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Abstract: Samples from a high-dimensional first-order auto-regressive process generated by an
independently and identically distributed random innovation sequence are observed by a sender
which can communicate only finitely many bits per unit time to a receiver. The receiver seeks to
form an estimate of the process value at every time instant in real-time. We consider a time-slotted
communication model in a slow-sampling regime where multiple communication slots occur between
two sampling instants. We propose a successive update scheme which uses communication between
sampling instants to refine estimates of the latest sample and study the following question: Is it better
to collect communication of multiple slots to send better refined estimates, making the receiver wait
more for every refinement, or to be fast but loose and send new information in every communication
opportunity? We show that the fast but loose successive update scheme with ideal spherical codes
is universally optimal asymptotically for a large dimension. However, most practical quantization
codes for fixed dimensions do not meet the ideal performance required for this optimality, and they
typically will have a bias in the form of a fixed additive error. Interestingly, our analysis shows that
the fast but loose scheme is not an optimal choice in the presence of such errors, and a judiciously
chosen frequency of updates outperforms it.

Keywords: auto-regressive process; quantization; successive update scheme

1. Introduction

We consider the setting of real-time decision systems based on remotely sensed
observations. In this setting, the decision maker needs to track the remote observations
with high precision and in a timely manner. These are competing requirements, since high
precision tracking will require larger number of bits to be communicated, resulting in larger
transmission delay and increased staleness of information. Towards this larger goal, we
study the following problem.

Consider a discrete time first-order auto-regressive (AR[1]) process Xt ∈ Rn, t ≥ 0. A
sensor draws a sample from this process, periodically once every s time-slots. In each of
these time-slots, the sensor can send nR bits to a center. The center seeks to form an estimate
X̂t of Xt at time t, with small mean square error (MSE). Specifically, we are interested in
minimizing the time-averaged error ∑T

t=1 E‖Xt − X̂t‖2
2/T to enable timely and accurate

tracking of Xt.
We propose and study a successive update scheme where the encoder computes the

error in the estimate of the latest sample at the decoder and sends its quantized value to
the decoder. The decoder adds this value to its previous estimate to update the estimate
of the latest sample, and uses it to estimate the current value using a linear predictor. We
instantiate this scheme with a general gain-shape quantizer for error-quantization.
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Note that we can send this update several times between two sampling instances. In
particular, our interest is in comparing a fast but loose scheme where an update is sent every
slot against a scheme with slower update in every p communication slots. The latter allows
the encoder to use more bits for the update, but the decoder will need to wait longer. We
consider a class Xn of discrete time AR[1] processes generated by an independently and
identically distributed (i.i.d) random innovation sequence such that the fourth moment
of the process is bounded. Within this class, we show that the fast but loose successive
update scheme, used with an appropriately selected quantizer, is universally optimal for all
possible distributions of the innovation sequence when the number of dimensions grows
asymptotically large.

To show this optimality, we use a random construction for the quantizer, based on the
spherical code given in [1,2]. Roughly speaking, this ideal quantizer Q yields

E‖y−Q(y)‖2
2 6 ‖y‖2

22−2R,

for every n dimensional vector y uniformly bounded. However, in practice, at finite n, such
quantizers need not exist. Most practical vector quantizers have an extra additive error, i.e.,
the error bound takes the form

E‖y−Q(y)‖2
2 6 ‖y‖2

2θ + nε2

where θ and ε are quantizer parameters that varies with the choice of quantizer. We
present our analysis for such general quantizers. Interestingly, for such a quantizer (which
is all we have at a finite n), the optimal choice of p can differ from 1. Our analysis
provides a theoretically sound guideline for choosing the frequency of updates 1/p for
practical quantizers.

Our work relates to a large body of literature ranging from real-time compression to
control and estimation over networks. The structure of real-time encoders for source coding
has been studied in [3–9]. The general structure of real-time encoders for Markov sources is
studied for communication over error-free channels in [3] and over noisy channels in [4,5].
The authors in [3] consider the communication delays similar to our setting. However, the
delayed distortion criterion considered in [3] is different from the instantaneous distortion
in our work. From these works, we see that optimal encoder output of a kth order Markov
source at any instant would depend only on the k latest symbols and the present state of
decoder memory. A similar structural result for the optimal encoders and decoders which
are restricted to be causal is given in [6]. Furthermore, structural results in the context of
optimal zero-delay coding of correlated sources are available in [7–9]. Some of these results
can be extended to the case of finite delay decoding. However, as we need to track the
process in real time, we have to produce an estimate for the latest sample at every instant
even though the current information available at the decoder is stale and corresponds
to past samples. This is quite different from the case of delayed decoding. Hence, the
setup in all these works is different from the problem we consider and the results do
not extend to our problem. Another related area which has been studied in literature is
that of remote source coding of noisy sources [10–12] with an optimal encoder-decoder
structure discussed in [11]. Further, [13] examines the optimal sampling strategy for
remote reconstruction of a bandlimited signal from noisy versions of the source. Studies
about remote reconstruction of a stationary process from its noisy/noiseless samples can
be found in [14–17] as well. However, in our setting, the sampling is fixed and moreover
each transmission in our system incurs a delay that depends on the encoding rate. Hence,
our problem does not directly fit into any of these frameworks.

The problems of remote estimation under communication constraints of various kinds
have been studied in [18–23]. This line of work proposes several Kalman-like recursive
estimation algorithms and evaluates their performances. In a related thread, [24–26] study
remote estimation under communication constraints and other related constraints using
tools from dynamic programming and stochastic control. However, in all these works the
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role of channel delay is slightly different from that in our setting. Furthermore, the specific
problem of choice of quantizer we consider has not been looked at. More recently, [27]
studied remote estimation of Wiener process for channels with random delays and proves
that the optimal sampling policy is a threshold based policy. This work, like some of the
works cited above, assumes real-valued transmissions and does not take into account any
quantization effects.

In more information theoretic settings, sequential coding for individual sequences
under delay constraints was studied in [28–31]. Closer to our work, the causal (nonantici-
patory) rate-distortion function for a stochastic process goes back to early works [32,33].
Recent works [34–36] consider the specific case of auto-regressive and Gauss–Markov
processes and use the general formula in these early works to establish asymptotic op-
timality of simpler information structure for the encoders (optimal decoder structure is
straightforward). Further, the system model in these works slightly differs from ours as the
information transmission in our setting suffers a delay due to the channel rate constraint.
We note that related formulations have been studied for simple settings of two or three
iterations in [37,38] where interesting encoder structures for using previous communication
for next sample as well emerge. Although some of these works propose specific optimal
schemes as well, the key results in this line of research provide an expression for the rate-
distortion function as an optimization problem, solving which will provide guidelines for a
concrete scheme. In contrast, motivated by problems of estimation over an erasure channel,
ref. [39] provides an asymptotically optimal scheme that roughly uses Gaussian codebooks
to quantize the innovation errors between the encoder’s observation and the decoder’s
estimation. Our work is closest to [39] and our encoding scheme shares similarities with
the predictive Differential Pulse Code Modulation (DPCM) based scheme employed in [39].
However, our work differs in an important aspect from all the works mentioned in this
research thread: we take transmission delays into account. In particular, in our formulation
the estimation at the decoder happens in real time in spite of the communication delays.
Note that the rate constraint in the channel causes a delay in the reception of information
at the decoder. Nevertheless, the decoder must provide an estimate of the current state of
the process at every time instant, and a longer codeword will result in a longer delay for
the decoder to get complete information.

