
Low latency replication coded storage over
memory-constrained servers

Rooji Jinan∗ Ajay Badita∗ Pradeep Sarvepalli† Parimal Parag∗

Abstract—We consider a distributed storage system storing a
single file, where the file is divided into equal sized fragments.
The fragments are replicated with a common replication factor,
and stored across servers with identical storage capacity. An
incoming download request for this file is sent to all the servers,
and it is considered serviced when all the unique fragments
are downloaded. The download time for all fragments across all
servers, is modeled as an independent and identically distributed
(i.i.d.) random variable. The mean download time can be bounded
in terms of the expected number of useful servers available after
gathering each fragment. We find the mean number of useful
servers after collecting each fragment, for a random storage
scheme for replication codes. We show that the performance
of the random storage for replication code achieves the upper
bound for expected number of useful servers at every download
asymptotically in number of servers for any storage capacity.
Further, we show that the performance of this storage scheme
is comparable to that of Maximum Distance Separable (MDS)
coded storage.

I. INTRODUCTION

One of the major challenges in the design of modern
distributed systems is to ensure resilience against node failures
and unpredictable download times [1]. Adding redundancy
through error-correcting codes addresses these challenges
along with offering fast access to the data due to parallelization
gains. We study a redundant distributed storage system where
a single file of unit size is stored over B servers that can each
store α fraction of this file. We refer to this distributed storage
system as an α-B system. Further, we suppose that single file
of unit size is divided into V fragments, encoded into V R
fragments, and stored over an α-B system. Such storage codes
can be viewed as (n, k) error-correcting codes which encode
k = V information symbols into n = V R encoded symbols.
For example, in (V R, V) replication coding, we replicate each
of the V file fragments R times, and the file can be decoded
by downloading a single replica of each fragment.

Such storage systems where each of the B parallel servers
stores a single coded fragment can be found in literature [1]–
[3]. For this case it was shown that MDS codes provide
optimal performance [3] in terms of the mean access delay.
However, if we allow for an additional degree of freedom,
namely division of a file into larger number of fragments
with smaller size, then even non-MDS codes can become

The authors∗ are with Indian Institute of Science, Bangalore, Karnataka
560012, India. Email:∗{roojijinan, ajaybadita, parimal}@iisc.ac.in.

Author† is with Indian Institute of Technology Madras, Chennai, Tamil
Nadu 600036, India. Email:†{pradeep}@ee.iitm.ac.in.

This work was supported in part by the Department of Telecommunications,
Government of India, under Grant DOTC-0001, the RBCCPS, and the Centre
for Networked Intelligence (a Cisco CSR initiative) of the IISc.

competitive. Consider the staircase codes proposed in [4] for
secure computation which can be viewed as a (BK,V) q-
ary code, which is non MDS. When the number of fragments
stored per server αV > 1, staircase codes show improvement
over MDS codes with single coded fragment stored at each
server. The mean download time of staircase codes was shown
to be smaller than that of a (B,B/R) MDS code in [5], [6].

Dividing the file into V fragments, with the code rate 1/R
and the number of servers at B, it can be shown that among all
(V R, V) codes stored over an α-B system, an MDS code has
the smallest file download time for a class of download time
distributions. However, one of the major drawbacks of MDS
codes is its high decoding complexity. Even the best known
MDS decoding algorithms are polynomial in the number of
coded symbols V R [7]. Further, in storage systems where file
sizes often change with frequent writes [8], the entire file has
to be encoded again [9]. In addition, to be able to code V
fragments of a file into V R MDS coded symbols, the symbols
must belong to a sufficiently large alphabet [10, Theorem 4.1]
which requires the fragment to be large.

Block replication codes score well on all of these fronts.
We show the existence of a good storage scheme for (V R, V)
replication code on an α-B system, by studying a random
storage scheme that offers mean download time comparable
to that of MDS codes. To this end, we modify the system
model slightly where each server can store all V R fragments.
Then using concentration arguments, we show that the fraction
of file stored per server converges to the storage constraint
α asymptotically in number of fragments, for the proposed
randomized storage scheme.

