, security etc. Sustained proliferation of
data farms is contingent on providers profiting through service
charges levied on the customers.

Optimal service pricing is central to thriving operation of
server farms. Service providers’ earnings come from service
charges levied on the customers. Different customers may
have different utilities (or, valuation) of the service. Also, in a
server farm with a waiting queue, a customer’s valuation will
also depend on its expected waiting time, i.e., on the queue
length on its arrival. The customers opt for the service only if
their valuation of the service exceeds service charge. Clearly
service charges directly impact service provider’s revenue.
These along with customers’ valuation also determine servers’
occupancy and congestion which in turn governs future cus-
tomers’ valuation. We thus see that determining optimal prices
is a complex problem. The problem is further complicated by
the fact that service providers cannot a priori assess customers’
valuation though they often know value distributions based on
historical data.

We consider a multiple server system that offers service
to stochastically arriving customers. Customers’ service dura-
tions are random. We do not assume any waiting queue. The
service provider sells the service to customers at potentially
time varying prices. Different customers also have different
values of the service. The service provider does not know
customers’ values but knows value distribution. A customer
who finds at least one idle server on arrival opts for the service
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if and only if its value exceeds the current service charge.
The customers who find all the servers busy on arrival leave
the system without getting served. The service provider aims
to maximize the average revenue rate by setting appropriate
prices. We derive optimal prices as a function of the number
of idle servers. We also study various properties of the optimal
prices and optimal revenue rate vis-a-vis total number of
servers, customer arrival rate, average service time etc.

A. Related Work

Cloud computing facilities that host a large number of data
servers face the problem of optimizing the utilization of these
servers. Designing an optimal pricing policy is a crucial step in
extracting the best possible revenue from the system [1]. One
of the earliest works that studied pricing of queues was [2], in
which the entry of customers to a queue was regulated using
tolls. Customers can decide to balk or join the queue, after
observing the queue size. Such systems are called observable.
Each customer has a pure strategy, which is a threshold, which
is a function of the toll fixed by the service provider. If the
queue length is greater than the threshold, the customer balks;
else they join. It was shown that the socially optimal threshold
was higher than the threshold for revenue maximization. A
subsequent work [3] shows that, the revenue maximizing and
socially optimal toll values can be the same, provided a two-
part tariff is imposed. There have been a number of other
works which looked at extensions of [2] or at related models.
The effect of the reward variance on the performance is studied
in [4]. In [5], the author examines whether it is always optimal
for a profit maximizing service provider to hide the queue
length from an arriving customer. It is shown that there are
thresholds of arrival rates, below which it is optimal for the
service provider to hide the queue state information, and above
which it is optimal to reveal. These, and numerous other
works, have been summarized in [6].

In [7], the authors look at the problem from the perspective
of the service provider. Here, they are interested in maximizing
the expected discounted revenue, while keeping the queueing
model of [2]. They obtain a revenue optimizing threshold
queue length beyond which entries are not allowed into the
queue. This threshold can be computed numerically. In [8], an
explicit form is derived for the threshold, and they characterize
the earning rate asymptotically. In [9], the authors study a
cloud system where the utility of the customers follows the α-
fair model, and show that, discriminating between customers
based on their valuation of the service does not improve the
revenue, when compared to uniform pricing. A survey of
available cloud pricing models is given in [10]. A system of
two competing firms is studied in [11]. One firm offers a fixed
cost of service, and a corresponding fixed waiting time, while
the others offers customers lower waiting times proportional to
higher bids. This is formulated as a game, and the equilibrium
behavior is obtained. It is shown that customers with higher or



lower waiting costs prefer the bidding structure, while those
with moderate costs prefer the fixed pricing scheme.

B. Our Contribution
We assume a service provider with K servers. We further

assume that the customers arrive according to a Poisson
process, having i.i.d.exponential service times and i.i.d.values
for the service. Following is a preview of our main results.

1) We observe that the system with infinitely many
servers (i.e., K = ∞) resembles an M/M/∞ queue.
We show that the optimal service prices are uniform, i.e.,
independent of the number of occupied servers.

2) We study optimal uniform pricing for K server sys-
tem (K < ∞). We derive a bound on the revenue rate
for the optimal uniform price. We also study asymptotic
revenue rates for uniform pricing.

3) For finite server systems, we frame the revenue rate max-
imization problem as a continuous time Markov control
problem. We show that the optimal prices depend on the
number of occupied servers, and can obtained via solving
a fixed point iteration.

4) We study how optimal prices and corresponding revenue
rates vary with customer arrival rates, service rates and
the number of servers K.

II. SYSTEM MODEL

We model the system as a queuing system with K servers.
Jobs arrive to this server farm as a Poisson process with rate
λ. The jobs have random service time requirements that are
independent and identically distributed (i.i.d.) exponential with
mean 1

µ . Furthermore, each job is assumed to have a random
i.i.d. positive value V sampled from a continuous distribution
G.