Nonetheless, our converse bound is derived using similar methods as [39]. Even the
achievability part of our proof draws from [39], but there is a technical caveat. Note that
after the first round of quantization, the error vector need not be Gaussian, and the analysis
in [39] can only be applied after showing a closeness of the error vector distribution to
Gaussian in the Wasserstein distance of order 2. While the original proof [39] overlooks
this technical point, this gap can be filled using a recent result from [40] if spherical codes
are used. However, we follow an alternative approach and show a direct analysis using
vector quantizers.

In addition, there is a large body of work on control problems over rate-limited
communication channels (cf. [41–50]). This line of work implicitly requires handling of
communication delays in construction of estimators. However, the simple formulation
we have seems to be missing and the results in this long line of work do not resolve the
questions we raise.

Our main contributions in this paper are as follows: we present an encoder structure
which we show to be optimal asymptotically in the dimension of the observation. Specifi-
cally, we propose to send successive updates that refines the estimates of the latest sample
at the decoder. It is important to note that we quantize the estimation error at the decoder,
instead of quantizing the innovation sequence formed at the encoder. Although the optimal
MMSE decoder involves taking conditional expectation, we use a simple decoder which
uses a simple linear structure. Yet, we show that this decoder is asymptotically optimal.
Then, we instantiate this general scheme with spherical codes for quantizers to obtain a
universal scheme. In particular, we consider general gain-shape quantizers and develop a
framework to analyze their performance. One interesting result we present shows that the
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tradeoff between the accuracy and frequency of the updates must be carefully balanced
based on the “bias” (additive error) in the quantizer used.

We present our problem formulation in the next section. Section 3 presents a discussion
on the our achievability scheme followed by the main results in the subsequent section.
Section 5 provides a detailed analysis of our scheme, which we further build-on in Section 6
to get our asymptotic achievability results. We prove our converse bound in Section 7 and
conclude with a discussion on extensions of our result in the final section.

2. Problem Formulation

We begin by providing a formal description of our problem. Figure 1 illustrates
the communication model adopted in this work. Different components of the model are
presented in separate sections. Throughout the remainder of this paper, the set of real
numbers is denoted by R, the set of positive reals is denoted by R+, the n-dimensional
Euclidean space is denoted by Rn and the associated Euclidean norm by ‖·‖2, the set of
positive integers is denoted by N, the set of non-negative integers is denoted by Z+, the
set of continuous positive integers until m is denoted by [m] , {1, . . . , m}, and an identity
matrix of size n× n is denoted by In.

Sampler
(rate = 1

s )
Encoder

(φt)
Channel

(nR bits/unit
time)

Decoder
(ψt)

Xks
Xt X̂t|t = ψt(Ct−1)

Figure 1. Communication model.

2.1. Observed Random Process and Its Sampling

For α ∈ (0, 1), we consider a discrete time auto-regressive process of order 1 (AR[1]
process) in Rn,

Xt = αXt−1 + ξt, t > 0, (1)

where (ξt ∈ Rn, t > 1) is an i.i.d. random sequence with zero mean and covariance matrix
σ2(1− α2)In. For simplicity, we assume that X0 ∈ Rn is a zero mean random variable with
covariance matrix σ2 In. This choice of covariance matrices for ξt and X0 ensures that the
variance of Xt ∈ Rn is σ2 In for all t > 0. Although this assumption makes the analysis
more tractable, the dependence of the covariance matrix of ξt on the process parameter α is
not crucial for the analysis.

In addition, we assume that ‖Xt‖2 has a bounded fourth moment at all times t > 0.
Specifically, let κ > 0 satisfy

sup
k∈Z+

1
n

√
E‖Xk‖4

2 6 κ.

It is clear that X = (Xt ∈ Rn, t > 0) is a Markov process. We denote the set of processes
X satisfying the assumptions above by Xn and the class of all such processes for different
choices of dimension n as X.

This discrete time process is subsampled periodically at sampling frequency 1/s, for
some s ∈ N, to obtain samples (Xks ∈ Rn, k > 0).

2.2. Encoder Description

The sampled process (Xks, k > 0) is passed to an encoder which converts it to a bit
stream. The encoder operates in real-time and sends nRs bits between any two sampling
instants. Specifically, the encoder is given by a sequence of mappings (φt)t>0, where the
mapping at any discrete time t = ks is denoted by

φt : Rn(k+1) → {0, 1}nRs.

The encoder output at time t = ks is denoted by the codeword Cks , φk(X0, Xs, . . . , Xks).
We denote this codeword by an s-length sequence of binary strings Cks = (Cks,0, . . . , Cks,s−1),
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where each term Cks,i takes values in {0, 1}nR. For time ks and 0 6 i 6 s− 1, we can view
the binary string Cks,i as the communication sent at time ks + i. We elaborate on the
communication channel next.

2.3. Communication Channel

The output bit-stream of the encoder is sent to the receiver via an error-free communi-
cation channel. Specifically, we assume slotted transmission with synchronization where in
each slot the transmitter sends nR bits of communication error-free. That is, we are allowed
to send R bits per dimension, per time slot. Note that there is a delay of 1 time-unit (corre-
sponding to one slot) in transmission of each nR bits. Therefore, the vector Cks,i of nR bits
transmitted at time ks + i is received at time instant ks + i + 1 for 0 6 i 6 s− 1. Throughout
we use the notation Ik , {ks, . . . , (k + 1)s− 1} and Ĩk = Ik + 1 = {ks + 1, . . . , (k + 1)s},
respectively, for the set of transmit and receive times for the strings Cks,i, 0 6 i 6 s− 1.

2.4. Decoder Description

We describe the operation of the receiver at time t ∈ Ik, for some k ∈ N, such that
i = t− ks ∈ {0, . . . , s− 1}. Upon receiving the codewords Cs, C2s, ..., C(k−1)s and the partial
codeword (Cks,0, ..., Cks,i−1) at time t = ks + i, the decoder estimates the current-state Xt of
the process using the estimator mapping

ψt : {0, 1}nRt → Rn.

We denote the overall communication received by the decoder until time instant t by
Ct−1. The time index t− 1 in Ct−1 corresponds to the transmission time of the codewords,
whereby the communication received till time t is denoted by Ct−1. Further, we denote by
X̂t|t the real-time causal estimate ψt(Ct−1) of Xt formed at the decoder at time t. Thus, the
overall real-time causal estimation scheme is described by the mappings (φt, ψt)t>0. It is
important to note that the communication available to the decoder at time t ∈ Ik can only
depend on samples X` up to time ` 6 ks. As a convention, we assume that X̂0|0 = 0.

2.5. Performance Metrics

We call the encoder-decoder mapping sequence (φ, ψ) = (φt, ψt)t>0 a tracking code of
rate R and sampling period s. The tracking error of our tracking code at time t for process
X is measured by the mean squared error (MSE) per dimension given by

Dt(φ, ψ, X) ,
1
n
E‖Xt − X̂t|t‖2

2.