A. Related work

Coding techniques have been used to ensure reliability in
distributed storage systems with fault-prone network [1], [11],
[12]. Another objective of interest to us is achieving low
latency using storage codes [13], [14]. In this work, we study
replication codes where files are stored redundantly over the
system. Trade-off between latency and server utilization cost
of availing redundancy was studied in [14]–[19]. Two well
studied file encoding strategies used in distributed systems
with redundant storage are MDS coding [3], [11], [14], [18],
[20] and replication [19], [21]. It has been shown that MDS
coding outperforms replication in mean file access latency [3],
[22]. Further, [23] studies certain conditions under which MDS
coding is preferred over replication and vice versa. Our work
differs from these works as we allow larger fragmentation of
the file such that each server can store more than one fragment,

2340978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

79
01

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

(a)

1 A1

2 A1

3 A2

4 A2

(b)

1 A22 A11

2 A12 A21

3 A22 A12

4 A11 A21

Fig. 1. Two storage policies indicating different fragmentation of a single
file with a fixed server storage of half the file size for all four servers.
In the scheme (a), the file is divided into two equal sized fragments
A1, A2. In scheme (b), the file is divided into four equal sized fragments
A11, A12, A21, A22.

while keeping the number of servers and storage per server
unchanged as illustrated in Figure 1.

B. Main contributions
We study distributed storage of replication coded file frag-

ments over α-B systems with each server storing multiple
fragments. We list our main contributions below.
• We find a lower bound for the mean download time

of a file in terms of the expected sum of number of
useful servers for each fragment download when fragment
download times are random and i.i.d. exponential.

• We provide an upper bound on the number of useful
servers for any fragment storage scheme in an α-B
system employing (V R, V) replication code.

• We show that among all the (V R, V) codes stored on an
α-B system, an MDS code meets the upper bound on the
number of useful servers.

• We propose a randomized placement for replication coded
fragments on a storage system where each server can
store V R fragments and show that it meets the upper
bound on the number of useful servers asymptotically.

• We also show that for large number of fragments, the
modified system under the randomized placement con-
verges to α-B system.

• Finally, we demonstrate through numerical studies that
the bound on the number of useful servers is a good
indicator of the performance of the storage schemes with
respect to their average download times.

II. SYSTEM MODEL

Let us suppose that a single file is fragmented into V pieces
and stored on an α-B system with storage capacity per server
α , K

V < 1. That is, each of the B servers is assumed to have
an identical storage capacity of K fragments of size 1/V of
the file and hence can store α fraction of the file. We study
(V R, V) replication codes with replication factor, R. That is,
each file fragment is replicated R times. Note that, the system
is assumed to have sufficient storage capacity to store all V R
fragments, and this requires that V R 6 KB. We assume a
single request in the system which is forked to all B servers.
At each server b ∈ [B], the request starts downloading stored
fragments in succession.

A. Storage model
For a specific storage code, we refer to the collection of

fragments stored on each server as the storage scheme. The
storage scheme must be designed with a view to facilitate fast
download of the file. The set of servers on which a fragment
v ∈ [V] is replicated, is denoted by Φv ⊆ [B] and called
occupancy set. The storage scheme is completely determined
by the collection of occupancy sets Φ , (Φv : v ∈ [V]). We
also denote the set of fragments stored on a server b ∈ [B]
by the fragment set Sb ⊆ [V]. We further note that Sb ,
{v ∈ [V] : b ∈ Φv}.

Definition 1. For any (V R, V) replication code stored on B
servers with storage capacity of K fragments, the α-(V,R)
replication storage ensemble is defined as the collection

S ,
{

Φ ∈ (2[B])[V]
∣∣∣|Sb| = K for all b, V R = BK

}
. (1)

We classify α-(V,R) replication storage scheme as com-
pletely utilizing and underutilizing. An underutilizing α-(V,R)
replication storage scheme allows multiple copies of the same
fragment to be stored on the same server, i.e., |Φv| < R. Such
a scheme do not take full advantage of the possible paralleliza-
tion. If each fragment is stored on R distinct servers, then the
α-(V,R) replication storage scheme satisfies |Φv| = R for all
fragments v and is completely utilizing.

