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Abstract— Given the unpredictable nature of the nodes in
distributed computing systems, some of the tasks can be signifi-
cantly delayed. Such delayed tasks are called stragglers. Straggler
mitigation can be achieved by redundant computation. In max-
imum distance separable (MDS) redundancy method, a task is
divided into k subtasks which are encoded to n coded subtasks,
such that a task is completed if any k out of n coded subtasks are
completed. Two important metrics of interest are task completion
time, and server utilization which is the aggregate completed
work by all servers in this duration. We consider a proactive
straggler mitigation strategy where n0 out of n coded subtasks
are started at time 0 while the remaining n−n0 coded subtasks
are launched when !0 ≤ min {n0, k} of the initial ones finish.
The coded subtasks are halted when k of them finish. For this
flexible forking strategy with multiple parameters, we analyze
the mean of two performance metrics when the random service
completion time at each server is independent and distributed
identically (i.i.d.) to a shifted exponential. From this study, we
find a tradeoff between the metrics which provides insights into
the parameter choices. Experiments on Intel DevCloud illustrate
that the shifted exponential distribution adequately captures the
random coded subtask completion times, and our derived insights
continue to hold.

Index Terms— Straggler mitigation, distributed computing,
completion time, scheduling, forking points.

I. INTRODUCTION

MOTIVATED by scalability, availability, and reliability,
there has been a paradigm shift from centralized com-

putation at a large supercomputer to distributed computing
on a large cluster of regular compute servers to perform
complex tasks. In distributed compute setting, a single task is
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fragmented into a smaller number of subtasks, and processed
by the compute cluster. Task completion time is limited by the
slowest execution time of the parallel subtasks. The lagging
tasks are referred to as stragglers, and they delay the entire
task execution. Straggling servers is one of the challenges in
distributed computing.

Stragglers can be mitigated by adding redundant subtasks,
where a task divided into k subtasks can be encoded into
n redundant subtasks, and each coded subtask is processed
individually at a unique server. A popular redundancy tech-
nique to mitigate stragglers is replication, where each of the
finite k subtasks can be replicated to n

k servers each [2]–[4].
However, the task will only be done if one sever from each of
the n

k partitions finish processing their corresponding subtasks.
In [5], [6], the authors replicate subtasks only for a fraction
of k subtasks, and the subtask is said to be complete only if
any one of the corresponding replicated subtask is complete.
In general, redundancy can be achieved by erasure coding
schemes more general than replication. The key advantage of
erasure coding is that it reduces storage cost while providing
similar reliability as replicated systems [7], [8], and thus
has now been widely adopted for storage by companies like
Facebook [9], Microsoft [10], and Google [11]. It has been
shown that this more flexible redundancy scheme can also be
employed for certain computing tasks in distributed compute
systems [12]–[18].

We focus on an efficient erasure coding scheme called
maximum distance separable (MDS) coding [12], [15], where
multiple servers process coded version of k subtasks such that
the task is complete if any k out of n servers finish processing
their coded subtasks. MDS coding is a more general form
of redundancy than simple replication. We observe that even
though MDS codes are efficient, the decoding complexity is
polynomial in the length of the code [19], [20]. When the
decoding time is negligible as compared to the coded subtask
completion time, MDS codes are an attractive choice. In fact,
it has been shown in [21] that Intel Storage Acceleration
Library (ISA-L) provides a highly optimized implementation
of Reed-Solomon (RS) codes which significantly decreases the
time taken for encoding and decoding operations. Further, [21]
showed that ISA-L can achieve a significant large decoding
throughput of 163 Mbps, demonstrating negligible decoding
overheads for erasure-coded systems.

Assuming that each server is working on a unique
coded subtask, an additional benefit of redundancy schemes
is the lower completion time due to parallelization gains [4],
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Fig. 1. The start and completion times of different coded subtasks, for a
single-forked task, divided into k = 5 subtasks, MDS coded to n = 10 coded
subtasks, where n0 = 7 coded subtasks are initiated at n0 servers. After the
completion of !0 = 2 coded subtasks, remaining n1 = 3 coded subtasks are
initiated at n1 servers. The task completion time is the time to finish first
k = 5 coded subtasks.

[12]–[18], [20], [22]. However this latency reduction comes at
the cost of high server utilization [3], [4], [6]. High aggregate
utilization of all servers leads to increased operation cost and
hence it is desirable to reduce the server utilization. In this
setting, we consider the following important question. When
should the n coded subtasks be started to obtain an optimal
trade-off between task completion time and server utilization
cost? One option is to start all coded subtasks at time 0,
corresponding to the task request time. This leads to using all
n servers until the first k of them have finished, resulting in
low task completion time and a high server utilization. Another
option is to use only k servers and start with all of them at
time 0. This would help avoid the excess server utilization for
the remaining n−k servers, resulting in low server utilization
and larger task completion time.

A more flexible approach is to start with n0 < n coded
subtasks at time 0. When !0 < k of them are finished,
we launch the remaining n1 = n−n0 servers. This launching
time instant is called forking point, and the threshold !0 on
number of coded subtask completions is referred to as fork
task threshold. An example of this delayed launch of coded
subtasks is illustrated in Fig. 1 for n = 10, n0 = 7, !0 = 2,
where we plot the start and completion time for each coded
subtask for a single task.

In the first option of starting all n servers, we have n0 = n,
!0 = k, n1 = 0. This is the setting of an (n, k)-fork-join [23].
In the option of using only k servers and starting with all
of them, we have n0 = !0 = k. Thus, the proposed approach
affords a flexible framework for launching the coded subtasks.
It is not apriori clear as to how should these parameters be
chosen so that both the metrics are optimized. In this article,
we aim to find the impact of design parameters n0, n1, and !0

on the two metrics; the task completion time, and the server
utilization.

A. Related Work

Given the unpredictable nature of the nodes in distributed
systems, coding theoretic techniques have been used for strag-
gler mitigation in the face of uncertainty. Coding-theoretic
approaches have been shown to provide a tradeoff between
access latency and server utilization in distributed storage
systems [24]. It was shown in [22] that MDS codes are the
latency-minimizing code among a class of symmetric codes for

distributed storage systems. Coding theoretic techniques have
been provided for mitigating stragglers in matrix multiplica-
tion [15]–[18]. The authors of [12], [14] consider the problem
of computing gradients in a distributed system, and propose
a novel coded computation scheme tailored for computing a
sum of functions. While most of the works focus on the appli-
cation of coded computation to linear operations, coding has
also been found useful in distributed computing frameworks
involving nonlinear operations [13]. Efficient coding theoretic
techniques to reduce the communication cost in the process
of transferring the results of mappers to reducers have been
studied in [15], [25]–[28].

We note that we are considering task completion time and
server utilization for a single task. Mean task completion
time for a sequence of task arrivals for the (n, k)-fork-join
queue is considered in [3], [22]–[24], [29]–[33]. These articles
have provided analytical results for a static (n, k) redundancy
under various simplified settings. For memoryless service,
tight numerical bounds are presented in [29], analytical bounds
are provided in [23], [24], [30], [31], tight analytical approx-
imations in [22], and exact analysis for small systems in [3].
An exact analysis of tail index for Pareto-distributed file
sizes is studied in [33], and an exact analysis for random
independent scheduling for asymptotically large number of
servers in [32]. These works demonstrate the improvement
of task completion times with the use of coding. However,
this line of work does not take the server utilization into
account. In our work, we have generalized the static coded
redundancy studied in the above-mentioned articles. We show
that server utilization can be reduced by dynamic coded
redundancy, where the number of parallel servers available
to a task changes with time. To keep the analysis tractable,
we do not consider the task arrivals. In this case, dynamic
coded redundancy is tantamount to efficient launching times
of the different coded subtasks.