Assumption 1. We assume the distribution G such that the
function x 7→ f(x)(1 − G(x)) has a unique finite maximum
for any monotonically increasing function f .

Upon arrival, the server quotes a price for the job. The price
offered by the server is state dependent, with the state variable
k being the number of servers busy in the system. This price is
denoted by pk. If the quoted price pk is less than the value Vn
of the nth job, then the job joins service; otherwise it leaves.
When a job joins the service in state k, the system earns a
revenue pk. We assume that pK = ∞, i.e., an arrival seeing
all K servers busy, leaves the system.

The state of the system is denoted by the number of busy
servers, and the state space is denoted by X , {0, . . . ,K}.
Since pK = ∞, the reduced state space is denoted by X ′ ,
{0, . . . ,K − 1}, and we denote a state-dependent price vector
by P = (p0, . . . , pK−1) ∈ RX ′+ , and the revenue earned until
time t by R(t). The limiting revenue rate for this K server
system with price vector P is denoted by

R(K,P ) , lim
t→∞

R(t)

t
.

Our main goal is to find the pricing vector that maximizes
revenue. Formally, we solve the following problem.

Problem 2. Find the optimal price vector P ∗K =
(P ∗, . . . , P ∗K−1) that maximizes the limiting system revenue
rate R(K,P ). That is, we wish to find

P ∗K = arg maxR(K,P ).

Denoting a vector of all ones by 1 ∈ RX ′+ and a fixed price
p > 0, we can denote the uniform price vector by p1. In
this case, the price charged to a customer is independent of
the state of the system. We next find the uniform price that
maximizes the revenue rate.

Problem 3. Find the uniform price p that maximizes the
limiting system revenue rate R(P ,K). That is, we wish to
find

p∗K = arg maxR(K, p1).

We denote the optimal revenue rate by R∗ = R(K,P ∗K),
and compare it to the revenue rate R(K, p∗K1) for the best
uniform pricing.

Notation 4. We denote the sets of natural numbers, non-
negative integers, non-negative reals, and first n positive
integers by N,Z+,R+, and [n] respectively.

III. ANALYSIS

Let X(t) denote the number of busy servers in the system, at
time t. It is easy to see that (X(t) ∈ X , t > 0) is a continuous
time Markov chain. For this Markov process, the transition rate
from state i to i+ 1 (for i+ 1 6 K) is given by λi, where,

λi = λPr{V > pi} = λG(pi),

where we denote the complementary distribution of value by
G(x) = 1 − G(x). The transition rate from state i to state
i− 1 is given by iµ. We have depicted the state space of this
system for K = 3 in Figure 1.
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Fig. 1. Number of busy servers for state dependent price, where we have
three identical servers.

Since X(t) is a finite state, irreducible Markov chain, it is
positive recurrent [12]. Let π denote the stationary distribution
of X(t). Then, the following result holds.

Theorem 5 (Kelly [13]). The stationary distribution of the
Markov chain X(t) is given in terms of the load factor ρ , λ

µ
as

πk =

π0
ρk

k!

∏k−1
j=0 G(pj), k ∈ [K],[

1 +
∑K
k=1

ρk

k!

∏k−1
j=0 G(pj)

]−1

, k = 0.
(1)

Proof: Since, all birth-death processes are reversible [13],
it’s easy to compute the equilibrium distribution of X(t) using
detailed balanced equations, such that

πjλj = πj+1(j + 1)µ.

Eq. (1) follows from recursively computing πj in terms of
π0 and load factor ρ = λ

µ . The equilibrium probability π0 of
being in state 0, follows from the conservation of probability.



Next, we are interested in computing the mean equilibrium
revenue from the system. Assuming X(0) = 0, we can
inductively define the nth entrance to state 0 as

τn , inf {t > τn−1 : X(t) = 0} , τ0 = 0.

It follows that τn is a stopping time adapted to the Markov
process X(t). Since a continuous time Markov chain is also
strongly Markov [14], it follows that (Xτn+t : t > 0) is inde-
pendent of the past (Xt : t 6 τn). Further, from homogeneity
of the process X(t), it follows that (Xτn+t : t > 0) is an
identical stochastic replica of (X(t) : t > 0). Therefore, it
follows that (τn : n ∈ N) is a sequence of renewal instants.

Denoting the state of the process at the nth jump by Xn, we
recall that a continuous time Markov chain can be equivalently
represented by random holding times (Hj : j ∈ X ) and
the jump-chain (Xn : n ∈ Z+). The holding times are
i.i.d.exponential random variables with EHj = 1/(λj + jµ),
the transition probabilities [15] of the jump chain are

pj,j+1 =
λj

λj + jµ
, pj,j−1 =

jµ

λj + jµ
.

Theorem 6. The limiting mean revenue rate for the M/M/K/K
queueing system is

R(K,P ) =

K−1∑
k=0

πkλkpk.