B. Fragment download time model
The fragment download time at each server is modeled by

a random variable that captures uncertainty due to network
delays and server background processes [24]. We denote the
fragment download time for fragment v at the server b by a
nonnegative random variable Tbv . We assume that the marginal
distribution of Tbv is identical for all fragments v ∈ Sb
at all servers b ∈ [B]. Motivated by analytical tractability,
we further assume that the fragment download times Tbv
are independent and exponentially distributed with rate µ.
Thus, we have assumed fragment download times to be i.i.d.,
which is a popular assumption in the literature [16], [21],
[25] and the common distribution function F is given by
F (x) , P ({Tbv 6 x}) = 1− e−µx, for all x > 0.

C. Download sequence
A request is forked in to all B servers and is considered to

be serviced upon the download of all V distinct fragments. We
assume that the request will not attempt to download a replica
of an already downloaded fragment, and such download se-
quences are referred to as minimal downloading sequences. A
minimal downloading sequence for replication codes consists
of unique fragments. The `th downloaded fragment is denoted
by v`, and the sequence of downloaded fragments until `th
download is called download subsequence and denoted by
I` , (v1, . . . , v`). We further assume that after a fragment
download, the request immediately stops downloading the
same fragment from other servers. Such an idealized model
of cancellation at parallel servers serving same request has
been adopted for analytical tractability and can be found to be
used widely in literature [14], [15], [19], [21], [26], [27].

2341
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

D. Problem formulation

Our main goal is to minimize the mean download time
for a file stored using a storage scheme from the α-(V,R)
replication storage ensemble, when the service times at each
server are independent and exponentially distributed with rate
µ. We denote the download time of `th distinct fragment v` by
D`, where D0 , 0 and ` ∈ {0, . . . , V }. This indicates that a
download subsequence I` of ` fragments has been downloaded
at time D`. As the file is completely retrieved once V unique
fragments are downloaded, the file download time is given by
DV . Any server that has fragments not yet downloaded by the
request, is called a useful server [3]. The set of useful servers
after `th download is given by U(I`) =

⋃
v/∈I` Φv and let its

cardinality be N(I`). The request is being served by N(I`)
parallel servers in the duration [D`, D`+1). From the indepen-
dent and memoryless service assumption at all servers of rate
µ, we have E

[
D`+1 −D`

∣∣∣I`] = 1
N(I`)µ

. The download time
for V fragments can be written as the sum of download time
of individual fragments, i.e. DV =

∑V−1
`=0 (D`+1−D`). From

the linearity and the tower property of expectation, it follows
that the mean download time averaged over all fragments is

1

V
E [DV] =

1

V
E

[
V−1∑
`=0

1

N(I`)µ

]
. (2)

We see that the mean download time depends on U(I`), the
set of useful servers remaining after `th download, which in
turn depends on the storage scheme Φ. Next, we provide a
lower bound on the mean file download time in terms of the
sum of mean number of useful servers.

Lemma 2. The mean download time can be lower bounded
as 1

V E [DV] > V
µ
∑V−1
`=0 E[N(I`)]

.

(For proof, see [28, Lemma 5].) In some important settings,
the sum

∑
` E [N(I`)] is analytically more tractable when

compared to
∑V−1
`=0 E [1/N(I`)]. Motivated by this fact, in-

stead of minimizing the mean download time in (2), we study
the following problem.

Problem 1. Find a storage scheme Φ in an α-(V,R) repli-
cation storage ensemble that maximizes the mean number of
useful servers averaged over all fragments, i.e.

Φ∗ = arg max
Φ

1

V

V−1∑
`=0

E [N(I`)] .

That is, we must find an optimal storage scheme that
maximizes the normalized mean number of useful servers
which is equivalent to minimizing the lower bound on mean
download time. While Problem 1 does not optimize the mean
download time, we empirically show that the schemes that
maximize the mean number of useful servers has lower mean
download times. Thus, the mean number of useful servers can
be used as a good yardstick to measure the performance of an
α-(V,R) replication storage scheme.

III. ANALYSIS

In this section, we show the existence of a good α-(V,R)
storage scheme. We first provide a simple upper bound on the
number of useful servers for any α-(V,R) storage scheme.