One of the cost-effective approaches to mitigate the effect
of stragglers is to either re-launch a certain task if it is
delayed, or preemptively assign each task to multiple nodes
and move on with the copy that completes first. Speculative
execution have been studied in [34], which acts after the
tasks have already slowed down. In a proactive mitigation
approach, one can launch redundant copies of a task hoping
that at least one of them will finish in a timely manner.
The authors of [2] perform cloning to mitigate the effect of
stragglers. The authors of [4], [6] analyzed the latency and
cost for replication-based strategies for straggler mitigation.
A machine learning approach for predicting and avoiding
these stragglers has been studied in [35]. Recently, coding-
theory-inspired approaches have been applied to mitigate the
effect of straggling as mentioned earlier. Single-fork analysis
with coding has been studied in [36], where k coded subtasks
are started at t = 0. Further, after a fixed deterministic time ∆,
additional n − k coded subtasks are started. Our work differs
from [36] since

(i) we allow for general number of initial coded subtasks,
(ii) the start time of new coded subtasks is random and

based on the completion time of certain number of coded
subtasks rather than a fixed constant, and
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(iii) our framework allows for an optimization of different
parameters to provide a tradeoff between server utiliza-
tion and task completion time.

We note that the problem is important even when there
are stochastic arrivals since this procedure of forking can be
used for any arriving task. The exact queueing analysis for
coded-tasks with forking is not straightforward to extend and
remains open, while the analysis in this article provide insights
on how to efficiently fork a task in lightly-loaded scenarios.
This scenario arises in the case of low arrival rates so that the
queues are empty with high probability, and hence the system
can be modeled as an M/G/1 queue where the service time of
a task is the completion time computed in this work. Thus, one
can achieve a tradeoff between the two performance metrics
for lightly loaded queueing systems.

B. Contributions

We characterize the means of the two performance metrics:
task completion time and the server utilization, for a single
(n, k)-MDS coded task with single-forking. The MDS coding
implies that the task is fragmented into k subtasks and encoded
into n coded subtasks, where completion of any k coded
subtasks finishes the task. The single-forking implies that the
task is started with n0 coded subtasks at the task request time,
and another n1 coded subtasks are started on completion of
!0 < k out of initial n0 coded subtasks.

1) We first show that when execution times are either con-
stant or i.i.d. random with bounded support and certain
constraints, then the regime of n0 < k is not interesting.

2) We then explicitly compute the means of two perfor-
mance metrics when the random execution time of each
coded subtask is assumed to be i.i.d. with a shifted
exponential distribution. This assumption is shown to be
a decent approximation of service completion times on
compute clusters [18], [36].

3) We compute the two performance metrics for the choice
of system parameters n0, n1, and !0, and demonstrate the
quantitative tradeoff between these two metrics. For com-
parison, we consider the no-forking case, when n0 = n.
We find there is no advantage to choose n0 < k for either
of the metrics as compared to no-forking case. This is
because the server utilization does not change with the
value of n0 when n0 < k while the task completion
time increases as n0 decreases. Thus, one should not
perform forking with n0 < k, and hence the only regime
of interest is n0 ≥ k.

4) In this regime n0 ≥ k, we make the following obser-
vations. Keeping parameters !0 and n fixed, we observe
that the mean server utilization is not monotone in the
initial number of coded subtasks n0, whereas the mean
task completion time decreases with n0 as expected. For
a fixed n0 and n, increasing the fork task threshold
!0 increases the task completion time while decreases
the server utilization. Thus, there is a tradeoff in the
two metrics and efficient choice of parameters can be
decided by the system designer based on the weighted
combination of the two metrics.

5) We empirically studied two-forking for a single task with
k subtasks encoded to n coded subtasks using MDS
coding, where execution times are i.i.d. with shifted expo-
nential distribution. We observed that the performance
curve obtained by two-forking does not offer significant
gains when compared to the single-forking for the choice
of parameters we selected.

6) We also performed numerical studies for single and
multiple-forking, when the execution time at individ-
ual servers has a heavy-tailed distribution. In particular,
we chose execution time distributions to be Pareto and
Weibull. We observed that insights derived from the
analytical study of single-forking with shifted exponential
distribution continues to hold in this case.

7) In addition to the analytical studies for the shifted
exponential distribution, we also studied the impact of
single and multiple-forking on a real compute cluster.
We observe that the execution time of coded subtask at
each server in the compute cluster can be well modeled by
the shifted exponential distribution, and hence the insights
obtained from the analytical studies continue to hold for
this real compute cluster.

C. Organization

The rest of the paper is organized as follows. Section II
describes the system model. In Section III, we present gen-
eral methodology for analytical computation of performance
metrics, and provide results for general execution time distri-
bution. Section IV provides the analytical results for single
forking point with shifted exponential distribution for execu-
tion time. In particular, we compute the performance metrics
for the two cases of n0 < k and n0 ≥ k. Section V provides
a performance tradeoff between the two metrics for single
forking point, and the comparisons to two-forking are made
in Section VI. Section VII provides the experimental results
on a real compute cluster, Intel DevCloud. Empirical studies
for heavy-tailed execution time distributions are provided in
Appendix G. Section VIII concludes the paper, with directions
for future work.

II. SYSTEM MODEL

In this section, we describe the different components of the
system model in detail. We consider a distributed compute
system with n identical servers. We will use the following
notations throughout this article. We denote the set of integers
by Z, the set of non-negative integers by Z+, the set of positive
integers by N, the set of first n consecutive positive integers
by [n], the set of reals by R, and the set of non-negative
reals by R+. For two real numbers a, b, the minimum is
denoted by a ∧ b, and the maximum is denoted by a ∨ b.

A. Coding Model

We assume that each compute task can be divided into k
subtasks, which are encoded into n coded subtasks and sent
to n distinct servers. We assume the tasks to be MDS coded,
which implies that the coded subtask completion at any k out
of these n distinct servers results in the completion of the
original task.
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B. Single-Fork Scheduling

We assume a single-fork scheduling, where a task starts at
n0 parallel servers at time t0 = 0, and adds n1 = n − n0

servers at a random time instant t1 corresponding to service
completion time of the !0th coded subtask out of n0 initial
servers. The total task completion time is given by t2 when
the remaining coded subtasks at !1 = k − !0 servers are
completed. Since we can’t have more completions than the
number of servers in service and the number of subtasks,
we have !0 ≤ n0 ∧ k and !0 + !1 = k ≤ n. We denote
the service completion time of rth coded subtask in stage
i ∈ {0, 1} by ti,r . Since each stage consists of !i service
completions, we have r ∈ {0, . . . , !i} such that ti,0 = ti and
ti,!i = ti+1,0 = ti+1. We denote the number of ON servers in
the duration [ti,r, ti,r+1) of rth coded subtask completion in
stage i by the number Ni,r.

C. Service Model

Each server i ∈ [n] is assumed to have an i.i.d. random exe-
cution time Ti with distribution function F for each scheduled
coded subtask on this server. Recent works [15], [24], [31],
[37] suggest that a shifted exponential distribution is a good
fit for modeling the service time distribution in distributed
computation networks. It is suggested that the service time
for each computation of coded subtask can be modeled by
two aggregate components; a constant server start-time and
a random memoryless component. These studies along with
the goal of analytical tractability influenced us to assume
the service time distribution for each coded subtask to be
a shifted exponential with rate µ and shift c, such that the
complementary distribution function F̄ = 1 − F is

F̄ (x) ! P{T1 > x} = {x∈[0,c]} + e−µ(x−c)
{x≥c}. (1)

D. Performance Metrics

The task completion time for k coded subtasks is denoted
by S and the server utilization by W . Since, we are assuming
a single-forking scenario, we have two contiguous stages. The
time interval [t0, t1) corresponds to the stage 0, and the interval
[t1, t2] corresponds to the stage 1. The task completion time
is sum of the duration of two stages, and can be written as
S = t2 = (t2 − t1) + (t1 − t0). The duration of stage i
can be written as the following telescopic sum of duration of
rth coded subtask completion in stage i,

ti+1 − ti =
!i−1∑

r=0

(ti,r+1 − ti,r). (2)

The server utilization is measured in terms of the amount of
work done by all servers that were on until the task completion.
This utilization is the sum of the utilization in each of the two
stages, written as W = W0 + W1. Assuming that a server is
discarded after its coded subtask completion, we can write the
server utilization in stage i as the time-integral of number of
servers that are on in the ith stage duration [ti, ti+1). Since
the number of on servers in the duration [ti,r, ti,r+1) is the

constant number Ni,r , we can write the server utilization in
stage i as

Wi =
!i−1∑

r=0

Ni,r(ti,r+1 − ti,r). (3)

We are interested in the optimal tradeoff between the mean
task completion time E [S] and the mean server utilization
E [W ] for k coded subtasks scheduled in two stages over
these n servers. To this end, we will analytically compute the
mean task completion time and the mean server utilization,
for a fixed number of servers n, as a function of choice of
initial servers n0 and threshold !0 on number of coded subtask
completions for forking.