Our goal is to design (φ, ψ) with low average tracking error DT(φ, ψ, X) given by

DT(φ, ψ, X) ,
1
T

T−1

∑
t=0

Dt(φ, ψ, X).

For technical reasons, we restrict to a finite time horizon setting. For the most part, the
time horizon T will remain fixed and will be omitted from the notation. Instead of working
with the mean-square error, a more convenient but equivalent parameterization for us will
be that of accuracy, given by

δT(φ, ψ, X) = 1− DT(φ, ψ, X)

σ2 .

Definition 1 (Maxmin tracking accuracy). The worst-case tracking accuracy for Xn attained by
a tracking code (φ, ψ) is given by

δT(φ, ψ,Xn) = inf
X∈Xn

δT(φ, ψ, X).
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The maxmin tracking accuracy for Xn at rate R and sampling period s is given by

δT
n (R, s, ,Xn) = sup

(φ,ψ)
δT(φ, ψ,Xn),

where the supremum is over all tracking codes (φ, ψ).

The maxmin tracking accuracy δT
n (R, s,Xn) is the fundamental quantity of interest

for us. Note that it is possible to provide a similar characterization of the performance in
terms of MSE instead of accuracy and obtain the exact same result. Recall that n denotes
the dimension of the observations in Xt for X ∈ Xn and T the time horizon. However, we
will only characterize δT

n (R, s,Xn) asymptotically in n and T. Specifically, we define the
asymptotic maxmin tracking accuracy as

δ∗(R, s,X) = lim sup
T→∞

lim sup
n→∞

δT
n (R, s,Xn).

We will provide a characterization of δ∗(R, s,X) and present a sequence of tracking codes
that attains it. In fact, the tracking code we use is an instantiation of our successive update
scheme, which we describe in the next section. It is important to note that our results may
not hold if we switch the order of limits above: we need very large codeword lengths
depending on a fixed finite time horizon T.

3. The Successive Update Scheme

In this section, we present our main contribution in this paper, namely the Successive
Update tracking code. Before we describe the scheme completely, we present its different
components. In every communication slot, the transmitter gets an opportunity to send nR
bits. The transmitter may use it to send any information about a previously seen sample.
There are various options for the encoder. For instance, it may use the current slot to send
some information about a sample it had seen earlier. Or it may use all the slots between
two sampling instants to send a quantized version of the latest sample. The information
utilized by the decoder will be limited by the choice of structure of information transmission
adopted at encoder. As the process we consider is Markov in nature, we choose to utilize
all the transmission instants between two sampling instants to send information about the
latest sample.

3.1. Encoder Structure: Refining the Error Successively

As mentioned earlier, the encoder and decoder that we employ in this work are similar
to that in the DPCM scheme [39,51,52]. However, recall that we have multiple transmission
opportunities between each sampling instance and the transmissions are delayed. This
calls for the need for certain modifications which we explain in the following.

Let X̂ks|t and X̂t|t respectively denote the estimate for Xks and Xt formed at the receiver
at time t. Our encoder computes the error in the receiver estimate of the last process sample
at each time instant t. Denoting the error at time t ∈ Ik by Yt , Xks − X̂ks|t, the encoder
quantizes this error Yt and sends it as communication Cks+1,i. At any time instant t = ks + i,
we suppose that we estimate X̂t|t from X̂ks|t. In particular, we suppose that X̂t|t = αiX̂ks|t.
Simply speaking, our encoder computes and quantizes the error in the current estimate
of the last sample at the decoder, and sends it to the decoder to enable the refinement of
the estimate in the next time slot. While we have not been able to establish optimality of
this encoder structure, our results will show its asymptotic optimality when the number of
dimensions n goes to infinity.

Even within this structural simplification, a very interesting question remains. Since
the process is sampled once in s time slots, we have, potentially, nRs bits to encode the
latest sample. At any time t ∈ Ĩk, the receiver has access to (C0, . . . , C(k−1)s) and the partial
codewords (Cks,0, . . . , Cks,i−1) for i = t− ks. A simple approach for the encoder is to use
the complete codeword to express the latest sample and the decoder can ignore the partial
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codewords. This approach will result in slow but very accurate updates of the sample
estimates. An alternative fast but loose approach will send nR quantizer codewords to
refine estimates in every communication slot. Should we prefer fast but loose estimates or
slow but accurate ones? Our results will shed light on this conundrum.

3.2. The Choice of Quantizers

In our description of the encoder structure above, we did not specify a key design
choice, namely the choice of the quantizer. We will restrict ourselves to using the same
quantizer to quantize the error in each round of communication. The precision of this
quantizer will depend on whether we choose a fast but loose paradigm or a slow but
accurate one. However, the overall structure will remain the same. Roughly speaking, we
allow any gain-shape [53] quantizer which separately sends the quantized value of the
gain ‖y‖2 and the shape y/‖y‖2 for input y. Formally, we use the following abstraction.

Definition 2 ((θ, ε)-quantizer family). Fix 0 < M < ∞. For 0 6 θ 6 1 and 0 < ε, a quantizer
Q with dynamic range M specified by a mapping Q : Rn → {0, 1}nR constitutes an nR bit
(θ, ε)-quantizer if for every vector y ∈ Rn such that ‖y‖2

2 6 nM2, we have

E‖y−Q(y)‖2
2 6 ‖y‖2

2θ(R) + nε2.

Further, for a mapping θ : R+ → [0, 1], which is a decreasing function of rate R, a family of
quantizers Q = {QR : R > 0} constitutes an (θ, ε)-quantizer family if for every R the quantizer
QR constitutes an nR bit (θ(R), ε)-quantizer.

The expectation in the previous definition is taken with respect to the randomness
in the quantizer, which is assumed to be shared between the encoder and the decoder for
simplicity. For instance, in Lemma 5 we study a random codebook based construction for a
(θ, ε)-quantizer and we assume that once a random codebook is picked by the encoder, it is
made known to the decoder. The parameter M, termed the dynamic range of the quantizer,
specifies the domain of the quantizer. When the input y does not satisfy ‖y‖2 6

√
nM,

the quantizer simply declares a failure, which we denote by ⊥. Our tracking code may
use any such (θ, ε)-quantizer family. It is typical in any construction of a gain-shape
quantizer to have a finite M and ε > 0. Our analysis for finite n will apply to any such
(θ, ε)-quantizer family and, in particular, will bring-out the role of the “bias” ε. However,
when establishing our optimality result, we instantiate it using a random spherical code to
get the desired performance.

3.3. Description of the Successive Update Scheme

All the conceptual components of our scheme are ready. Note that, we focus on
updating the estimates of the latest observed sample Xks at the decoder. Our encoder
successively updates the estimate of the latest sample at the decoder by quantizing and
sending estimates for errors Yt.