Proof: Let Rn be the revenue earned in the nth renewal
interval [τn−1, τn). Since the revenue depends only on the
state and not on time, it follows that the random sequence
((Rn, τn − τn−1) : n ∈ N) is iid. Applying renewal reward
theorem [15] to this sequence, we get

lim
t→∞

R(t)

t
=

ER1

Eτ1
a.s.. (2)

Note that an arrival in state j indicates that an incoming
customer in state j accepted the price pj . Hence, the total
revenue earned by the system in one renewal interval equals
the weighted sum of the number of arrivals in state j, weighted
by the price pj of entering the system in this state. We indicate
the number of visits to state j in first renewal interval [0, τ1)
by Nj . Then, the mean revenue in first renewal interval is

ER1 =

K−1∑
j=0

pjENjpj,j+1. (3)

Recall that the mean time spent in state j in first renewal
interval is ENjEHj from independence of jump-chain and
holding times. Further, the equilibrium fraction of time spent
in state j is πj =

ENjEHj

Eτ1 from another application of renewal
reward theorem. The result follows from substituting Eq. (3)
in RHS of Eq. (2), and observing that

ENj
Eτ1

pj,j+1 =
πj
EHj

pj,j+1 = πjλj .

IV. UNIFORM PRICING

We first consider the simpler case of uniform pricing for the
cases when K =∞ and K is finite. We show that the uniform
pricing is optimal for infinite servers, and strictly sub-optimal
for finite server case.

A. Infinite servers
We first consider the case when K = ∞. This models

the case of large server systems with low customer arrival
rates, such that the probability of all servers being busy is
vanishingly small. For this case, we can find the equilibrium
distribution of system state for general pricing scheme, and
mean revenue rate for uniform pricing in closed form.

Corollary 7. The stationary distribution of the Markov chain
X(t) for load factor ρ = λ

µ and K =∞ is given by

πk =

π0
ρk

k!

∏k−1
j=0 G(pj), k ∈ N,[

1 +
∑
k∈N

ρk

k!

∏k−1
j=0 G(pj)

]−1

, k = 0.
(4)

Remark 8. Observe that since the G are probabilities, the in-
finite series is bounded above by

∑
n∈Z+

ρn

n! which converges
to exp(ρ), and hence the series converges. The corresponding
revenue rate may be denoted by R(∞, P ).

Corollary 9. For an M/M/∞ system with uniform pricing
P = p1, the limiting mean revenue rate is

R(∞, p1) = λG(p)p.

Proof: For uniform pricing pk = p and arrival rate λk =
λG(p) for all states k ∈ N. Therefore, the result follows from
Theorem 6.

Proposition 10. The optimal uniform pricing is the best
pricing scheme for infinite servers.

Proof: Let p∗∞ = arg max pG(p) be a maximizer of mean
revenue for uniform pricing scheme. For the load factor ρ = λ

µ ,
we can write the mean revenue rate for any price vector P as

R(∞, P ) = λ
∑
j∈Z+

πjG(pj)pj 6 λp∗∞G(p∗∞) = R(∞, p∗∞1).

The result follows, since a uniform pricing vector is one
possible price vector, and therefore R(K, p∗∞1) 6 R(K,P )
for all K.

B. Finite servers
Lemma 11. For a finite K-server system with uniform pricing
P = p1, the limiting mean revenue rate is

R(K, p1) = λpG(p)

(
1−

ρKG(p)K

K!

1 +
∑K
k=1

ρkG(p)k

k!

)
.

Proof: For uniform pricing across states, i.e. pk = p
for all states k ∈ {0, . . . ,K − 1}, we obtain the steady state
probabilities π from Theorem 5 in terms of load factor ρ and
G(p) to be

πk = π0
ρkG(p)k

k!
, π0 =

(
K∑
k=0

ρkG(p)k

k!

)−1

.

For uniform pricing, the arrival rate λk = λG(p) also remains
constant for all states k ∈ {0, . . . ,K − 1}. Using this obser-
vation in Theorem 6, we obtain the mean revenue rate as

R(K, p1) = λpG(p)

K−1∑
k=0

πk = λpG(p)(1− πK).



Substituting the equilibrium distribution for uniform pricing
in the above expression for mean revenue rate, we obtain the
result.

From the Assumption 1 on distribution G, the function
pG(p) has a unique maximum. To find the optimal uniform
price p for finite server systems, we need to understand how
πK changes with price p. For a fixed load ρ, we see that
ρk

k!G(p)k is monotonically decreasing in price p and state k.
Further, we see that

1

πK
=

∑K
k=0

ρkG(p)k

k!

ρKG(p)K

K!

=

K∑
k=0

(
K

k

)
k!ρ−kG(p)−k.

That is, the stationary probability 1 − πK of K busy servers
is monotonically increasing with uniform price p. Therefore,
from Assumption 1, it follows that there exists a unique price
p∗K that maximizes revenue, i.e.

p∗K = arg max
p>0

λpG(p)(1− πK).