Theorem 3. For an α-(V,R) replication storage scheme Φ ∈
S defined in (1), the number of useful servers N(I`) after `
downloads is upper bounded in terms of m , dB/Re, as

N(I`) 6 B1{`6V−m} + (V − `)R1{`>V−m}. (3)

(For proof, see [28, Theorem 6].)

Remark 4. Recall that for an α-(V,R) replication storage
scheme B/R = V/K = 1/α. When m = B/R is an integer,
summing up both sides of (3), and dividing both sums by the
product BV , we obtain

1

BV

V−1∑
`=0

N(I`) 6 1− (m+ 1)

2V
. (4)

This gives us an upper bound on the normalized sum of number
of useful servers.

Computation of the mean download time of a (V R, V)
coded storage on an α-B system is challenging due to the
combinatorial nature of the problem. To show existence of a
good storage, we use randomized techniques. Specifically, we
study a random storage scheme that offers mean download
time comparable to that of MDS codes, for a large number of
fragments. For analytical tractability, we modify the system
model slightly where each server can store all V R fragments.
Then using concentration arguments, we show in Theorem 8
that the fraction of file stored per server converges almost
surely to the storage constraint α asymptotically in the number
of fragments, for the proposed randomized storage scheme.

A. Randomized replication coded storage

The storage scheme for a (V R, V) replication code on
the modified B server system is referred to as (B, V,R)
replication storage scheme where each server has the capacity
to store all the V R fragments.

Definition 5. A (B, V,R) replication storage scheme, where
rth replica of fragment v is stored on server Θv,r ∈ [B], cho-
sen independently and uniformly at random from B servers,
is called a randomized (B, V,R) replication storage scheme.
The collection of all random (B, V,R) replication storage
schemes is referred to as the random (B, V,R) replication
storage ensemble.

Thus, we observe that a randomized (B, V,R) replication
storage scheme can be determined by i.i.d. random vectors
(Θv : v ∈ [V]), where Θv = (Θv,1, . . . ,Θv,R) for each
fragment v, and P {Θv,r = b} = 1

B , for all servers b ∈ [B].
Note that the random vector Θv is not a set but a vector,
since more than one replica of a file fragment can be stored
on a single server. For each fragment v, we can compute
the number of replicas of this fragment stored at server b as
βvb ,

∑
r∈[R] 1{Θv,r=b}.

2342
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

Lemma 6. For the random (B, V,R) replication
storage scheme defined in Definition 5, we have
P (∪b∈[B] {βvb > 2}) > 1− e

−α(R−1)
2 , v ∈ [V].

(For proof, see [28, Lemma 18].) That is, there is a finite
probability with which each file fragment repeats on a server.
However, we can construct an occupancy set Φv for each
fragment v from this vector Θv , by throwing away the repeated
entries. Then, Φv = {b ∈ [B] : Θv,r = b for some r ∈ [R]} .
This implies that |Φv| 6 R, and this inequality is strict if any
entry in the vector Θv is repeated twice.

We will consider a family of (B, V,R) random replication
storage schemes for increasing values of number of fragments
V , while keeping the ratio α = R

B constant for the system.
In this case, we will show that the fraction of file fragments
stored by each server converges to α for the proposed random
(B, V,R) replication storage scheme. The normalized number
of fragments stored at any server b ∈ [B] is defined as αrep

b ,
1
V

∑
v∈[V]

∑
r∈[R] 1{Θv,r=b}.

If the normalized number of fragments αrep
b = α, the

storage capacity per server in an α-(V,R) storage scheme, then
the randomized (B, V,R) replication storage scheme defined
in Definition 5 in terms of i.i.d. vectors (Θv : v ∈ [V])1 , is an
underutilizing α-(V,R) storage scheme with high probability,
since there exists servers storing redundant replicas of the
same fragment with high probability.

Definition 7. A randomized (B, V,R) replication storage
scheme is said to be an α-(V,R) storage scheme asymptot-
ically in V , if for each server b, limV→∞ αrep

b = α almost
surely.

Theorem 8. The randomized (B, V,R) storage scheme de-
fined in Definition 5 is an α-(V,R) storage scheme asymptot-
ically in V .

(For proof, see [28, Theorem 20].) We can compute the
sum of mean number of useful servers aggregated over all
downloads, when the mean is taken over ensemble of random
(B, V,R) replication storage schemes.