As discussed earlier, we must decide if we prefer a fast but loose approach or a slow but
accurate approach for sending error estimates. To carefully examine this tradeoff, we opt
for a more general scheme where the nRs bits available between two samples are divided
into m = s/p subfragments of length nRp bits each. We use an nRp bit quantizer to refine
error estimates for the latest sample Xks (obtained at time t = ks) every p slots and send
the resulting quantizer codewords as partial tracking codewords (Cks,jp, ..., Cks,(j+1)p−1),
0 6 j 6 m− 1. Specifically, the kth codeword transmission interval Ik is divided into m
subfragments Ik,j, 1 6 j 6 m given by

Ik,j , {ks + jp, . . . , ks + (j + 1)p− 1}, 0 6 j 6 m− 1,

and (Cks,jp, ..., Cks,(j+1)p−1) is transmitted in communication slots in Ik,j.
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At time instant t = ks + jp + 1 the decoder receives the jth subfragment (Cks,t−ks, t ∈
Ik,j) of nRp bits and uses it to refine the estimate of the latest source sample Xks. Note
that the fast but loose and the slow but accurate regimes described above correspond to
p = 1 and p = s, respectively. In the middle of the interval Ik,j, the decoder ignores the
partially received quantization code and retains the estimate X̂ks of Xks formed at time
ks + (j− 1)p + 1. It forms an estimate of the current state Xks+i by simply scaling X̂ks by a
factor of αi.

Finally, we impose one more additional simplification on the decoder structure. We
simply update the estimate by adding to it the quantized value of the error. Thus, the
decoder has a simple linear structure.

We can use any nRp bit quantizer (with an abuse of notation, we will use Qp instead
of QRp to denote an nRp bit quantizer) Qp for the n-dimensional error vector, whereby
this scheme can be easily implemented in practice if Qp can be implemented. For instance,
we can use any standard gain-shape quantizer. The performance of most quantizers can
be analyzed explicitly to render them a (θ, ε)-quantizer family for an appropriate M and
function θ. Later, when analyzing the scheme, we will consider a Qp coming from a
(θ, ε)-quantizer family and present a theoretically sound guideline for choosing p.

Recall that we denote the estimate of Xu formed at the decoder at time t > u by X̂u|t.
We start by initializing X̂0|0 = 0 and then proceed using the encoder and the decoder
algorithms outlined above. Note that our quantizer Qp may declare failure symbol ⊥,
in which case the decoder must still yield a nominal estimate. We will simply declare
the estimate as (In analysis, we account for all these events as error. Only the probability
of failure will determine the contribution of this part to the MSE since the process is
mean-square bounded.) 0 once a failure happens.

We give a formal description of our encoder and decoder algorithms below.
The encoder.

1 Initialize k = 0, j = 0, X̂0|0 = 0.
2 At time t = ks + jp, use the decoder algorithm (to be described below) to form the

estimate X̂ks|t and compute the error

Yk,j , Xks − X̂ks|t, (2)

where we use the latest sample Xks available at time t = ks + jp.
3 Quantize Yk,j to nRp bit as Qp(Yk,j).
4 If quantize failure occurs and Qp(Yk,j) = ⊥, send ⊥ to the receiver and terminate the

encoder.
5 Else, send a binary representation of Qp(Yk,j) as the communication (Cks,0, ..., Cks,p−1)

to the receiver over the next p communication slots (For simplicity, we do not account
for the extra message symbol needed for sending ⊥.).

6 If j < m− 1, increase j by 1; else set j = 0 and increase k by 1. Go to Step 2.

The decoder.

1 Initialize k = 0, j = 0, X̂0|0 = 0.
2 At time t = ks + jp, if encoding failure has not occurred until time t, compute

X̂ks|ks+jp = X̂ks|ks+(j−1)p + Qp(Yk,j−1),

and output X̂t|t = αt−ksX̂ks|t.
3 Else, if encoding failure has occurred and the ⊥ symbol is received declare X̂s|t = 0

for all subsequent time instants s > t.
4 At time t = ks + jp + i, for i ∈ [p− 1], output (We ignore the partial quantizer code-

words received as (Cks,jp+1, Cks,jp+2, . . . , Cks,jp+i−1) till time t.) X̂t|t = αt−ksX̂ks|ks+jp.
5 If j < m− 1, increase j by 1; else set j = 0 and increase k by 1. Go to Step 2.
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Note that the decoder has a simple structure and the principal component of the encoder
is the quantizer. Therefore, the complexity of the proposed scheme is dominated by the
complexity of the quantization operation and varies with respect to the quantizer chosen.

4. Main Results

We present results in two categories. First, we provide an explicit formula for the
asymptotic maxmin tracking accuracy δ∗(R, s,X). Next, we present a theoretically-founded
guideline for selecting a good p for the successive update scheme with a (θ, ε)-quantizer
family. Interestingly, the optimal choice may differ from the asymptotically optimal choice
of p = 1.

4.1. Characterization of the Maxmin Tracking Accuracy

To describe our result, we define the functions δ0 : R+ → [0, 1] and g : R+ → [0, 1] as

δ0(R) ,
α2(1− 2−2R)

(1− α22−2R)
, for all R > 0;

g(s) ,
(1− α2s)

s(1− α2)
, for all s > 0. (3)

Note that g(s) is a decreasing function of s with g(1) = 1. The result below shows that,
for an appropriate choice of the quantizer, our successive update scheme with p = 1 (the
fast but loose version) achieves an accuracy of δ0(R)g(s) asymptotically, universally for all
processes in X.

Theorem 1 (Lower bound for maxmin tracking accuracy: The achievability). For R > 0
and s ∈ N, the asymptotic maxmin tacking accuracy is bounded below as

δ∗(R, s,X) > δ0(R)g(s).

Furthermore, this bound can be obtained by a successive update scheme with p = 1 and appropriately
chosen quantizer Qp.

We provide a proof in Section 6. Note that while we assume that the per dimen-
sion fourth moment of the processes in X is bounded, the asymptotic result above does
not depend on that bound. Interestingly, the performance characterized above is the
best possible.

Theorem 2 (Upper bound for maxmin tracking accuracy: The converse). For R > 0 and
s ∈ N, the asymptotic maxmin tacking accuracy is bounded above as

δ∗(R, s,X) 6 δ0(R)g(s).

Furthermore, the upper bound is obtained by considering a Gauss–Markov process.

We provide a proof in Section 7. Thus, δ∗(R, s,X) = δ0(R)g(s) with the fast but
loose successive update scheme being universally (asymptotically) optimal and the Gauss–
Markov process being the most difficult process to track. Clearly, the best possible choice
of sampling period is s = 1 and the highest possible accuracy at rate R is δ0(R), whereby
we cannot hope for an accuracy exceeding δ0(R).

To provide an alternative view of the result, suppose that we fix the achievable tracking
accuracy to be δ 6 δ0(R) at rate R. Then, the above result says that g(s) > (δ/δ0(R)) where
g(s) is a decreasing function of s. Therefore, this result can be interpreted as saying that
we cannot subsample at a frequency less than 1/bg−1(δ/δ0(R))c for attaining a tracking
accuracy δ 6 δ0(R).
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4.2. Guidelines for Choosing a Good p

The proof of Theorem 1 entails the analysis of the successive update scheme for p = 1.
In fact, we can analyze this scheme for any p ∈ N and for any (θ, ε)-quantizer family; we
term this tracking code the p-successive update (p-SU) scheme. This analysis can provide a
simple guideline for the optimal choice of p depending on the performance of the quantizer.

However, there are some technical caveats. A quantizer family will operate only as
long as the input y satisfies ‖y‖2 6 M. If a y outside this range is observed, the quantizer
will declare ⊥ and the tracking code encoder, in turn, will declare a failure. We denote by τ
the stopping time at which encoder failure occurs for the first time, i.e.,

τ , min{ks + jp : Qp(Yk,j) = ⊥, 0 6 k, 0 6 j 6 m− 1}.