Lemma 12. Let p∗∞ and p∗K be maximizing prices of infinite
and finite K-server systems with uniform pricing, that is

p∗∞ = arg max
p>0

pG(p), p∗K = arg max
p>0

pG(p)(1− πK).

Then, p∗K ≥ p∗∞.

Proof: Let π(p∗K) and π(p∗∞) be the equilibrium distribu-
tion for K-server system with optimal uniform price p∗K and
p∗∞ respectively. Then, it is clear from the definition that

(1− πK(p∗K))p∗∞ḡ(p∗∞) > (1− πK(p∗K))p∗K ḡ(p∗K)

> (1− πK(p∗))p∗∞ḡ(p∗∞).

That is, we observe that πK(p∗∞) > πK(p∗K). Result follows
from monotonic decrease of πK with respect to price p.

Lemma 13. Let p∗∞ and p∗K be maximizing prices of infinite
and finite K-server systems with uniform pricing, and let
P ∗K be the maximizing price vector for the K server system.
Further, if we denote the steady state distribution of the K-
server system with uniform price p∗∞ to be π(p∗∞), then

R(K, p∗K1) 6 R(K,P ∗K) 6
R(K, p∗K1)

1− πK(p∗∞)
.

Proof: Since all possible price vectors include the case
of uniform pricing as well, the first inequality follows from
the increase in supremum over larger sets. For the second
inequality, we observe that for any price vector P with
corresponding equilibrium distribution π, we have

R(K,P ) = λ

K−1∑
k=0

πkpkG(pk) 6 λp∗∞G(p∗∞).

Hence, it follows that R(K,P ∗K) 6 λp∗∞(p∗∞). Multiplying
both sides by (1− πK(p∗∞)), we obtain

(1− πK(p∗∞))R(K,P ∗K) 6 λ(1− πK(p∗∞))p∗∞G(p∗∞)

6 λ(1− πK(p∗K))p∗KG(p∗K) = R(K, p∗K1).

Corollary 14. If the scaled load factor c , ρ
K , then

R(K,P ∗K) 6 (1 + c)R(K, p∗K1).

Proof: The result follows from the following observation,

1

(1− πK(p∗∞))
= 1 +

πK(p∗∞)∑K−1
k=0 πk(p∗∞)

= 1 +
ρ
KG(p∗∞)∑K−1

k=0

(
K−1
k

)
k!ρ−kG(p∗∞)−k

6 1 + c.

The last inequality follows by noting that the numerator
corresponds to the k = 0 term in the denominator.

V. ASYMPTOTIC BEHAVIOR OF REVENUE RATE

A direct comparison of the uniform price p1 versus the
differential price P is not easy. In this section, we make an
asymptotic comparison as λ→∞.

Lemma 15. For a fixed pricing policy vector P ∈ RK+ ,

lim
λ→∞

R(K,P ) = µKpK−1.

Proof: From the expressions for equilibrium distribution
π in Theorem 5 and mean revenue rate in Theorem 6, for K
server system with price vector P (K), we can write the limit
of mean revenue rate as λ grows large, as

lim
λ→∞

K−1∑
k=0

πkλpkG(pk) = lim
λ→∞

λ
∑K−1
k=0

ρk

k! pk
∏k
j=0G(pj)

1 +
∑K
k=1

ρk

k!

∏k−1
j=0 G(pj)

= lim
λ→∞

λ ρK−1

(K−1)!pK−1

∏K−1
j=0 G(pj)

ρK

K!

∏K−1
j=0 G(pj)

= µKpK−1.

The Lemma implies that for the uniform price p1, the mean
revenue rate R(K, p1) goes to Kpµ as the arrival rate λ grows
large. These are for fixed price policies; is it possible to vary
the pricing policy as a function of λ and get the revenue rate
to go to infinity?

Lemma 16. If the value distribution G has support over
[0,∞) is invertible, then limλ→∞R(K, p1) =∞ for uniform
price p = G

−1
( 1
λ ).

Proof: Substituting G(p) = 1
λ in the expression for mean

revenue rate, we obtain

R(p1,K) = λpG(p)

K−1∑
k=0

πk(p) = G
−1
( 1

λ

)∑K−1
k=0

1
k!µk∑K

k=0
1

k!µk

.

The result follows from taking limit λ growing arbitrarily
large, and observing that limx→0G

−1
(x) =∞.

Thus, using prices dependent on the arrival distribution, but
independent of number of servers, one can drive the revenue
rate to infinity in the asymptotic regime as λ grows arbitrarily
large. Since G

−1
( 1
λ ) increases as λ increases, we see that to

extract maximum revenue, the price should be made as high
as possible in heavy traffic limit. Using the following two
examples, we show that the rate at which price grows is a
function of the distribution.

Example 17. If the value distribution is Pareto, i.e. G(x) =
θ
x1{x>θ}, then for the choice of price p(λ) = G

−1
( 1
λ ) = λθ,

that grows linearly with λ, the revenue rate grows arbitrarily
large with increase in λ.