III. COMPUTATION OF PERFORMANCE METRICS

In this section, we will write the task completion time and
the server utilization when coded subtask completion times at
n servers are random and i.i.d. denoted by T ! (T1, . . . , Tn),
with a common general distribution F : R+ → [0, 1]. Recall
that in stage 0, we switch on n0 initial servers at instant t0 = 0.
This stage is completed at the single-forking point denoted by
the instant t1, when !0 coded subtasks out of n0 are completed.
At the beginning of stage 1, additional n1 = n − n0 servers
are switched on, each working on a unique coded subtask.
The task is completed at the end of this second stage denoted
by instant t2, when remaining k − !0 coded subtasks are
completed. At the instant ti that indicates the beginning of
stage i, the number of servers that are on is given by Ni,0,
where N0,0 = n0 and N1,0 = n0−!0. Therefore, we can write
Ni,0 =

∑i
j=0(nj−!j)+!i. Further, in the duration [ti, ti,r+1),

first r servers in stage i available from the time instant ti
have completed coded subtasks, and hence Ni,r = Ni,0 − r.
Therefore, the server utilization in stage i is

Wi =
!i−1∑

r=0

(ti,r+1 − ti,r)
( i∑

j=0

(nj − !j) + !i−r
)
. (4)

Rearranging terms and interchanging summation order in
Eq. (4), we observe that the server utilization in stage i can
be written

Wi = (ti+1 − ti)
i∑

j=0

(nj − !j) +
!i∑

r=1

(ti,r − ti).

Definition 1: We define a family of functions fn : Rn ×
[n] → R for each n ∈ N such that fn(x, k) is the kth order
statistics of n real values x = (x1, . . . , xn).

Without loss of generality, we can assume that the initial n0

coded subtasks are forked at first n0 servers with execution
times (T1, . . . , Tn0). Then, the completion time of rth coded
subtask in stage 0 is given by

t0,r = fn0(T1, . . . , Tn0 , r). (5)

We can write the duration of stage 0 as t1− t0 = t1 = t0,!0 ,
and the server utilization in this stage as

W0 = t1(n0 − !0) +
!0∑

r=1

t0,r.
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Remark 1: As the number of initial servers n0 increases,
the collection (T1, . . . , Tn0) increases. For a fixed threshold !0

and any r ∈ [!0], the rth order statistics cannot increase as n0

increases. Therefore, it follows that the completion time t0,r

of rth coded subtask in stage 0 is a non-increasing function of
the number of initial servers n0 for a fixed threshold !0 and
any r ∈ [!0].

Remark 2: For a fixed number of initial servers n0, the
forking instant t1 = t0,!0 is a non-decreasing function of
threshold !0.

Remark 3: We observe that the order statistics have the
linear shift property, i.e. for any x ∈ Rn and c ∈ R

fn(c + x, k) = c + fn(x, k).

Remark 4: We further observe that for a vector x ∈ Rn and
y ∈ Rm such that supi∈[m] yi ≤ infj∈[n] xj , then we have

fn(x, k) = fn+m(x, y, m + k).

From Remark 3 and Remark 4, it follows that the comple-
tion time of rth coded subtask in stage 1 is given by

t1,r = fn(T1, . . . , Tn0 , t1 + Tn0+1, . . . , t1 + Tn, !0 + r). (6)

We can write the duration of stage 1 as t2− t1 = t1,!1 − t1,
and the server utilization in this stage as

W1 = (t2 − t1)(n − k) +
!1∑

r=1

(t1,r − t1).

Remark 5: For a fixed threshold !0, the forking instant
t1 = t0,!0 is a non-increasing function of initial number of
servers n0. Therefore, it follows from Eq. (6) that t1,r is
non-increasing function of n0 for each r ∈ [!1]. In particular,
the task completion time t2 = t1,!1 is non-increasing function
of initial number of servers n0.

Remark 6: Since t1 is non-decreasing function of threshold
!0 for a fixed number of initial servers n0, it follows that
t2 = t1,!1 is also a non-decreasing function of threshold !0.

Above remarks imply that to minimize the service comple-
tion time S, the number of initial servers n0 should be as large
as possible, and the fork task threshold !0 should be as small
as possible. Next, we focus on the impact of parameters n0, !0

on the server utilization, which can be written as

W = t2(n − k) + t1(n0 − n) +
!0∑

r=1

t0,r +
!1∑

r=1

t1,r. (7)

The total server utilization consists of four terms. Except for
the term t1(n0−n), the rest three terms are all non-increasing
function of number of initial servers n0. Therefore, in general,
the monotonicity of the server utilization is not clear as a
function of number of initial servers n0 and coded subtask
threshold !0.

We will show that when the service distribution satisfies
certain properties, it is always beneficial to start with coded
subtasks at n0 ≥ k servers. We first consider the case when
the subtask completion times are identically constant.

Lemma 1: When the subtask completion times are identi-
cally constant, the optimal number of initial servers is number
of uncoded subtasks k.

Proof: The proof is provided in Appendix A.
We next consider the case of random execution times, where

c1 ≤ Ti ≤ c2 for each server i ∈ [n].
Theorem 1: Consider a distributed compute system with

n servers and general coded subtask completion times
(T1, . . . , Tn), such that Ti ∈ [c1, c2] for all i ∈ [n] and the
constants satisfy the following condition

c2

c1
≤ min

{
2,

(n − 1)
(k − 1)

}
.

Then, for single-forking with n0 < k subtasks has higher
server utilization and task completion time when compared
to a distributed compute system with n0 = !0 = k servers
initialized at time t0 = 0.

Proof: The proof is provided in Appendix B.
In this section, we observed that the behavior of server

utilization depends on the distribution of execution times in
general. However, when the execution time is constant, or the
execution time is random with finite support satisfying certain
conditions, we observed that the case n0 < k is not interesting.
We will see that this observation continues to hold true for
random variables with infinite support, for specific parameter
values.

IV. SHIFTED EXPONENTIAL DISTRIBUTION

In this section, we derive the mean task completion time
and the mean server utilization when the execution time dis-
tribution is shifted exponential with parameters (c, µ). Recall
that the shifted exponential distribution for coded subtask com-
pletion times suggest that the execution time for each coded
subtask computation consists of two components; a constant
server start-time c and a random memoryless component of
rate µ.

From Eq. (2) on the duration of stage i, and Eq. (4) on server
utilization of stage i, we observe that they both depend on the
intervals [ti,r−1, ti,r) for r ∈ [!i]. The random variable ti,r is
the rth coded subtask completion time in stage i and is related
to order statistics of random variables. As such, we need the
following two standard results on order statistics.

Remark 7 ( [38]): Let T ∈ Rn be an i.i.d. random vector
with common distribution function F , then the distribution of
jth order statistic fn(T, j) of this collection is given by

P {fn(T, j) ≤ x} =
n∑

i=j

(
n

i

)
F (x)iF̄ (x)n−i.

Remark 8: For the i.i.d. vector T ∈ Rn
+ of (c, µ)-shifted

exponential random execution times, we can define the shifted
vector T ′ ! T − c such that the ith component is T ′

i = Ti − c
for all i ∈ [n]. Then, the i.i.d. random vector T ′ is distributed
exponentially with rate µ.

Remark 9 ([38]): We define Xn
j ! fn(T ′, j) for all j ∈ [n]

and Xn
0 = 0. From the memoryless property of T ′

i , we observe
the following equality in the joint distribution of two
vectors

(Xn
j − Xn

j−1 : j ∈ [n]) =
(

T ′
j

n − j + 1
: j ∈ [n]

)
.
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Recall that the task completion time can be written as the
sum of durations of stage 0 and stage 1, and the server uti-
lization can be decomposed into sum of the server utilization
in each of the two stages. Accordingly, we will separately
analyze these two stages in the following subsections.

A. Stage 0 Analysis
In this subsection, we would compute the mean of the

interval [t0,r−1, t0,r) for each r ∈ [!0], and subsequently
obtain the mean duration of the stage 0, and the mean server
utilization in this stage.