Further, denote by At the event that failure does not occur until time t, i.e.,

At , {τ > t}.

We characterize the performance of a p-SU in terms of the probability of encoder failure in
a finite time horizon T.

Theorem 3 (Performance of p-SU). For fixed θ, ε, β ∈ [0, 1], consider the p-SU scheme with an
nRp bit (θ, ε)-quantizer Qp, and denote the corresponding tracking code by (φp, ψp). Suppose that
for a time horizon T ∈ N, the tracking code (φp, ψp) satisfies P(τ 6 T) 6 β. Then,

sup
X∈Xn

DT
(φp, ψp, X) 6 BT(θ, ε, β),

where BT(θ, ε, β) satisfies

lim sup
T→∞

BT(θ, ε, β) 6 σ2
[
1− g(s) α2p

1− α2p θ

(
1− ε2

σ2 − θ
)]

+
κβg(s)
(1− α2s)

(
1− α2(s+p) (1− θ)

1− α2pθ

)
.

We provide the proof of this theorem later in Section 5. We remark that β can be made
small by choosing M to be large for a quantizer family. Furthermore, the inequality in
the upper bound for the MSE in the previous result (barring the dependence on β) comes
from the inequality in the definition of a (θ, ε)-quantizer, rendering it a good proxy for
the performance of the quantizer. The interesting regime is that of very small β where
the encoder failure does not occur during the time horizon of operation. If we ignore the
dependence on β, the accuracy of the p-SU does not depend either on s or on the bound for
the fourth moment κ. Motivated by these insights, we define the accuracy-speed curve of a
quantizer family as follows.

Definition 3 (The accuracy-speed curve). For α ∈ [0, 1], σ2, and R > 0, the accuracy-speed
curve for a (θ, ε)-quantizer family Q is given by

ΓQ(p) =
α2p

1− α2p θ(Rp)

(
1− ε2

σ2 − θ(Rp)
)

, p > 0.

By Theorem 3, it is easy to see that the accuracy (precisely the upper bound on the
accuracy) of a p-SU scheme is better when ΓQ(p) is larger. Thus, a good choice of p for a
given quantizer family Q is the one that maximizes ΓQ(p) for 1 6 p 6 s.

We conclude by providing accuracy-speed curves for some illustrative examples. To
build some heuristics, note that a uniform quantization of [−M, M] has θ(R) = 0 and
ε = M2−R. For a gain-shape quantizer, we express a vector y = ‖y‖2ys where the shape
vector ys has ‖ys‖2 = 1. An ideal shape quantizer (which only can be shown to exist
asymptotically) using R bits per dimension will satisfy E‖ŷs − ys‖2

2 6 2−2R, similar to the
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scalar uniform quantizer. In one of the examples below, we consider gain-shape quantizers
with such an ideal shape quantizer.

Example 1. We begin by considering an ideal quantizer family with θ(R) = 2−2R and ε = 0. In
our asymptotic analysis, we will show roughly that such a quantizer with very small ε exists. For
this ideal case, for R > 0, the accuracy-speed curve is given by

ΓQ(p) =
α2p − α2p θ(Rp)
1− α2p θ(Rp)

= 1− 1− α2p

1− α2p2−Rp .

It can be seen that ΓQ(p) is decreasing in p whereby the optimal choice of p that maximized ΓQ(p)
over p ∈ [s] is p = 1. Heuristically, this justifies why asymptotically the fast but loose successive
update scheme is optimal.

Example 2 (Uniform scalar quantization). In this example, we consider a coordinate-wise
uniform quantizer. Since we seek quantizers for inputs y ∈ Rn such that ‖y‖2 6 M

√
n, we can only

use uniform quantizer of [−M
√

n, M
√

n] for each coordinate. For this quantizer, we have θ = 0 and
ε2 = nM22−2R, whereby the accuracy-speed curve is given by ΓQ(p) = α2p(1− nM22−2R/σ2).
Thus, once again, the optimal choice of p that maximizes accuracy is p = 1.

Example 3 (Gain-shape quantizer). Consider the quantization of a vector y = ays where
a = ‖y‖2. The vector y is quantized by a gain-shape quantizer which quantizes the norm and
shape of the vector separately to give Q(y) = âŷs. We use a uniform quantizer within a fixed
range [0, M

√
n] in order to quantize the norm a to â, where an ideal shape quantizer is employed in

quantizing the shape vector ys. Namely, we assume E‖ys − ŷs‖2
2 6 2−2R and ‖ŷs‖ 6 1. Suppose

that we allot ` bits out of the total budget of nR bits for norm quantization and the rest for shape
quantization. Then, we see that

E‖y−Q(y)‖2
2 6 2a22−2(R−`/n) + nM22−2`−1,

whereby θ(R) = 2−2(R−`/n)+1 and ε2 = M22−2`−1. Thus, the accuracy-speed curve is given by

ΓQ(p) =
α2p

1− 2α2p2−2(Rp−`/n)

(
1− 2M22−2`−1

σ2 − 2−2(Rp−`/n)+1
)

.

Note that the optimal choice of p in this case depends on the choice of M.

We illustrated application of our analysis for idealized quantizers, but it can be used
to analyze even very practical quantizers, such as the recently proposed almost optimal
quantizer in [54].

5. Analysis of the Successive Update Scheme

From the discussion in Section 3, we observe that the successive update scheme is
designed to refine the estimate of Xks in each interval Ĩk. This fact helps us in establishing a
recursive relation for Dt(φp, ψp, X), t ∈ Ĩk in terms of Dks(φp, ψp, X) which is provided next.

Lemma 1. For a time instant t = ks + jp + i, 0 6 j 6 m− 1, 0 6 i 6 p− 1 and k > 0, let
(φp, ψp) denote the tracking code of a p-SU scheme employing an nRp bit (θ, ε)-quantizer. Assume
that P(Ac

t ) 6 β2. Then, we have

Dt(φp, ψp, X) 6 α2(t−ks)θ jDks(φp, ψp, X) + σ2(1− α2(t−ks)) +
α2(t−ks)(1− θ j)ε2

(1− θ)
+ α2(t−ks)κβ.
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Proof. From the evolution of the AR[1] process defined in (1), we see that Xt = αt−ksXks +

∑t
u=ks+1 αt−uξu. Further for the p-SU scheme, we know that X̂t|t = αt−ksX̂ks|ks+jp at each

instant t = ks + jp + i. Therefore, we have

Xt − X̂t|t = αt−ks(Xks − X̂ks|ks+jp) +
t

∑
u=ks+1

αt−uξu.

Since the estimate X̂ks|ks+jp is a function of samples (X0, . . . , Xks), and the sequence (ξu, u >
ks) is independent of the past, we obtain the per dimension MSE as

Dt(φp, ψp, X) =
α2(t−ks)

n
E‖Xks − X̂ks|ks+jp‖2

2 + σ2(1− α2(t−ks)).

Further, we divide the error into two terms based on occurrence of the failure event
as follows:

Dt(φp, ψp, X) =
α2(t−ks)

n

[
E[‖Xks − X̂ks|ks+jp‖2

21At ] +E[‖Xks − X̂ks|ks+jp‖2
21Ac

t
]
]

(4)

+σ2(1− α2(t−ks)).