Example 18. Consider the value distribution of the form
G(x) = c1e

−c2x2

. Taking the uniform price p(λ) =√
1
c2

log(c1λ), we see that limλ→∞R(K, p1) = ∞. Con-
trastingly, for a uniform price p(λ) = log λ, we get
limλ→∞R(K, p1) = 0.

VI. OPTIMAL PRICING FOR FINITE SERVERS

We frame the optimal pricing problem as a continuous
time Markov decision problem [16, Chapter 5]. We derive
optimal prices and also analyze their dependence on various
parameters, e.g., the number of servers, job arrival rate, and
service rate.

A. The MDP formulation

As in Section II we consider the number of busy servers to
be the state of the system and the quoted price in any state
to be the control. Correspondingly, the state space is X and
the control space for price u ∈ R+. The sojourn times in
various states are independent exponentially distributed ran-
dom variables depending on the controls applied on transitions
to those states. More precisely, the sojourn times in a state
i, for price u, are exponentially distributed with parameters
νi(u) = iµ + λḡ(u)1{i∈X ′}. The state transition probabili-
ties are independent of the sojourn times and dependent on
the price u ∈ R+, and are given by: p0,1(u) = 1 and
pK,K−1(u) = 1, and for i ∈ [K − 1]

pij(u) =
λḡ(u)

νi(u)
1{j=i+1} +

iµ

νi(u)
1{j=i−1}. (5)

When in a state i and using control u, a single stage reward
u is obtained if a job arrives and joins service leading to the
state i+ 1. The mean single stage reward is

g(i, u) = u1{i=0} +
λuḡ(u)

νi(u)
1{i∈[K−1]}. (6)

B. Uniformization of continuous time Markov chain

The Bellman’s equation for the average reward problem in
Section VI-A takes the following form for all i

h(i) = max
u

g(i, u)− θ

νi(u)
+

K∑
j=0

pij(u)h(j)

 . (7)

Here h(i), for each i, has interpretation of a relative or
differential reward and θ is the optimal average reward per
stage, independent of the initial state (see [16, Section 4.1]).
Defining Λ , Kµ + λ, we observe that νi < Λ for all
states i and control u ∈ R+. Hence we can convert the above
Markov controlled process to one with uniform transition rate
Λ by allowing fictitious self transitions such that the resulting
dynamics remains unchanged. Specifically, we redefine state
transition probabilities as follows. For all states i ∈ X and
control u ∈ R+,

p̃ij(u) = pij(u)
νi(u)

Λ
1{j 6=i} +

(
1− νi(u)

Λ

)
1{j=i}. (8)

We can now view the above problem as a discrete-time average
reward problem with same state and control spaces, transition
probabilities p̃ij(u) and expected single stage rewards g(i, u).

The Bellman’s equation for this discrete-time problem has the
following form for all i

h̃(i) = max
u

g(i, u)νi(u)− θ +

K∑
j=0

p̃ij(u)h̃(j)

 . (9)

Remark 19. The Bellman’s equations (7) and (9) are equiv-
alent. In particular, a pair (θ, h) satisfies (7) if and only if
the pair (θ, h̃) satisfies (9), where h̃(i) = Λh(i) for all i.
Moreover, for all the states, the optimal actions for the two
problems (control u achieving maxima in the right hand sides
of (7) and (9)) are identical.

Remark 20. Defining the difference ∆(i) , (h̃(i)−h̃(i+1))
Λ for

all i ∈ X ′, and substituting in Eq. (9), along with expressions
for g(i, u) from Eq. (6), and p̃ij(u) from Eq. (8), we get

θ = λmax
u

{
G(u)(u−∆(i))

}
1{i∈X ′} + iµ∆(i− 1), i ∈ X .

(10)

C. Auxiliary maps

We define the mapping f : R2 → R as

f(B, u) , (u−B)ḡ(u), B, u ∈ R. (11)

We can see that f(B, u)− u = −BG(u)− uG(u) 6 0 for all
u,B > 0.
Remark 21. From Assumption 1, the function f(B, u) has a
unique maximizer in u for all B ∈ R. Hence, we can define
the maps u∗ : R→ R and m : R→ R such that

u∗(B) , arg max
u

f(B, u), m(B) , f(B, u∗). (12)

Lemma 22. Following statements are true for m and u∗.
(a) m is non-negative and decreasing in B.
(b) m is continuous and convex function of B.
(c) u∗ is non-decreasing in B.

Proof: Let m and u∗ be as defined in Eq. (12).
(a) Since f(B, u) = 0 at u = B, it follows that m(B) > 0

for all B. Let B1 < B2, and ui = u∗(Bi) for i ∈ [2].
Then, we can write

m(B2) = (u2 −B2)ḡ(u2) < (u2 −B1)ḡ(u2) 6 m(B1).

(b) For B1 < B2, we can write

m(B1) = (u1 −B2)ḡ(u2) + (B2 −B1)ḡ(u1)

6 m(B2) + (B2 −B1).