Lemma 2: For the single-forking scheme with i.i.d. shifted
exponential coded subtask completion times, the mean time
between two coded subtask completions in stage 0 is

E [t0,r − t0,r−1] =






c +
1

µn0
, r = 1,

1
µ(n0 − r + 1)

, r ∈ {2, . . . , !0} .
(8)

Proof: Since t0,r is the completion time of first r coded
subtasks out of n0 parallel coded subtasks, we have t0,r =
c + Xn0

r from Remark 8. Hence, for each r ∈ [!0], we have

t0,r − t0,r−1 = (c + Xn0
r ) − (c + Xn0

r−1).

The coded subtasks are initiated at time t0,0 = t0 = 0 and
hence the first coded subtask is completed at t0,1 − t0,0 =
Xn0

1 . From Remark 9, we can write the following equality in
distribution

t0,r − t0,r−1 =






c +
T ′

1

n0
, r = 1,

T ′
r

(n0 − r + 1)
, r ∈ {2, . . . , !0} ,

where (T ′
1, . . . , T

′
n) are i.i.d. exponentially distributed random

variables with rate µ. Taking expectations on both sides, we get
the result.

Corollary 1: For the single-forking scheme with i.i.d.
shifted exponential coded subtask completion times, the mean
forking time is

E [t1] = c +
!0∑

r=1

1
µ(n0 − r + 1)

, (9)

and the mean server utilization in stage 0 is given by

E [W0] =
1
µ

!0 + cn0. (10)

Proof: Taking expectation on both sides of Eq. (2)
and Eq. (4), we can find the mean of forking time and
mean of server utilization respectively, as weighted sum of
E [t0,r − t0,r−1] for r ∈ [!0]. The result follows by substituting
the mean time between consecutive coded subtask completions
in stage 0, computed in Lemma 2.

B. Stage 1 Analysis
In this subsection, we will compute the mean of the interval

[t1,r−1, t1,r) for each r ∈ [!1], and subsequently obtain the
mean duration of the stage 1, and the mean server utilization
in this stage. In stage 0, all the n0 servers are initialized at

time t0 = 0, and hence the start-up time for all n0 servers
in stage 0 is synchronized. This simplified the computation of
mean time between consecutive coded subtask completions in
stage 0.

However, this is not the case in stage 1 which begins at
forking time t1. At this instant, the remaining coded subtasks
are initiated at additional n1 servers. These additional servers
have synchronized start at the forking time t1, and all of them
have the identical constant start-up time c. Therefore, none of
them can finish executing before time t1+c. However, there are
n0−!0 remaining servers from stage 0, which were initialized
at time t0 = 0. These servers are not synchronized with the
servers forked at time t1. Specifically, any of these servers can
finish executing in the interval (t1, t1+c]. This complicates the
computation of mean time between consecutive coded subtask
completions in stage 1.

We denote the number of coded subtask completions in the
interval (t1, t1 + c] by a random variable N1(c) that takes
values in {0, . . . , n0 − !0}. The event of this random variable
taking a value j − !0 for any j ∈ {!0, . . . , n0} is denoted by

Ej−!0 ! {N1(c) = j − !0} . (11)

Since in the time interval [0, t1 + c] only servers that
complete executing their coded subtasks are from initial n0

servers, and !0 of them finish at time t1, the event Ej−!0 is
the event of j completions before any of the additional n1

servers enter their memoryless phase. Therefore, we can write

Ej−!0 =
{
Xn0

j ≤ c + Xn0
!0

< Xn0
j+1

}
. (12)

In the following we would describe the duration between
two consecutive coded subtask completions in stage 1 for three
cases. First, when the completions occur before any of the
stage 1 forked servers enter their memoryless phase. In this
case, we can write the interval between rth and (r−1)th coded
subtask completions for r ∈ [N1(c)] as

(t1,r − t1,r−1) = (Xn0−!0
r − Xn0−!0

r−1 ). (13)

Second, the duration between completions just before and
after the stage 1 forked servers enter their memoryless phase.
There is a phase change at time t1 + c, and we can write the
difference between rth and (r−1)th coded subtask completion
time instants for r = N1(c) + 1, as the following telescopic
sum of two durations

(t1,r − t1,r−1) = [(t1,r − (t1 + c)) + (t1 + c − t1,r−1)]. (14)

Third, the completion durations post the first completion
after stage 1 forked servers enter their memoryless phase. Due
to memoryless property, there are n− !0−N1(c) i.i.d. parallel
memoryless servers executing from time t1 + c. Therefore,
we can write the interval between rth and (r − 1)th coded
subtask completions for r ∈ {N1(c) + 2, . . . , k − !0} as

(t1,r − t1,r−1) = (Xn−!0−N1(c)
r−N1(c)

− Xn−!0−N1(c)
r−N1(c)−1 ). (15)

We conclude that the duration between (r − 1)th and rth
coded subtask completions depends on, whether r ∈ [N1(c)],
r = N1(c)+1, or N1(c)+1 < r ≤ k− !0. Therefore, we can
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write the mean of this duration, in terms of the event indicators
( Ej−!0

: !0 ≤ j ≤ n0 ∧ k), as

E [(t1,r − t1,r−1)]

=
n0∧k∑

j=!0

E
[
(t1,r − t1,r−1)( {r≤j−!0}

+ {r=j−!0+1} + {r>j−!0+1})
∣∣ Ej−!0

]
P (Ej−!0 ).

(16)

Thus, to evaluate the above mean, we first need to compute
the probability mass function of the discrete valued random
variable N1(c). We denote the probability of an exponential
random variable being smaller than or equal to c by

α ! 1 − e−µc. (17)

That is, α is the probability that any remaining n0 − !0

servers initialized at time 0, finish executing their coded
subtask in the interval (t1, t1 + c].

Lemma 3: The probability distribution of the number of
coded subtask completions N1(c) in the interval (t1, t1 + c]
for !0 ≤ j ≤ n0 is given by pj−!0 ! P (Ej−!0) where

pj−!0 =
(

n0 − !0

j − !0

)
αj−!0 (1 − α)(n0−j), (18)

and α is defined in Eq. (17).
Proof: The detailed proof is provided in Appendix C.

In the following, we will find the conditional mean for
the duration between coded subtask completions in Stage 1.
For m ∈ {0, . . . , (n0 ∧ k) − !0}, we compute the conditional
mean

E
[
(t1,r − t1,r−1)

∣∣ Em

]
, r ∈ [k − !0]. (19)

We next provide a definition that is needed to compute this
conditional mean.

Definition 2: We denote the Pochhammer function (a)n !
Γ(a+n)

Γ(a) to define the z-transform of hypergeometric series as

pFq(z) ! pFq

[a1, . . . , ap

b1, . . . , bq
; z

]
=

∞∑

n=0

∏p
i=1(ai)nzn

∏q
j=1(bj)n(n)!

. (20)

Because generalizations of the above series also exist [39],
this series is referred to here as the hypergeometric series
rather than the generalized hypergeometric series.

As shown in Eq. (16), we need to compute three different
conditional means to compute the mean E [t1,r − t1,r−1].
Following three propositions provide the conditional means for
the cases when r ≤ j− !0, r = j− !0 +1, and r > j− !0 +1.
The proofs are provided in Appendix E.

Proposition 1 (Phase-1): Let m ∈ {0, . . . , (n0 ∧ k) − !0},
α = 1− e−µc, and the z-transform pFq(z) of hypergeometric
series defined in Eq. (20). Then, for any r ∈ [m], we have

E [(t1,r − t1,r−1)|Em] = 2F1

( 1, r

m + 2
; α

) rα

µ(m + 1)
. (21)

Proposition 2 (Phase-2): For r = j − !0 and α = 1− e−µ,
we have

E [(t1,r+1 − t1,r)|Ej−!0 ] =
c

αr
−

r∑

i=1

αi−r

iµ
+

1
µ(n − j)

.

(22)

Proposition 3 (Phase-3): For r > j−!0 and α = 1−e−µc,
we have

E [(t1,r+1 − t1,r)|Ej−!0 ] =
1

µ(n − !0 − r)
. (23)

We can now compute the unconditional mean of the interval
between (r − 1)th and rth coded subtask completion times
in Stage 1. This unconditional mean can be computed by
substituting the conditional means computed for three different
phases in Proposition 1, Proposition 2, Proposition 3, and
probability mass function of N1(c) computed in Lemma 3,
in Eq. (16).