Theorem 9. For the random (B, V,R) replication storage
ensemble defined in Definition 5, we can write

1

BV

V−1∑
`=0

E [N(I`)] = 1−

(
1− 1

B

)(
1− (1− 1

B)RV
)

V
(

1− (1− 1
B)R

) . (5)

(For proof, refer [28, Theorem 21].)

Corollary 10. A random (B, V,R) replication storage scheme
is asymptotically optimal solution to the Problem 1 almost
surely.

Proof: For large number of fragments, we observe the
following. By Theorem 8, proposed random (B, V,R) repli-

1Even though Θ : [V]→ [B]R is a collection of i.i.d. random variables, we
observe that normalized number of pieces on each server αrep

b are dependent
random variables. To see this, we observe that P {Θv,r = b,Θv,r = a} =
0 6= 1

B2 for any b 6= a. It follows that E
[
αrep
b αrep

a

]
= α2 − 1

B
α 6= α2 =

E
[
αrep
b

]
E
[
αrep
a

]
.

cation storage scheme almost surely converges to an α-(V,R)
replication storage scheme and from Theorem 9, we obtain
limV→∞

1
BV

∑V−1
`=0 E [N(I`)] = 1 for this scheme. From (4),

we observe that the ensemble mean of normalized number of
useful servers for the proposed random (B, V,R) replication
storage scheme meets the upper bound for any α-(V,R)
replication storage scheme, asymptotically in V .

B. Comparison with MDS codes

In this section we consider storage schemes based on
(V R, V) MDS codes assuming that the field is large enough
so that a (V R, V) code exists. As mentioned earlier, MDS
codes are known to outperform replication codes in terms of
code rates and latency [3]. Here, we show that among all α-
(V,R) coded storage schemes, the ones based on MDS codes
minimize the mean download time. Further, we show that
replication coded storage is asymptotically optimal.

Definition 11. Consider a file with V fragments encoded to
V R coded fragments, and completely utilizing storage of this
(V R, V) code on a α-B system. Such storage schemes are
referred to as α-(V,R) coded storage schemes, where the
normalized storage capacity per server is α = R/B = K/V
and the code rate is 1/R.

Remark 12. For any α-(V,R) coded storage scheme, the
number of useful servers N(I`) after ` downloads is always
upper bounded by the total number of servers B, and hence

1
BV

∑V−1
`=0 N(I`) 6 1.

Definition 13. Any V subset of V R coded fragments that
suffices to decode a (V R, V) code, i.e., reconstruct the V
uncoded fragments, is called an information set [3], [29].
For an α-(V,R) coded storage scheme, we can define the
collection of all information sets [3, Section II], as I.

For a completely utilizing α-(V,R) replication storage
scheme, information sets consist of distinct V fragments. For
α-(V R, V) MDS coded storage, information sets are any V
coded fragments, and hence I = {S ⊂ [V R] : |S| = V }. This
implies that the collection of information sets for MDS code
includes collection of information sets for any other (V R, V)
code. Then, the largest possible set of useful servers among
all α-(V,R) coded storage schemes is the one achieved by
MDS coded storage for the same download sequence I`. Using
coupling arguments, we can establish the following result.

Theorem 14. Among all α-(V,R) coded storage schemes,
MDS codes minimize the mean download time.

(For proof, see [28, Theorem 25].)

C. Asymptotic optimality of replication codes

We next find bounds on the number of useful servers for
MDS coded storage, which can be used as a benchmark to
compare replication coded storage.

Lemma 15. For a completely utilizing α-(V,R) MDS storage
scheme, the number of useful servers Nmds(I`) is bounded as
B −

⌊
`
K

⌋
6 Nmds(I`) 6 min(B, V R− `).

2343
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

(For proof, see [28, Lemma 26].) The previous lemma will
immediately give us the following result by taking average
over all V fragments.