Therefore, we see that |m(B1)−m(B2)| 6 |B1 −B2|,
implying continuity of m. Finally, f(B, u) is linear, and
hence, convex in B. Hence m is also convex in B.

(c) We can add the inequalities f(B1, u2) 6 f(B1, u1) =
m(B1) and f(B2, u1) 6 f(B2, u2) = m(B2), to get

(B2 −B1)(ḡ(u2)− ḡ(u1)) 6 0.

This implies that if B2 < B1, then ḡ(u2) 6 ḡ(u1). The
monotonic decrease of G implies that u2 > u1.



D. The optimal pricing
In terms of the map m, we can re-write the Eq. (10) as

m(∆(i))1{i∈X ′} +
iµ

λ
∆(i− 1) =

θ

λ
, i ∈ X . (13)

Observe that if ∆∗(i) solve Eq. (13) then the control p∗i ,
u∗(∆∗(i)) achieving m(∆∗(i)) in (12) is the optimal control
in each state i ∈ X ′.
Lemma 23. Let (θ,∆(i), i ∈ X ′) be a solution to (13) and
P ∗K = (P ∗0 , . . . , P

∗
K−1) ∈ RX ′+ be the optimal price vector.

Then
(a) θ > 0,
(b) ∆(i) are positive and increasing in i ∈ X ′.
(c) P ∗i are also increasing in i ∈ X ′.

Proof: We assume the Lemma hypothesis.
(a) The non-negativity of θ follows from Eq. (13) for i = 1,

and the non-negativity of m from Lemma 22.
(b) We first prove that ∆(0) > 0 via contradiction. Assume

that ∆(0) 6 0, and assume the inductive hypothesis that
∆(i) 6 0 for some i ∈ X ′ \ {0}. Then, it follows from
Eq. (13)

m(∆(i)) =
θ − iµ∆(i− 1)

λ
>
θ

λ
= m(∆(0)) > 0.

From monotone decrease of m and the induction step, it
follows that ∆(i) 6 0 for all i ∈ X ′. In particular, we get
the contradiction that ∆(K − 1) = θ

Kµ 6 0. Hence we
see that ∆(0) > 0.
From Eq. (13) and positivity of ∆(0), we observe that

m(∆(1)) =
θ − µ∆(0)

λ
6
θ

λ
= m(∆(0)).

Since m is decreasing, it follows that ∆(1) > ∆(0).
Assuming the inductive hypothesis ∆(i − 1) > ∆(i − 2)
for some i ∈ {2, . . . ,K − 1} and positivity of ∆(i)s, we
get from Eq. (13)

m(∆(i−1))−m(∆(i)) =
µ

λ
(i∆(i−1)−(i−1)∆(i−2)) > 0.

From monotone decrease of m and the induction step, it
follows that ∆(i) > ∆(i− 1) for all i ∈ X ′ \ {0}.

(c) This follows by combining the monotone increase of ∆(i)
shown in part (b), and monotonicity of u∗(B) in B shown
in Lemma 22(c).

Next, we will focus on solving Eq. (13). We give an iterative
algorithm to obtain θ, which can then be used to obtain ∆(i)
and also the optimal control p∗i for all the states. Realizing
that ∆(i) is a function of optimal revenue θ and state i, we
denote it as gi(θ) , ∆(i), to rewrite Eq. (13) as

θ = λm(g0(θ)), gi−1(θ) =
θ − λm(gi(θ))1{i∈X ′}

iµ
, i ∈ [K].

(14)

Let us also consider the following iterative algorithm that
generates two sequences (

¯
θk, k ∈ X ) and (θ̄k, k ∈ X ) starting

with
¯
θ0 = 0 and θ̄0 = λm(g0(0)), respectively.

Theorem 24. (a) The fixed point equation θ = λm(g0(θ))
has unique solution.

Algorithm 1
initialize k = 0,

¯
θ0 = 0, θ̄0 = λm(g0(0)),

while θ̄k −
¯
θk > δ do . δ is the desired precision.

θ̃k = ¯
θk+θ̄k

2 ,

¯
θk+1 = max

{
¯
θk,min{θ̃k, λm(g0(θ̃k))}

}
,

θ̄k+1 = min
{
θ̄k,max{θ̃k, λm(g0(θ̃k))}

}
,

k = k + 1

(b) In Algorithm 1,
¯
θk ↑ θ∗ and

¯
θk ↓ θ∗, where θ∗ is the

unique fixed point.

Proof: We consider the Eq. (14).
(a) Observe that λm(g0(0)) > 0. We now argue that

λm(g0(θ)) is decreasing in θ. These two facts together
yield both existence and uniqueness. From the monotonic-
ity of function m in Lemma 22(a) and definition of gi−1

from Eq. (14), it follows that gi−1 is increasing in θ if gi
is increasing in θ. Since gK−1(θ) = θ/Kµ is increasing
in θ, it follows that g0(θ) is increasing in θ, and hence
λm(g0(θ)) is decreasing in θ.