Corollary 2: The mean duration between (r− 1)th and rth
completion of coded subtasks in Stage 1 is given by

E [t1,r − t1,r−1]

=
(n0∧k)−!0∑

m=0

pm

[ 1
µ(n − !0 − r + 1) {r>m}

+
( c

αr−1
−

r−1∑

i=1

αi−r+1

iµ
+

1
µ(n − j)

)
{r=m}

+ 2F1

( 1, r

m + 2
; α

) rα

µ(m + 1) {r≤m}

]
.

C. Performance Metrics Computation

Since we have defined the unconditional mean for the
duration between two coded subtask completions in both
Stage 0 and Stage 1, we can now compute the means of task
completion time and server utilization. We saw in Section III
that when the service distribution satisfies certain properties,
it is always beneficial to start with coded subtasks at n0 ≥ k
servers. We will show that this continues to hold true for
shifted exponential distribution, even though it doesn’t satisfy
any of those certain properties. Accordingly, we consider both
the possibilities n0 < k and n0 ≥ k.

1) Case n0 < k: Recall that fork task threshold !0 ≤ n0 <
k for this case. That is, n0 initial servers can never complete
the k coded subtasks, and hence t2 > t1 + c almost surely.
We now compute the mean task completion time and mean
task utilization for n0 < k case.

Theorem 2: For the single-forking of a single task on n
servers, with the initial number of servers n0 < k, the mean
server utilization is

E [W ] = nc +
k

µ
. (24)

The mean task completion time for this case is

E [t2] = c + E [t1] +
1
µ

n0∑

j=!0

pj−!0

k−1∑

i=j

1
(n − i)

, (25)

where E [t1] is given in Eq. (9) and pj−!0 is given in Eq. (18).
Proof: The detailed proof is provided in Appendix F.

Remark 10: We make the following three observations.
1) From Theorem 2, it follows that the mean server utiliza-

tion E [W ] remains unchanged for all values of initial
number of servers n0 < k and fork task threshold !0.
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2) From Remark 5, it follows that the mean task completion
time E [t2] is a non-increasing function of the number of
initial servers n0.

3) From Remark 6, it follows that the mean task completion
time E [t2] is a non-decreasing function of the fork task
threshold !0.

From the above observations, we conclude that the joint best
choices for (n∗

0, !
∗
0) are (k − 1, 1), when n0 < k.

Remark 11: Consider the no-forking case when n0 = n,
i.e. when we initialize all n coded subtasks at unique servers
at time 0. From Remark 5, the mean task completion time is
lowest for this case, among all choices of n0. Further, for all
coded subtasks r ∈ [k], we have t1,r − t1,r−1 = Xn

r − Xn
r−1.

From Remark 9, it follows that

E [t1,r − t1,r−1] =
1

µ(n − r + 1)
, r ∈ [k].

Therefore, the mean server utilization is nc + k
µ , identical

to that for the case when n0 < k.
Thus, as compared to no-forking, a single-forking with

n0 < k has the same mean server utilization while it has
higher mean task completion time. Therefore, we focus only
on the case when n0 ≥ k.

2) Case n0 ≥ k: In this case, the initial number of servers
n0 is always greater than the required number of coded
subtasks k. Hence, the number of completed coded subtasks
!0 ∈ {0, . . . , k} at the forking point t1. The mean task
completion time and the mean server utilization for n0 ≥ k,
are given in the following theorem.

Theorem 3: For the single-forking of a single task on n
servers, with the initial number of servers n0 ≥ k, the mean
task completion time E [t2] is

E [t1] +
[ k−!0∑

r=1

E [t1,r − t1,r−1]
]

{!0<k}. (26)

The mean server utilization E [W ] for this case, is

E [W0] +
k−!0∑

r=1

(n − !0 − r + 1)E [t1,r − t1,r−1] {!0<k}.

(27)

The mean duration E [t1,r − t1,r−1] is given in Corollary 2.
The mean forking time E [t1] and the mean server utilization
E [W0] in Stage 0 are given in Corollary 1.

Proof: Recall that since completion of any k coded
subtasks suffice for the task completion, the fork task threshold
!0 ≤ k. When fork task threshold !0 = k, all the required k
coded subtasks are finished on initial n0 servers without the
need of any forking. In this case,

t2 = t1 {!0=k}, W = W1 {!0=k}. (28)

When fork task threshold !0 < k, the task completion occurs
necessarily in Stage 1. Therefore, we have

t2 = (t1 + (t2 − t1)) {!0<k}, W = (W1 + W2) {!0<k}.

The result follows from Eq. (2) for the duration t2 − t1 of
Stage 1 and Eq. (4) for server utilization W2 in Stage 1.

Fig. 2. The empirical mean of task completion time as a function of fork
task threshold !0 ∈ [n0] for single-forking, when the number of initial servers
n0 < k = 12.

Remark 12: We observe that when n0 ≥ k, the mean server
utilization depends on the initial number of servers n0 as well
as the total number of servers n, unlike the case n0 < k where
this utilization depends only on the total number of servers n.

In the following section, we numerically investigate the
tradeoff between the two performance metrics, which allows us
the proper choice of system parameters to work in a specified
regime.

V. NUMERICAL STUDIES: SINGLE-FORKING

In this section, we evaluate the empirical performance
of single-forking systems, by Monte Carlo methods [40].
We simulated multiple instances for a single task, with sub-
task fragmentation k = 12 and a maximum redundancy
factor of n/k = 2. That is, we choose the total number
of servers n = 24. Coded subtask completion time at each
server was chosen to be an i.i.d. random variable having
a shifted exponential distribution, with the shift parameter
c = 1 and the exponential rate µ = 0.5. For these values
of system parameters, we computed empirical average of task
completion times and server utilizations. We compare the two
cases n0 < k and n0 ≥ k with no-forking case n0 = n, where
all the available servers are used as initial servers.

We first study the case when n0 < k. For this case, we plot
the empirical mean of task completion time as a function of
fork task threshold !0 ∈ [n0] in Fig. 2, for different values of
initial servers n0 ∈ {3, 5, 7, 9, 11}. The analytical results in
Theorem 2 are substantiated, by observing that the empirical
mean of task completion time is increasing with fork task
threshold !0 and decreasing with initial number of servers n0.
In this case, the empirical mean of server utilization is constant
for any choice of n0 and !0, and hence it is not depicted.
From Fig. 2, we infer that as compared to the no-forking
case of n0 = n, the case of single-forking with n0 < k
has higher average task completion time for the same average
server utilization. Thus, the regime n0 < k is not interesting
for practical applications.

We next study the case when n0 ≥ k. For this case, we plot
the empirical means of task completion time in Fig. 3 and
server utilization in Fig. 4, both as a function of fork task
threshold !0 ∈ [k], for different values of initial servers n0 ∈
{12, 13, 14, 16, 18, 20}. The analytical results in Theorem 3
are substantiated by observing that the empirical mean of
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Fig. 3. The empirical mean of task completion time as a function of fork
task threshold !0 ∈ [k] for single-forking, when the number of initial servers
n0 ≥ k = 12.

Fig. 4. The empirical mean of server utilization as a function of fork task
threshold !0 ∈ [k] for single-forking, when the number of initial servers
n0 ≥ k = 12.

task completion time increases with fork task threshold !0

and decreases with initial number of servers n0. Further,
the empirical mean of server utilization decreases with fork
task threshold !0. As expected, we observe that the mean
server utilization is highest for no forking when the number
of initial servers n0 = n, i.e., this curve is above all the
other curves corresponding to n0 < n. Further, when the
fork task threshold !0 = k, then the mean server utilization
is monotonically smaller in the number of initial servers.
However, we observe that the different server utilization curves
cross when initial servers n0 < n. This implies that the lower
number of initial servers doesn’t necessarily imply that the
mean server utilization is uniformly smaller for all fork task
thresholds. For this case, the mean server utilization curves
cross for different fork task thresholds. Therefore, for each
fork task threshold !0, the mean server utilization is not a
monotone function of n0, there exists an optimal number of
initial servers n0 that minimizes the mean server utilization.