Corollary 16. For a completely utilizing α-(V,R) MDS coded
storage scheme with code rate 1

R 6 V
B+V , the normalized

aggregate number of useful servers is bounded as

1− 1

2R
(1− 1

V
) 6

1

BV

V−1∑
`=0

Nmds(I`) 6 1. (6)

Remark 17. Theorem 8 says that a random (B, V,R) repli-
cation storage scheme achieves a storage fraction α = R/B
on each server, as the number of fragments V becomes large.
Further, from proof of Corollary 10 we observe that the limit
of average number of useful servers for a typical random
(B, V,R) replication storage scheme meets the upper bound
for MDS codes in (6), as the number of fragment grows.
This implies that replication coded storage is asymptotically
optimal.

Optimality of replication codes for large storage: So far, we
have considered the case α 6 1. For completeness we show
that, when K > V , then there exists a (V R, V) replication
code such that the number of useful servers remains B after
every download.

Lemma 18. There exists a (V R, V) replication code, that
meets the universal upper bound on average number of useful
servers for any completely utilizing α-(V,R) coded storage
scheme when α > 1.

(For proof, refer [28, Lemma 28].) Thus, the average num-
ber of useful servers for replication code meets the universal
upper bound for all fragment size V , when the servers can
store the entire file.

D. Numerical results

We report the numerical results for a random (B, V,R)
replication storage system with a fixed fraction α = R

B = 0.25.
In Fig. 2, we plot the normalized mean number of useful
servers (5) for the randomized replication storage along with
the corresponding upper bound (3), for increasing number
of fragments V and a fixed fraction α = 0.25. The mean
number of useful servers have been normalized with respect
to the number of servers B for the ease of comparison.
From this figure, we observe that the mean number of useful
servers for the randomized storage of replicated file fragments
approaches the upper bound as the number of fragments V
grows large. We conducted empirical studies by simulating
a random (B, V,R) replication storage system for B = V ,
and fixed fraction α = 0.25. In Fig. 3, we plot the empirical
normalized average of number of useful servers as a function
of the fraction of downloaded fragments `

V for different
number of fragments V . For each V , we also tabulated the
average file download time in Table I. From this table and the
Fig. 3, we observe that the (B, V,R) storage codes with larger
V has uniformly higher average number of useful servers, and
smaller average download time.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of fragments downloaded `/V

N
or

m
al

iz
ed

us
ef

ul
se

rv
er

s
Ê[
N

(I
`
)]
/
B

Average-Random Replication-V-50
Upper bound-V-50
Average-Random Replication-V-100
Upper bound-V-100
Average-Random Replication-V-500
Upper bound-V-500
Average-Random Replication-V-1000
Upper bound-V-1000
Average-Random MDS-V-1000

Fig. 2. Plot of the normalized mean number of useful servers given in (5) for
random replication scheme, and the corresponding upper bound given in (3),
as the number of fragments V increases in the set {50, 100, 500, 1000} for
α = R/B = 0.25.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of fragments downloaded `/V

N
or

m
al

iz
ed

us
ef

ul
se

rv
er

s
Ê[
N

(I
`
)]
/B

Average-Random Replication-V-8
Average-Random Replication-V-12
Average-Random Replication-V-16
Average-Random Replication-V-20
Average-Random MDS-V-20

Fig. 3. Plot of the normalized empirical average number of useful servers
for random (B, V,R) replication scheme for B = V , α = R/B = 0.25, as
the number of fragments V increases in the set {8, 12, 16, 20}.

TABLE I
AVERAGE DOWNLOAD TIMES OF RANDOM (B, V,R) REPLICATION

STORAGE

Random storage code Average download time
B V R
8 8 2 26936.3

12 12 3 14922.4
16 16 4 9915.83
20 20 5 7324.77

IV. CONCLUSION

We investigated replication codes for latency minimization
in a distributed storage system with storage constraints. We
characterized the system performance in terms of the mean
number of useful servers, when the service distribution is
exponential. An important outcome of our investigations is
that replication codes combined with probabilisitic placement
and a larger fragmentation can lead to performances close to
the proposed lower bounds. In fact, our numerical studies show
that the average performance of random replication codes
is very competitive with MDS codes while also affording
simple encoding and decoding complexity. This motivates us
to further study replication based schemes with deterministic
placement strategies, their performance and other aspects of
their implementation. Other directions of research are upper
bounds on the mean download times and study of systems
with nonexponential fragment download times.

2344
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Aug. 2010.