Recall that at each instant t = ks + jp, we refine the estimate X̂ks|ks+(j−1)p of Xks to
X̂ks|ks+jp = (X̂ks|ks+(j−1)p + Qp(Yk,j−1))1At . Upon substituting this expression for X̂ks|ks+jp,
we obtain

E
[
‖Xks − X̂ks|ks+jp‖2

21At ] = E[‖Yk,j−1 −Qp(Yk,j−1)‖2
1At

]
6 θE[‖Xks − X̂ks|ks+(j−1)p‖2

21At ] + nε2,

where the identity uses the definition of error Yk,j−1 given in (2) and the inequality holds
since Qp is a (θ, ε)-quantizer. Repeating the previous step recursively, we get

1
n
E[‖Xks − X̂ks|ks+jp‖2

21At ] 6 θ j · 1
n
E[‖Xks − X̂ks|ks‖2

21At ] +
1− θ j

1− θ
· ε2

6 θ j · 1
n
E‖Xks − X̂ks|ks‖2

2 +
1− θ j

1− θ
· ε2,

which is the same as

1
n
E[‖Xks − X̂ks|ks+jp‖2

21At ] 6 θ j · Dks(φp, ψp, X) +
1− θ j

1− θ
· ε2.

Moving to the error term E[‖Xks − X̂ks|ks+jp‖2
21Ac

t
] when encoder failure occurs, recall

that the decoder sets the estimate to 0 in the event of an encoder failure. Thus, using the
Cauchy–Schwarz inequality, we get

1
n
E[‖Xks − X̂ks|ks+jp‖2

21Ac
t
] =

1
n
E[‖Xks‖2

1Ac
t
]

6
1
n

√
E[‖Xks‖4]P(Ac

t )

6 κβ.

Substituting the two bounds above in (4), we get the result.

The following recursive bound can be obtained using almost the same proof as that of
Lemma 1; we omit the details.
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Lemma 2. Let (φp, ψp) denote the tracking code of a p-SU scheme employing an nRp bit (θ, ε)-
quantizer. Assume that P(Ac

t ) 6 β2. Then, we have

Dks(φp, ψp,Xn) 6 α2sθmD(k−1)s(φp, ψp,Xn) + σ2(1− α2s) + α2sε2 (1− θm)

(1− θ)
+ α2sκβ.

We also need the following technical observation.

Lemma 3. For a sequence (Xk ∈ R : k ∈ Z+) that satisfies sequence of upper bounds

Xk 6 aXk−1 + b, ∀ k ∈ Z+,

with constants a, b ∈ R such that b is finite and a ∈ (−1, 1), we have

lim
K→∞

1
K

K−1

∑
k=0

Xk 6
b

1− a
.

Proof. From the sequence of upper bounds, we can inductively show that

Xk 6 akX0 + b
1− ak

1− a
, ∀ k ∈ Z+.

Averaging Xk over the horizon {0, . . . , K− 1}, we get

1
K

K−1

∑
k=0

Xk 6
1− aK

K(1− a)

(
X0 −

b
1− a

)
+

b
1− a

.

From the finiteness of X0, b and the fact that |a| < 1, the result follows by taking the limit K
growing arbitrarily large on both sides.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. We begin by noting that, without any loss of generality, we can
restrict to T = Ks. This holds since the contributions of the error term within the fixed
interval IK are bounded. For T = Ks, the time duration {0, . . . , T} can be partitioned into
intervals (Ik, k + 1 ∈ [K]). Therefore, we can write the average MSE per dimension for the
p-SU scheme for time-horizon T = Ks as

DT(φp, ψp, X) =
1

Ks

K−1

∑
k=0

m−1

∑
j=0

p−1

∑
i=0

Dks+jp+i(φp, ψp, X).

From the upper bound for per dimension MSE given in Lemma 1, we get

p−1

∑
i=0

Dks+jp+i(φp, ψp, X) 6
p−1

∑
i=0

[
α2(jp+i)θ jDks(φp, ψp, X) + σ2(1− α2(jp+i)) +

α2(jp+i)(1− θ j)ε2

(1− θ)

+ α2(jp+i)κβ
]

= α2jp 1− α2p

1− α2

(
θ jDks(φp, ψp, X) +

(1− θ j)ε2

(1− θ)
+ κβ− σ2

)
+ pσ2.

Summing the expression above over j ∈ {0, ..., m− 1} and k ∈ {0, ..., K− 1}, and dividing
by T, we get

DT(φp, ψp, X) 6σ2 +
(1− α2s)

s(1− α2)

(
κβ− σ2 +

ε2

1− θ

)
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+
(1− α2p)

s(1− α2)

(1− α2sθm)

(1− α2pθ)

( 1
K

K−1

∑
k=0

Dks(φp, ψp, X)− ε2

1− θ

)
.

It follows by Lemma 2 that

DT(φp, ψp, X) 6σ2 +
(1− α2s)

s(1− α2)

(
κβ− σ2 +

ε2

1− θ

)
(5)

+
(1− α2p)

s(1− α2)

(1− α2sθm)

(1− α2pθ)

(
sup

{ak}k>0∈A

1
K

K−1

∑
k=0

ak −
ε2

1− θ

)
,

where the A denotes the set of {ak}k>0 satisfying

ak 6 α2sθmak−1 + σ2(1− α2s) + α2sκβ + α2sε2 (1− θm)

(1− θ)
.

We denote the right-side of (5) by BT(θ, ε, β). Noting that by Lemma 3 any sequence
{ak}k>0 ∈ A satisfies

lim
K→∞

1
K

K−1

∑
k=0

ak 6
1

1− α2sθm

(
σ2(1− α2s) + α2sκβ + α2sε2 (1− θm)

(1− θ)

)
,

we get that

lim sup
T→∞

BT(θ, ε, β) 6σ2
(

1− (1− α2s)

s(1− α2)
· α2p(1− θ)

(1− α2pθ)

)
+ ε2 (1− α2s)

s(1− α2)
· α2p

(1− α2pθ)

+ κβ
1

s(1− α2)

(
1− α2(s+p)(1− θ)

(1− α2pθ)

)
,

which completes the proof.

6. Asymptotic Achievability Using Random Quantizer

With Theorem 3 at our disposal, the proof of achievability can be completed by fixing
p = 1 and showing the existence of appropriate quantizer. However, we need to handle the
failure event, and we address this first. The next result shows that the failure probability
depends on the quantizer only through M.

Lemma 4. For fixed T and n, consider the p-SU scheme with p = 1 and an nR bit (θ, ε)-quantizer
Q with dynamic range M. Then, for every η > 0, there exists an M0 independent of n such that for
all M > M0, we get

P(Ac
T) 6 η.

Proof. The event AT (of encoder failure not happening until time T for the successive
update scheme) occurs when the errors Yk,j satisfies ‖Yk,j‖2

2 6 nM2, for every k > 0 and
0 6 j 6 s− 1 such that t = ks + j 6 T. For brevity, we denote by Yt the error random
variable Yk,j and Yt−1 = (Y1, ..., Yt−1). We note that

P(Ac
T) = P

(
Ac

T−1
)
+ P(AT−1 ∩ Ac

T)

= P
(

Ac
T−1
)
+ P

(
AT−1 ∩ {‖YT‖2

2 > nM2}
)

= P
(

Ac
T−1
)
+E

[
1AT−1P

(
‖YT‖2

2 > nM2|YT−1
)]

6 P
(

Ac
T−1
)
+E

[
1AT−1

E[‖YT‖2
2|YT−1]

nM2

]
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= P
(

Ac
T−1
)
+

E[‖YT‖2
21AT−1 ]

nM2 .