From Fig. 3 for average task completion time and Fig. 4 for
average server utilization, we conclude that there is a tradeoff
between the two performance measures as a function of fork
task threshold !0. The single forking tradeoff between the
two performance metrics of interest is plotted in Fig. 5, for
different number of initial servers k ≤ n0 ≤ n. As discussed
in Section I, we observe that the task completion time is
minimized when all the n servers are initialized at time 0,
i.e. n0 = n. This corresponds to no-forking case and has
the highest server utilization. Further, for any single forking

Fig. 5. The empirical mean of server utilization as a function of the
empirical mean of task completion time for single-forking by increasing fork
task threshold !0 ∈ [k] from left to right. The different curves correspond
to different values of initial servers n0 ∈ {12, 13, 14, 16, 18, 20}, where
k = 12.

with n0 < n and for task threshold !0 < k, the mean server
utilization remains same to no-forking case, and the mean
task completion time increases. Therefore, we only focus on
the case when the initial number of servers n0 ∈ {k, . . . , n}.
the fork task threshold !0 ∈ {0, 1, . . . , (n0 ∧ k)}. The Fig. 5
suggests that for the number of initial servers n0 < n, there
is a tradeoff between the task completion time and the server
utilization for different fork task thresholds !0 ∈ [k].

We next compare the single-forking case of k ≤ n0 < n
and the no-forking case of n0 = n. From Fig. 5, we observe
that the average task completion time increases only 17.635%
while the average server utilization can be decreased 8.3617%
taking !0 = k, for n0 = 20 when compared to n0 = n.
However, we see that average server utilization can’t be
reduced below 8.3617% for n0 = 20, for any choice of fork
task threshold !0 ≤ k. In order to have further reduction
in average server utilization, one can choose the number of
initial servers n0 = 18. This choice of n0 = 18 reduces
the average server utilization by 12.43% at an expense of
31.888% increase in average task completion time, when
compared to the no-forking case. The intermediate points on
the performance curve for n0 = 18 provide additional tradeoff
points that can be chosen based on the desired combination
of the two metrics as required by the system designer. One
can further reduce the average server utilization by choosing
lower values of n0, until we reach the lowest possible choice
of n0 = k. This choice reduces average server utilization
by 24.976% by having 207.49% increase in the average task
completion time, as compared to the no-forking case.

Thus, we see that appropriate choice of n0 and !0 provide
tradeoff points that help reduce the average server utilization
at the expense of increased average task completion time.
We note that the insights obtained from this single-forking
study for service time requirements having shifted exponential
distribution, continue to hold when distributions are heavy-
tailed. The corresponding empirical results for single-forking
with heavy-tailed service time requirements are presented for
Pareto distribution in Appendix G-A, and for Weibull distri-
bution in Appendix G-B. Interestingly for these distributions,
n0 < k is also an interesting regime for certain choice of
distribution parameters.
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VI. NUMERICAL STUDIES: TRADEOFF

BETWEEN THE METRICS

Consider a multi-forking scenario, under the limitation of
finite number of servers n per compute task. That is, for an
m-forking case, the free variables are fork task threshold
sequence (!0, . . . , !m) and number of forked servers sequence
(n0, . . . , nm), such that

∑m
i=0 !i = k and

∑m
i=0 ni ≤ n.

The single-forking results in Theorem 3 suggest that, the
tradeoff between the two performance metrics (the mean
task completion time E [S] and the mean server utilization
E [W ]), should continue to exist for the general case of
multiple-forking points. However, the selection of fork task
threshold sequence and the corresponding number of forked
servers sequence, for a better tradeoff between these two
performance metrics, is a multi-dimensional optimization
problem and not easy to evaluate.

To understand multi-forking, we can empirically compute
the means of two performance metrics for a given choice
of fork task threshold sequence and forked server sequence.
We then find performance points for all such choices, and
take the lower envelope of all performance points to obtain
the optimal performance curve. Formally, finding the lower
envelope of this performance curve is equivalent to solving
the following integer programming problem for all tradeoff
parameters β,

min
(n0,...,nm),(!0,...,!m)

E [S] + βE [W ]

s.t. (n0, . . . , nm) ∈ Zm+1
+ , (!0, . . . , !m) ∈ Zm+1

+ ,

and !i ≤
i∑

j=0

nj for all i ∈ [m − 1],

and
m∑

i=0

ni ≤ n,
m∑

i=0

!i = k. (29)

For the system simulation, we take the shifted exponential
distribution for the coded sub-task execution time, with shift
c = 1 and rate µ = 0.5. For a single task, we chose the number
of subtasks k = 12, that is encoded to n = 24 coded subtasks.
In order to perform the optimization over discrete number of
choices, we compute the objective for each feasible choice of
constraints for a given β, and then choose the best parameters.

We plot the optimal tradeoff between empirical means of
task completion time and server utilization for two-forking
in Fig. 6. In the same figure, we also plot the performance
curve of single-forking for comparison. We observe that the
performance curve for two-forking is only marginally below
the corresponding curve for single-forking. Further, the fig-
ure illustrates the tradeoff between the metrics, even for single
forking.

An investigation of optimal forking points and the corre-
sponding sequence for number of forked servers is an impor-
tant future research direction. The insights obtained from the
multi-forking study when service time requirements for each
coded subtask has a shifted exponential distribution, continues
to hold when the distribution is heavy-tailed. The supporting
numerical results for multi-forking with Pareto distribution is

Fig. 6. The optimal tradeoff between empirical means of task completion
time and server utilization, for both single-forking and two-forking.

presented in Appendix G-A, and with Weibull distribution in
Appendix G-B.

VII. EXPERIMENTS ON INTEL DEVCLOUD SERVERS

To validate our findings, we performed experiments on
a real compute cluster called Intel DevCloud. In particular,
the objective of our experiment was to answer the following
questions.

1) Is it possible to get a tradeoff between the average server
utilization and average task completion time on real cloud
setup with our forking mechanism?

2) Are the tradeoff curves for this practical setup qualita-
tively similar to the one predicted by the analytical study,
i.e. can the distribution of random execution times be
modeled as a shifted exponential?

Intel DevCloud is a cloud computing platform made avail-
able by Intel [41] for several profiles of researchers, students
and professional engineers.1 Intel DevCloud cluster consists
of compute nodes, storage servers, and the login node. Each
node has Intel Xeon processor of the Skylake architecture
(Intel Xeon Scalable Processors family), an Intel Xeon Gold
6128 CPU, on-platform memory of 192 GB and a Gigabit
Ethernet interconnect.

A. Setup

We performed single-forking and two-forking experiments
on this compute cluster. A single task was divided into k = 12
subtasks, and encoded to n = 24 coded subtasks, such that
execution of any k out of n coded subtasks suffice for the task
completion. Specifically, we considered the coded subtask to
be the addition of 6 × 109 positive integers.

In our experiment, we reserved one node per coded subtask.
The empirical average of completion times for these coded
subtasks was roughly 600 seconds on each executing node.
We implemented both single-forking and two-forking. As soon
as a coded subtask is completed, we logged that time stamp
into a log file. At each forking point, multiple coded subtasks
are synchronously initialized at unique nodes. This is achieved
by explicitly requesting one distinct compute node per coded
subtask. This ensures that all forked coded subtasks start at

1The authors would like to thank Intel for giving us access to the cluster
for this project.
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Fig. 7. The empirical distribution of coded subtask completion time, obtained
from the Intel DevCloud experiments.

the same forking instant on all compute nodes, to which the
coded subtasks are forked.

B. Evaluations
Using the observed coded subtask completion times for each

run, we can compute the duration between two consecutive
completions of coded subtasks (ti,r − ti,r−1 : r ∈ [!i], i ∈
[m]). Together with the sequence of number of forked servers
(n0, . . . , nm) at each forking time, we can compute the task
completion time from Eq. (2), and the server utilization from
Eq. (4). We repeat this experiment J = 1×104 times, and for
each run j ∈ [J ], we record
(a) the task completion time denoted by S(j),
(b) the server utilization denoted by W (j), and
(c) the empirical distribution of coded subtask completion

time at first k finishing nodes.
Subsequently, we compute the empirical average of these
records over all J runs. The empirical mean of task completion
time is denoted by Ŝ = 1

J

∑J
j=1 S(j), and the empirical mean

of server utilization is denoted by Ŵ = 1
J

∑J
j=1 W (j).