(b) See [17, Theorem 2.1].

The following figure illustrates variation of prices with the
number of busy servers.

Fig. 2. State dependent optimal prices. We have set K = 5, λ = 25 and
µ = 2. Also, We have assumed exponential value distribution; G(x) =
1− exp(−βx) with β = 1.

E. Properties of the Optimal Solution

We now analyze how the optimal prices and the optimal
times average reward (or, the revenue rate) vary with various
system parameters. We use the fact that the optimal revenue
rate θ∗ is solution to the Eq. (14), from which we inductively
derive property of gi using the monotonic decrease of m from
Lemma 22.

1) Varying Arrival Rate: We assume that we vary λ while
keeping µ and K fixed.

Proposition 25. (a) The revenue rate θ∗(λ) increases with λ.
(b) The ratio θ∗(λ)/λ decreases with λ.



Proof: Notice that θ∗(λ) is the solution to (14) as a
function of λ, for a fixed µ.
(a) To begin with let us fix both θ and µ and vary λ. It

follows that if gi is non-increasing in λ, then m(gi) is
non-decreasing in λ from its monotone decrease property.
Since gi−1 ∝ θ−λm(gi), it follows that gi−1 is decreasing
and m(gi−1) is increasing in λ. Since gK−1 = θ/Kµ is
constant in λ, it follows that m(gi) is increasing in λ for
all i ∈ X ′ and fixed θ and µ. Since θ∗(λ) = λm(g0) from
Eq. (14) for i = 0, it follows that the optimal revenue rate
θ∗(λ) is increasing in λ for a fixed µ.

(b) The argument is via contradiction. Let θ∗(λ)/λ increase
with λ. Observe that gK−1(θ∗(λ)) = θ∗(λ)

Kµ increases with
λ. Since θ∗ is the solution to Eq. (14) for all i ∈ X ,

gi−1(θ∗(λ))

λ
=
θ∗(λ)/λ−m(gi(θ

∗(λ)))

iµ
, i ∈ [K − 1].

It follows that gi−1(θ∗(λ))/λ is an increasing function
of λ, if gi is an increasing function of λ. It follows from
induction that g0(θ∗(λ)) is an increasing function of λ, and
hence m(g0(θ∗(λ)) = θ∗(λ)/λ is a decreasing function of
λ. This leads to a contradiction.

2) Varying Service Rate: Here we assume that we vary µ
while keeping λ and K fixed. Now we express the revenue
rate as θ∗(µ) to emphasize its dependence on µ.

Proposition 26. (a) The revenue rate θ∗(µ) increases with µ.
(b) The ratio θ∗(µ)/µ decreases with µ.

Proof: Consider the case when θ and λ remain fixed.
(a) From Eq. (14), we observe that gi−1 = (θ − λm(gi))/iµ

for i ∈ [K − 1]. Hence, if gi is decreasing with µ, then
m(gi) is increasing in µ due to its monotone decrease
property, and hence gi−1 is decreasing with µ. Since
gK−1 = θ/Kµ from Eq. (14) for i = K, it follows
by induction that g0 is decreasing and hence λm(g0) is
increasing in µ. As a result, if we increase µ keeping
λ fixed, the average revenue rate θ∗(µ), the solution to
θ = λm(g0(θ)) increases in µ.

(b) The argument is via contradiction. Let θ∗(µ)/µ increase
with µ. We obtain from Eq. (14) for i ∈ [K − 1],

gi(θ
∗(µ)) = m−1

(
iµ

(
θ∗(µ)/iµ− gi−1(θ∗(µ))

λ

))
.

Then, it follows that if gi−1 is decreasing with µ, then
gi is also decreasing in µ. From Eq. (14) for i = 0,
we see that g0(θ∗(µ)) = m−1( θ

∗(µ)
λ ) is decreasing with

µ.,and hence it follows that gK−1 is decreasing and in
µ. However gK−1(θ∗) = θ∗(µ)/Kµ was assumed to be
increasing in µ, that leads to a contradiction.

3) Increasing number of servers: Finally we assume that
we vary µ while keeping λ and K fixed. Now We express the
revenue rate as θ∗(K).

Proposition 27. (a) The revenue rate θ∗(K) increases with
K.

(b) The ratio θ∗(K)/K decreases with µ.
(c) For any i < K, the optimal price P ∗i (K) is non-increasing

with K.

Proof: We define functions

ḡ0 , m−1

(
θ

λ

)
, ḡi , m−1

(
θ − iµḡi−1(θ))

λ

)
, i ∈ [K − 1].

Following similar arguments as in the proof of Theorem 24(a)
we can iteratively show that ḡi(θ) are decreasing in θ for all
i < K.
(a) It follows that µm(ḡ0) = θ. and ḡi−1 = (θ− λm(ḡi))/iµ

for i ∈ [K − 1]. From Eq. (14) the optimal average
reward θ∗(K) is the solution to the fixed point equa-
tion θ = KµḡK−1(θ)). From Lemma 23(b), we have
ḡi(θ) > ḡi−1(θ) for all θ > 0 and i ∈ X ′. Hence we
can infer that θ∗(K) increases with K.