[2] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regener-
ating codes for distributed storage,” in Allerton Conf. Commun. Ctrl
Comput., Sep. 2007, pp. 1–5.

[3] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 8, pp. 4683–4698, Aug. 2019.

[4] R. Bitar and S. E. Rouayheb, “Staircase codes for secret sharing with
optimal communication and read overheads,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 933–943, Feb. 2018.

[5] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in IEEE Inter. Symp. Info. Theory (ISIT), Jun.
2017, pp. 2900–2904.

[6] ——, “Minimizing latency for secure coded computing using secret
sharing via staircase codes,” IEEE Trans. Commun., Apr. 2020.

[7] S. Lin and D. J. Costello, Error control coding. Prentice hall, 2001,
vol. 2, no. 4.

[8] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence:
An analysis of hadoop usage in scientific workloads,” Proc. VLDB
Endow., vol. 6, no. 10, p. 853–864, Aug. 2013.

[9] F. Maturana, V. S. C. Mukka, and K. V. Rashmi, “Access-optimal linear
MDS convertible codes for all parameters,” in IEEE Inter. Symp. Info.
Theory (ISIT), 2020.

[10] R. M. Roth, Introduction to coding theory. Cambridge University Press,
2006.

[11] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed
storage using interference alignment,” in IEEE Inter. Symp. Info. Theory
(ISIT), Jun. 2010, pp. 161–165.

[12] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Feb. 2016.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, pp. 74–80, Feb. 2013.

[14] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[15] G. Joshi, E. Soljanin, and G. W. Wornell, “Queues with redundancy:
Latency-cost analysis,” SIGMETRICS Perform. Eval. Rev., vol. 43, no. 2,
pp. 54–56, Sep. 2015.

[16] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443–2457, Sep. 2016.

[17] P. Parag, A. Bura, and J.-F. Chamberland, “Latency analysis for dis-
tributed storage,” in IEEE Inter. Conf. Comp. Commun. (INFOCOM),
May 2017, pp. 1–9.

[18] A. Badita, P. Parag, and V. Aggarwal, “Sequential addition of coded
tasks for straggler mitigation,” in IEEE Inter. Conf. Comp. Commun.
(INFOCOM), Jul. 2020.

[19] ——, “Optimal server selection for straggler mitigation,” IEEE/ACM
Trans. Netw., vol. 28, no. 2, pp. 709–721, 2020.

[20] ——, “Single-forking of coded subtasks for straggler mitigation,”
IEEE/ACM Trans. Netw., 2021.

[21] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to re-
duce latency in large-scale parallel computing,” SIGMETRICS Perform.
Eval. Rev., vol. 43, no. 3, pp. 7–11, Dec. 2015.

[22] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis of coding
versus replication in cloud storage systems,” in IEEE Inter. Conf. Comp.
Commun. (INFOCOM), Jul. 2016, pp. 1–9.

[23] P. Peng, E. Soljanin, and P. Whiting, “Diversity/parallelism trade-off in
distributed systems with redundancy,” arXiv preprint arXiv:2010.02147,
2020.

[24] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving mapreduce
performance in heterogeneous environments with adaptive task tuning,”
in Int. Middle. Conf. (Middleware). Bordeaux, France: ACM, 2014.

[25] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Dec. 2016.

[26] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” SIGMETRICS Perform. Eval.
Rev., vol. 42, no. 1, pp. 599–600, Jun. 2014.

[27] H. Wang, J. Li, Z. Shen, and Y. Zhou, “Approximations and bounds
for (n, k) fork-join queues: a linear transformation approach,” in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2018, pp. 422–431.

[28] R. Jinan, A. Badita, P. Sarvepalli, and P. Parag, “Latency optimal storage
and scheduling of replicated fragments for memory-constrained servers,”
arXiv 2010.01589, 2020.

[29] P. Gopalan, G. Hu, S. Saraf, C. Wang, and S. Yekhanin, “Maximally
recoverable codes for grid-like topologies,” in ACM-SIAM Symp. Disc.
Algor. (SODA), May 2016, pp. 2092–2108.

2345
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 07,2022 at 08:30:11 UTC from IEEE Xplore. Restrictions apply.

		2021-08-30T16:20:35-0400
	Certified PDF 2 Signature