C. Results
We first plot the empirical distribution of task completion

time in Fig. 7. We observe that the empirical distribution of
the coded subtask execution times at each node has charac-
teristics of a shifted exponential distribution. The empirical
distribution has a distinct constant shift corresponding to
the start delay, and the random part of the task execution
time has a light tail. Using QQplots [42], [43], we verify
in Appendix H that the shifted exponential is a good fit
for the empirical distribution of execution times. Since the
qualitative behavior of execution time distribution at compute
nodes resembles a shifted exponential, we expect our derived
insights to continue to hold for this compute cluster. From
the empirically computed means of two performance metrics,
server utilization and task completion time, we can find the
lower envelope of all performance points using Eq. (29),
to obtain the optimal performance tradeoff curve between
these two metrics. The optimal performance tradeoff curve
is plotted in Fig. 8. We observe that the performance curve
for two-forking is not significantly different than that for
single-forking. Further, we corroborate the analytical results
of single-forking obtained in Theorem 3, by observing that

Fig. 8. The optimal tradeoff between the empirical means of server utilization
and task completion time for single-forking and two-forking, when the coded
subtasks are executed on compute nodes at Intel DevCloud.

the empirical mean of task completion time Ŝ increases with
increase in fork task threshold !0. In addition, the tradeoff
suggests that the initial number of servers n0 is an important
consideration for an efficient system design.

VIII. CONCLUSION

We study the single-forking for a single task that can be
divided into k subtasks to be computed over n servers, in two
stages. We assume that k subtasks can be coded into n
computation coded subtasks using (n, k)-MDS coding, such
that completion of any k coded subtasks lead to completion
of the entire task. We assume that only n0 out of n servers
are started at time 0. After completion of !0 out of n0

servers, remaining n − n0 servers are initiated. Using the
shifted exponential service times of the servers, we derive
expressions for two performance metrics: (i) the mean task
completion time which indicates the mean time when k servers
have finished execution of coded subtasks, and (ii) the mean
server utilization which indicates the aggregate mean of times
each server is busy processing the coded subtasks. Further
discussions of the results and future work directions can be
seen in Appendix I.
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APPENDIX A
PROOF OF LEMMA 1

When Ti = c for all i 2 [n], then all initial servers finish
completing their coded subtasks at the same time c, and hence
the threshold `0 = n0. Therefore, the forking time is t1 = c.
If n0 < k, the task is forked at remaining n � n0 servers,
otherwise, it is completed at the forking time t1 = c. We can
write the task completion time as

t2 = c+ c {n0<k}.

We can also write the total server utilization as

W = n0c+ (n� n0)c {n0<k}.

From the above two equations, it follows that n0 < k is not
an interesting case, as it increases both the task completion
time and server utilization. Further, when n0 > k, the task
completion time is c and the server utilization is n0c. We see
that the server utilization is minimized when n0 = k while
keeping the task completion time unchanged.

APPENDIX B
PROOF OF THEOREM 1

We can write the completion time of rth coded subtask in
stage 0 as t0,r = fn0(T1, . . . , Tn0 , r) for all r 2 [`0]. From
the bound on execution times, we observe that c1 6 t0,r 6 c2
for all r 2 [`0]. Further, we have

sup
i2[n0]

Ti 6 c2 6 2c1 6 t1 + inf
j>n0

Tj . (30)

This implies that first n0 servers initialized at time t0 = 0
finish completing their coded subtasks before, the remaining
n � n0 servers. Using this fact in Eq. (6) for rth completion
of coded subtasks in stage 1, we observe that

t1,r = (t1 + fn�n0(Tn0+1, . . . , Tn, `0 + r � n0)) {r>n0�`0}

+ fn0(T1, . . . , Tn0 , `0 + r) {r6n0�`0}.

Therefore, we can write the task completion time as

t2 = fn�n0(t1 + Tn0+1, . . . , t1 + Tn, k � n0) {n0<k}

+ fn0(T1, . . . , Tn0 , k) {n0>k}.

Using the hypothesis that Ti 2 [c1, c2], we observe that t2 6 c2
for n0 > k and t2 > 2c1 for n0 < k. From the hypothesis that
c2 6 2c1, it follows that the task completion time is larger
when the initial number of servers n0 < k.

Under the given hypothesis of c2 6 2c1, initial n0 servers
finish their coded subtasks first. First, we consider the case
when n0 = `0 = k. In this case, the task is completed without
forking additional n� k servers. Specifically, we have t0,r =
fk(T1, . . . , Tk, r) for r 2 [k] and t2 = t1. Therefore,

`0X

r=0

t0,r +
`1X

r=0

t1,r =
kX

i=1

Ti.

Substituting this bound in Eq. (7) for server utilization, and
using the fact that t2 � t1 = 0, we get W =

Pk
i=1 Ti.

Next, we consider the case when n0 < k. In this case,
additional k�n0 servers from the set [n]\ [n0] complete their

coded subtasks. These servers are initiated at time t1. Since
first n0 servers finish first, t1 > c1, and t1,r > t1 + c1 for all
r 2 [`1], we have

`0X

r=0

t0,r +
`1X

r=0

t1,r =
n0X

i=1

Ti +
`1X

r>n0�`0

t1,r

>
n0X

i=1

Ti + (k � n0)(t1 + c1).

Substituting this bound in Eq. (7) for server utilization, and
using the fact that t2 > t1 + c1, we get

W >
n0X

i=1

Ti + c1(n� n0).

By stochastic coupling, we can assume that first n0 servers
in both the systems with initial n0 < k and initial k servers
are identical. Then, we observe that the server utilization for
the system with n0 < k servers is greater than or equal to the
corresponding utilization for system with n0 = `0 = k servers
if

kX

i=n0+1

Ti 6 c1(n� n0). (31)

Since each Ti 2 [c1, c2], this condition is satisfied if c2(k �
n0) 6 c1(n � n0) for all n0 < k. The fraction n�n0

k�n0
is

increasing in n0 2 [k � 1], and this condition holds under
the given hypothesis in the theorem statement.

APPENDIX C
PROOF OF LEMMA 3

From Eq. (12), we can write the event of j�`0 service com-
pletions in the time interval (t1, t1 + c] for j 2 {`0, . . . , n0},
as �

Xn0
j �Xn0

`0
6 c
 
\
�
Xn0

j+1 �Xn0
`0

6 c
 c

.

From the definition of order statistics for continuous random
variables, we have Xn0

j < Xn0
j+1. This implies that the inter-

section of events
�
Xn0

j �Xn0
`0

6 c
 

and
�
Xn0

j+1 �Xn0
`0

6 c
 

is
�
Xn0

j+1 �Xn0
`0

6 c
 

. Therefore, from the disjointness of
complementary events and probability axiom for summation
of disjoint events, it follows

pj�`0 = P
�
Xn0

j �Xn0
`0

6 c
 
� P

�
Xn0

j+1 �Xn0
`0

6 c
 
.

From Remark 9, we can write the above as

pj�`0 = P
n
Xn0�`0

j�`0
6 c
o
� P

n
Xn0�`0

j+1�`0
6 c
o
.

From Remark 7 for exponentially distributed random variables
with rate µ, we get the required form of pj�`0 .

APPENDIX D
AUXILIARY RESULT

Lemma 4. For positive integers p and q, positive reals c
and µ, probability ↵ defined in Eq. (17), and the z-transform



2

pFq(z) of hypergeometric series defined in Definition 2, we

have the following identity

1

↵p+2

Z c

0
xe�µx(1� e�µx)q(e�µx � e�µc)p�qdx

=

 
1

(p+ 2)µ2
�p+1
q+1

�
!

3F2

h1, 1, q + 2

2, p+ 3
;↵
i
.

(32)

Proof: We perform the integration in Eq. (32) using
change of variables x 7! t, where the variable t , (1�e�µx)

↵ .
In terms of the constant ↵ = 1� e�µc and new variable t, we
can rewrite the integral as

1

↵µ2

Z 1

0
� ln (1� t↵)tq(1� t)(p�q)dt. (33)

From the Taylor series expansion of � ln (1� t↵) around zero,
we can write

ln(1� t↵) =
1X

n=0

↵n+1

n+ 1
tn+1, |t| < 1

↵
.

Substituting this expansion inside the integral in Eq. (33), we
can rewrite the integral as

1

µ2

1X

n=0

↵n

n+ 1

Z 1

0
tq+n+1(1� t)(p�q)dt.