(b) Since ḡK−1(θ∗(K)) = θ∗(K)/Kµ, it suffices to show
that ḡK−1(θ∗(K)) is decreasing in K. We show this by
contradiction. To this end, we assume that ḡK(θ∗(K +
1)) > ḡK−1(θ∗(K)). Together with this hypothesis and
monotone increase of ḡi from Lemma 23(b), we obtain

(K+1)ḡK(θ∗(K+1))−KḡK−1(θ∗(K)) > ḡ0(θ∗(K+1)).

Multiplying both the sides by µ/λ and using definitions
of θ∗(K) and θ∗(K + 1), the above inquality reduces to

θ∗(K + 1)− µḡ0(θ∗(K + 1))

λ
>
θ∗(K)

λ
.

From the monotone decrease property of m and definition
of ḡ1 and ḡ0, we obtain ḡ1(θ∗(K + 1)) < ḡ0(θ∗(K)). We
will inductively show that ḡi(θ∗(K + 1)) < ḡi−1(θ∗(K))
for all i ∈ [K]. We have already shown the base case of
i = 1. We assume that the inductive hypothesis holds for
some i ∈ [K − 1]. Further, Lemma 23(b) implies that ḡi
increases in i for a fixed argument. Together with inductive
and initial hypothesis, we obtain

K(ḡK(θ∗(K + 1))− ḡK−1(θ∗(K)))

+(ḡK(θ∗(K + 1))− ḡi(θ∗(K + 1)))

> 0 > i(ḡi(θ
∗(K + 1))− ḡi−1(θ∗(K))).

Rearranging the terms, multiplying both the sides by µ/λ,
using definitions of θ∗(K), θ∗(K + 1), ḡi, ḡi+1, and from
the monotone decrease of m, we get

ḡi+1(θ∗(K + 1)) < ḡi(θ
∗(K)).

This completes the induction step. We thus see that
ḡi(θ

∗(K + 1)) < ḡi−1(θ∗(K)) for all i ∈ [K]. In
particular, we get ḡK(θ∗(K + 1)) < ḡK−1(θ∗(K)) which
contradicts the initial hypothesis.

(c) Recall that the optimal price for i busy servers, when the
system has K servers is given by

P ∗i (K) = u∗(ḡi(θ
∗(K))).

We know that θ∗(K) is increasing in K from part (a)
of the proof, ḡi(θ) is decreasing in θ as observed in the
beginning of the proof, and u∗ is non-decreasing in its
argument from Lemma 22(c). The result follows from the
combination of these three observations.

Remark 28. Let there be infinitely many servers, i.e., K =∞.
We can easily see that θ = λm(0) along with ∆(i) = 0
for all i ∈ Z+ satisfy Eq. (13). In particular, uniform (state
independent) pricing, u∗ = arg maxu≥0 uḡ(u), achieves the
optimal revenue rate as readily seen in Section IV-A.
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Fig. 3. Revenue rate as a function of load, for 5 servers
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Fig. 4. Revenue rate as a function of load, for 10 servers

VII. NUMERICAL EVALUATION

We compare differential pricing and uniform pricing. For
this, we consider a 5-server system, with µ = 2. For different
values of load ρ, we compare the optimal revenue under
uniform pricing with price p∗, uniform optimal pricing p∗K , and
optimal differential pricing P (obtained using Algorithm 1).
The value function is assumed to be exponential with param-
eter 1. The resultant values are displayed in Figure 3.

At low values of arrival rates, differential pricing does not
offer substantial gains over uniform pricing. At higher arrival
rates, however, we begin to see that revenue rates show a
significant improvement using differential pricing. One can
also see that these effects are more pronounced beyond ρ = 5,
the number of servers. A similar effect is seen in the case of
10 servers as well, as seen in Figure 4 (all other parameters
remaining same). Beyond ρ = 10, differential pricing begins
to outperform uniform pricing. In the following table, we also
study how quickly the optimal differential revenue for a finite
server system converges to the optimal revenue with infinite
servers. We fix λ = 1 and µ = 2. The value distribution is
exponential with parameter 1. It is clear that the infinite server
optimal revenue, R(∞, p∗1) = 7.36. In Figure 5 below, we
display the optimal revenue under differential pricing, as we
vary the number of servers. With as few as 10 servers, we
come close to the infinite server revenue. However, note that
this number will be a function of the arrival rate.

VIII. CONCLUSION

We consider a K server system that admits customers until
all servers are busy, with a state-dependent admission pricing.
Assuming a Poisson arrival for customers with i.i.d.service
times and i.i.d.service valuation, we find the optimal admission
pricing that maximizes the revenue rate. We show that the
optimal pricing is uniform for infinite server system, whereas
it is increasing with number of busy servers for finite server
system.
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Fig. 5. Revenue as a function of number of servers
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