Note that the inequality follows from Markovs inequality. Further we have YT = YT−1 −
Q(YT−1) under AT−1, whereby

E[‖YT‖2
21AT−1 ] 6 θ ·E[‖YT−1‖2

21AT−1 ] + nε2.

Denoting by β2
T the probability P

(
Ac

T
)
, the previous two inequalities imply

β2
T 6 β2

T−1 +
θ

nM2E[‖YT−1‖2
2] +

ε2

M2 .

We saw earlier in the proof of Lemma 1 that E[‖YT−1‖2
2]/n depends only on the probability

β2
T−1 that failure does not occur until time T − 1. Proceeding as in that proof, we get

β2
T 6 β2

T−1 +
1

M2 (c1βT−1 + c2),

where c1 and c2 do not depend on n. Therefore, there exists M0 independent of n such that
for all M exceeding M0 we have

β2
T 6 β2

T−1 + η,

which completes the proof by summing over T.

The bound above is rather loose, but it suffices for our purpose. In particular, it
says that we can choose M sufficiently large to make probability of failure until time T
less than any β2, whereby Theorem 3 can be applied by designing a quantizer for this M.
Indeed, we can use the quantizer of unit sphere from [1,2], along with a uniform quantizer
for gain (which lies in [−M, M]) to get the following performance. In fact, we will show
that a deterministic quantizer with the desired performance exists. Note that we already
considered such a quantizer in Example 3. However, the analysis there was slightly loose
and it assumed the existence of an ideal shape quantizer.

Lemma 5. For every R, ε, γ, M > 0, there exists an nR bit (2−2(R−γ), ε)-quantizer with dynamic
range M, for all n sufficiently large.

Proof. We first borrow a classic construction from [1,2], which gives us our desired shape
quantizer. Denote by Sn the (n− 1)-dimensional unit sphere {y ∈ Rn : ‖y‖2 = 1}. For
every γ > 0 and n sufficiently large, it was shown in [1,2] that there exist 2nR vectors C in
Sn such that for every y ∈ Sn we can find y′ ∈ C satisfying

〈y, y′〉 >
√

1− 2−2(R−γ).

Denoting cos θ =
√

1− 2−2(R−γ), consider the shape quantizer QR(y) from [2] given by

QR(y) , cos θ · arg min
y′∈C

‖y− y′‖2
2

= cos θ · arg max
y′∈C
〈y, y′〉, ∀ y ∈ Sn.

Note that we shrink the length of y′ by a factor of cos θ, which will be seen to yield the gain
over the analysis in Example 3.

We append to this shape quantizer the uniform gain quantizer qM : [0, M]→ [0, M],
which quantizes the interval [0, M] uniformly into subintervals of length ε. Specifically,
qM(a) = εba/εc and the corresponding index is given by ba/εc. We represent this index
using its ` , dlog(M/ε)e bit binary representation and denote this mapping by φM :
[0, M]→ {0, 1}`.
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For every y ∈ Rn such that ‖y‖2
2 6 nM2, we consider the quantizer

Q(y) =
√

n · qM

(
‖y‖2√

n

)
·QR

(
y
‖y‖2

)
.

For this quantizer, for every y ∈ Rn with ‖y‖2
2 = nB2 such that B 6 M, we have

‖y−Q(y)‖2
2 = ‖y‖2

2 + ‖Q(y)‖2
2 − 2〈y, Q(y)〉

= nB2 + nB̂2 cos2 θ − 2nBB̂ cos θ〈ỹ, QR(ỹ)〉
6 nB2 + nB̂2 cos2 θ − 2nBB̂ cos2 θ

= nB2 sin2 θ + n(B− B̂)2 cos2 θ

6 nB2 sin2 θ + nε2 cos2 θ

6 nB22−2(R−γ) + nε2,

where the first inequality uses the covering property of C. Therefore, Q constitutes an
nR + ` bit 2−2(R−γ),ε-quantizer with dynamic range M, for all n sufficiently large. Note
that this quantizer is a deterministic one.

Proof of Theorem 1. For any fixed β and ε, we can make the probability of failure until
time T less than β by choosing M sufficiently large. Further, for any fixed R, γ > 0, by
Lemma 5, we can choose n sufficiently large to get an nR bit (2−2(R−γ), ε)-quantizer for
vectors y with ‖y‖2

2 6 nM2. Therefore, by Theorem 3 applied for p = 1, we get that

δ∗(R, s,X) > g(s) α2

1− α22−2(R−γ)

(
1− ε2

σ2 − 2−2(R−γ)
)
− κβg(s)

σ2(1− α2s)

(
1− α2(s+1) 1− θ

1− α2θ

)
.

The proof is completed upon taking the limits as ε, γ, and β go to 0.

7. Converse Bound: Proof of Theorem 2

The proof is similar to the converse proof in [55], but now we need to handle the delay
per transmission. We rely on the properties of entropy power of a random variable. Recall
that for a continuous random variable X taking values in Rn, the entropy power of X is
given by

N (X) =
1

2πe
· 2(2/n) h(X),

where h(X) is the differential entropy of X.
Consider a tracking code (φ, ψ) of rate R and sampling period s and a process X ∈ Xn.

We begin by noting that the state at time t is related to the state at time t + i as

Xt+i = αiXt +
i−1

∑
j=0

αjξt+i−j,

where the noise ∑i−1
j=0 αjξt+i−j is independent of Xt (and the past states). In particular, for

t = ks + i, 1 6 i < s, we get

E
[
‖Xt − X̂t|t‖2

2

]
= E

[
‖αiXks − X̂t|t‖2

2

]
+

i−1

∑
j=0

α2jE
[
‖ξks+i−j‖2

2

]
= α2iE

[
‖Xks − X̃t‖2

2

]
+ n(1− α2i)σ2.

where we define X̃t := α−iX̂t|t and the first identity uses the orthogonality of noise added
in each round from the previous states and noise. The second equality follows directly
by substituting the variance of the components of the process ξks+i−j and simplifying
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the summation. Since the Gaussian distribution has the maximum differential entropy
among all continuous random variables with a given variance, and the entropy power for
a Gaussian random variable equals its variance, we get that

σ2(1− α2) > N (ξt+i).

Therefore, the previous bound for tracking error yields

Dks+i(φ, ψ, X) > α2i 1
n
E
[
‖Xks − X̃ks+i‖2

2

]
+

(1− α2i)

(1− α2)
N (ξks+i)

= α2i 1
n
E
[
‖Xks − X̃ks+i‖2

2

]
+

(1− α2i)

(1− α2)
N (ξ1), (6)

where the identity uses the assumption that ξt are identically distributed for all t. Taking
average of these terms for t = 0, .., T, we get

DT(φ, ψ, X) =
1

nKs

K−1

∑
k=0

(k+1)s−1

∑
i=ks

E
[
‖Xi − X̂i|i‖2

2

]
>

1
nKs

K−1

∑
k=0

s−1

∑
i=0

α2iE
[
‖Xks − X̃ks+i‖2

2

]
+
N (ξ1)

(1− α2)

(
1− (1− α2s)

s(1− α2)

)
.

Note that X̃ks+is act as estimates of Xks which depend on the communication received
by the decoder until time ks + i. We denote the communication received at time t by
Ct−1, whereby X̃ks+i depends only on C1, ..., Cks+i−1. In particular, the communication
Cks, ..., Cks+i−1 was sent as a function of Xks, the sample seen at time t = ks.

From here on, we proceed by invoking the “entropy power bounds” for the MSE terms.
For random variables X and Y such that PX|Y has a conditional density, the conditional
entropy power is given by N (X|Y) = 1/(2πe)22h(X|Y)/n. (The conditional differential en-
tropy h(X|Y) is given by E

[
h(PX|Y)

]
.) Bounding MSE terms by entropy power is a standard

step that allows us to track reduction in error due to a fixed amount of communication.
We begin by using the following standard bound (see [56], Chapter 10): (It follows

simply by noting that Gaussian maximizes differential entropy among all random variables
with a given second moment and that h(X)− h(X|Y) 6 H(Y) = nR.) For a continuous
random variable X and a discrete random variable Y taking {0, 1}nR values, let X̂ be any
function of Y. Then, it holds that

1
n
E‖X− X̂‖2 > 2−2RN (X). (7)

We apply this result to Xks given Cks−1 in the role of X and the communication Cks, .., Cks+i−1
in the role of Y. The previous bound and Jensen’s inequality yield

1
n
E
[
‖Xks − X̃ks+i‖2

2

]
> 2−2RiE[N (Xks|Cks−1)].

Next, we recall the entropy power inequality (cf. [56]): For independent X1 and X2,N (X1 +
X2) > N (X1) +N (X2). Noting that Xks = αsX(k−1)s + ∑s−1

j=0 αjξks−j, where {ξi} is an

iid zero-mean random variable independent of X(k−1)s, and that Cks−1 is a function of
X1, ..., X(k−1)s, we get

N (Xks|Cks−1) > N (αsX(k−1)s|Cks−1) +N (ξks)
(1− α2s)

(1− α2)

= α2sN (X(k−1)s|Cks−1) +N (ξ1)
(1− α2s)

(1− α2)
,
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where the previous identities utilizes the scaling property of differential entropy. Upon
combining the bounds given above and simplifying, we get

DT(φ, ψ, X) >
α2s(1− α2s2−2Rs)

s(1− α22−2R)
· 1

K

K−1

∑
k=0

E[N (X(k−1)s|Cks−1)]

+
N (ξ1)

(1− α2)

(
1 +

(1− α2s)(1− α2s2−2Rs)

s(1− α22−2R)
− (1− α2s)

s(1− α2)

)
. (8)

Finally, note that the terms N (X(k−1)s|Cks−1) are exactly the same as that considered in
[55] (eqn. 11e) since they correspond to recovering X(k−1)s using communication that
can depend on it. Therefore, a similar expression holds here, for the sampled process
{Xks : k ∈ N} . Using the recursive bound for the tracking error in (6) and (7), we adapt
the results of [55] (eqn. 11) for our case to obtain

E[N (X(k−1)s|Cks−1)] > d∗k−1,

where the quantity d∗k is given by the recursion

d∗k = 2−2Rs
(

α2sd∗k−1 +N (ξ1)
(1− α2s)

(1− α2)

)
,

with d∗0 = 0.
The bound obtain above holds for any given process X ∈ Xn. To obtain the best

possible bound we substitute ξ1 to be a Gaussian random variable, since that would
maximizeN (ξ1). Specifically, we set {ξk} to be a Gaussian random variable with zero mean
and variance σ2 to get N (ξ) = σ2(1− α2). Thus, taking supremum over all distributions
on both sides of (8), we have

sup
X∈Xn

DT(φ, ψ, X) >

α2s(1− α2s2−2Rs)

s(1− α22−2R)
· 1

K

K−1

∑
k=0

d∗k−1 + σ2
(

1 +
(1− α2s)(1− α2s2−2Rs)

s(1− α22−2R)
− (1− α2s)

s(1− α2)

)
,

where
d∗k = 2−2Rs(α2sd∗k−1 + σ2(1− α2s)

)
,

with d∗0 = 0. For this sequence d∗k , we can see that (cf. [55] (Corollary 1))

lim sup
K→∞

1
K

K−1

∑
k=0

d∗k−1 = lim
K→∞

d∗k =
σ2(1− α2s)2−2Rs

(1− α2s2−2Rs)
.

Therefore, we have obtained

lim sup
T→∞

sup
X∈Xn

DT(φ, ψ, X) > σ2
(
(1− α2s)α2s2−2Rs

s(1− α22−2R)
+ 1− (1− α2s)

s(1− α2)
+

(1− α2s)(1− α2s2−2Rs)

s(1− α22−2R)

)
= σ2

(
1− g(s)δ0(R)

)
.

As the bound obtained above holds for all tracking codes (φ, ψ), it follows that δ∗(R, s,X) 6
g(s)δ0(R).

8. Discussion

We restricted our treatment to an AR[1] process with uncorrelated components. This
restriction is for clarity of presentation, and some of the results can be extended to AR[1]
processes with correlated components. In this case, the decoder will be replaced by a
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Kalman-like filter in the manner of [35]. A natural extension of this work is the study of
an optimum transmission strategy for an AR[n] process in the given setting. In an AR[n]
process, the strategy of refining the latest sample is clearly not sufficient as the value of the
process at any time instant is dependent on the past n samples. If the sampling is periodic,
even the encoder does not have access to all these n samples unless we take a sample
at every instant. A viable alternative is to take n consecutive samples at every sampling
instant. However, even with this structure on the sampling policy, it is not clear how the
information must be transmitted. A systematic analysis of this problem is an interesting
area of future research.

Another setting which is not discussed in the current work is where the transmissions
are of nonuniform rates. Throughout our work, we have assumed periodic sampling and
transmissions at a fixed rate. For the scheme presented in this paper, it is easy to see
from our analysis that only the total number of bits transmitted in each sampling interval
matters, when the dimension is sufficiently large. That is, for our scheme, even framing
each packet (sent in each communication slot) using unequal number of bits will give the
same performance as that for equal packet size, if the overall bit-budget per sampling
period is fixed. A similar phenomenon was observed in [39], which allowed the extension
of some of their analysis to erasure channels with feedback. We remark that a similar
extension is possible for some of our results, too. This behavior stems from the use of
successive batches of bits to successively refine the estimate of a single sample within
any sampling interval, whereby at the end of the sampling interval the error corresponds
to roughly that for a quantizer using the total number of bits sent during the interval.
In general, a study of nonuniform rates for describing each sample, while keeping bits
per time-slot fixed, will require us to move beyond uniform sampling. This, too, is an
interesting research direction to pursue.

Finally, we remark that the encoder structure we have imposed, wherein the error in
the estimate of the latest sample is refined at each instant, is optimal only asymptotically and
is justified only heuristically for fixed dimensions. Even for one dimensional observation it
is not clear if this structure is optimal. We believe that this is a question of fundamental
interest which remains open.
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