Using the definition of Beta function (Euler integral of the first
kind) [44] and Definition 2 for z-transform of hypergeometric
series, we get the result.

Taking p = q = m� 1 in the above lemma, and using the
definition of z-transform of hypergeometric series in (20), we
get the following corollary.

Corollary 3. For positive integer m, positive reals c and µ,

and ↵ defined in Eq. (17), we have the following identity

mµ

Z c

0
xe�µx(1� e�µx)m�1dx = c↵m � c+

mX

i=1

↵i

iµ
.

APPENDIX E
COMPUTATION OF CONDITIONAL MEAN OF SUBTASK

COMPLETION DURATION

We define random variables sr , Xn0
`0+r � Xn0

`0
for all

r 2 [n0 � `0], and s0 , 0. By definition, sr is the completion
time of rth coded subtask after the forking time t1. Hence, it
follows that for all r 2 [N1(c)]

sr = (t1,r � t1), sr � sr�1 = t1,r � t1,r�1. (34)

Using this fact, and the tower property of nested expectations,
we can rewrite the term in Eq. (19) as

E
⇥
(t1,r � t1,r�1)

�� Em

⇤
= E [sr|Em]� E [sr�1|Em] .

Therefore, it suffices to compute the conditional mean of sr
given the event Em. To this end, we first find the following
conditional density.

Lemma 5. Let m 2 {0, . . . , n0 � `0}. Given the event

Em = {N1(c) = m}, the conditional joint density of vector

(s1, s2, . . . , sm) is

f(s1,...,sm)|Em
=

mY

i=1

iµe�µsi

1� e�cµ {0<s1<...sm6c}. (35)

Proof: From the definition of the task completion times,
the possible values of the vector s = (s1, . . . , sm) satisfy the
constraint 0 < s1 < · · · < sm 6 c.

Recall that there are n0�`0�r+1 servers executing coded
subtasks in the interval (t1,r�1, t1,r], with i.i.d. memoryless
execution times with rate µ. Therefore, it follows from the
independence and memoryless property of server execution
times, that each duration (sr � sr�1) is independent and dis-
tributed exponentially with parameter µr , (n0�`0�r+1)µ.
From the definition of (µr : r 2 [m]), the definition of pm
given in Eq. (35), the independence of durations (sr � sr�1 :
r 2 [m]), and rearrangement of terms we get the result.
Remark 13. We can write the set of possible values for vector
s as Am, where Am is a vector of increasing coordinates
bounded between (0, c], and can be written as

Am , {s 2 Rm : 0 < s1 < · · · < sm 6 c} .

The constraint s 2 Am couples the set of achievable values
for the vector s, and hence the random variables (s1, . . . , sm)
are not conditionally independent given the event Em.

To compute the conditional expectation E [sr|Em], we find
the conditional marginal density of sr given the event Em.

Lemma 6. Let m 2 {0, . . . , n0 � `0}, ↵ = 1 � e�µc
, and

↵r , 1 � e�µsr . Given the event Em = {N1(c) = m},

the conditional joint density of rth completion time from the

forking time t1 is

fsr|Em
=

mµ(1� ↵r)

↵m

✓
m� 1

r � 1

◆
(↵r)

r�1(↵�↵r)
m�r. (36)

Proof: To compute the conditional marginal den-
sity of sr given the event Em, we integrate the condi-
tional joint density of vector s given Em over variables
(s1, . . . , sr�1, sr+1, . . . , sm) without sr [45]. In terms of
sr 2 (0, c], we can write the region of integration as the
following intersection of regions,

A�r
m , \i<r {0 < si < si+1} \i>r {si�1 < si 6 c} .

Integrating the conditional density of vector s defined in
Eq. (35) over the region A�r

m , and using the definition of ↵
and ↵r, we get the result.

We next find mean of rth completion time in stage 1
from the forking time t1, conditioned on the event Ej�`0 =
{N1(c) = j � `0}.

Lemma 7. For any r 2 [j � `0] and ↵ = 1� e�cµ
, we have

E [sr|Ej�`0 ] =

8
<

:
3F2

⇣
1,1,r+1
2,j�`0+2 ;↵

⌘
r↵

µ(j�`0+1) , r < j � `0,

c
h
1� ↵�r +

Pr
i=1

↵i�r

icµ

i
, r = j � `0.
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Proof: The conditional mean of sr given Ej�`0 is ob-
tained by finding the mean of sr 2 (0, c] with respect to the
conditional marginal density of sr defined in (36).

E [sr|Ej�`0 ] =

Z c

0
srfsr|Ej�`0

dsr.

For r 2 [j�`0�1], the result follows from the integral identity
of Lemma 4 in Appendix D for q = r � 1, p = m � 1 and
↵ = 1 � e�µc. Similarly, the result for r = j � `0 follows
from Corollary 3 in Appendix D for m = j � `0.

A. Proof of Proposition 1

Given the event Ej�`0 , to compute the conditional
mean of the duration between (r � 1)th and
rth coded subtask completion in Stage 1 for
r 2 [j � `0], we can write E

⇥
(t1,r � t1,r�1)

�� Ej�`0

⇤

as E
⇥
sr
�� Ej�`0

⇤
� E

⇥
sr�1

�� Ej�`0

⇤
. Substituting the

conditional mean E
⇥
sr
�� Ej�`0

⇤
given in Lemma 7 to the

RHS of the above equation, and using the definition of
z-transform of hypergeometric series, we get the result.

B. Proof of Proposition 3

Recall that after time (t1 + c), there are n � `0 � N1(c)
i.i.d. servers executing the coded subtasks in a memoryless
manner with rate µ. Conditioned on the event Ej�`0 =
{N1(c) = j � `0}, there are n � j i.i.d. servers in execution
after time t1 + c. However, the execution times of these
n � j servers remain independent of the event Ej�`0 , due
to the memoryless property. Therefore, using Eq. (15) for the
duration between (r� 1)th and rth coded subtask completion
for r > N1(c) + 2, we can write

E [(t1,r � t1,r�1)|Ej�`0 ] = E
h
(Xn�j

r�j+`0
�Xn�j

r�j+`0�1)
i
.

(37)
From Remark 9 on the mean of the difference of order
statistics of i.i.d. exponential random variables, we get the
result.

C. Proof of Proposition 2

The duration between completion times of N1(c)th and
(N1(c) + 1)th coded subtasks in Stage 1, consists of two
phases. This duration (t1,N1(c)+1 � t1,N1(c)) can be writ-
ten as telescopic sum given in Eq. (14). We observe that
t1,N1(c)+1 � (t1 + c) is the completion time for first coded
subtask on n � `0 � N1(c) i.i.d. servers executing in a
memoryless fashion with rate µ. Conditioned on the event
Ej�`0 = {N1(c) = j � `0}, there are (n� j) parallel servers
with execution times independent of the event Ej�`0 . There-
fore,

E
⇥
t1,N1(c)+1 � (t1 + c)|Ej�`0

⇤
= E

h
Xn�j

1

i
. (38)

We can recall from Eq. (34) that t1,r = t1 + sr for all r 2
[N1(c)]. Therefore, we can write

t1 + c� t1,N1(c) = c� sN1(c).

Taking conditional mean of the above equation given the event
Ej�`0 = {N1(c) = j � `0}, we get

E
⇥
(t1 + c� t1,N1(c))|Ej�`0

⇤
= c� E [sj�`0 |Ej�`0 ] . (39)

We can substitute the conditional mean E
⇥
sj�`0

�� Ej�`0

⇤

from Lemma 7 in the above equation. The result follows from
adding Eq. (38) and Eq. (39).

APPENDIX F
PROOF OF THEOREM 2

We have already computed E [W0] and E [t1] in Corollary 1.
It suffices to show that when n0 < k, the mean duration of
Stage 1 is

E [t2 � t1] = c+
1

µ

n0X

j=`0

pj�`0

k�1X

i=j

1

n� i
, (40)

and the mean server utilization in Stage 1 is

E [W1] =
1

µ
(k � `0) + cn1. (41)

We will first show that Eq. (40) holds. To this end, recall that
when n0 < k, we have t2 > t1 + c almost surely. Therefore,
we can write the task completion time as

t2 = t1+c+(t1,N1(c)+1�(t1+c))+
k�`0X

r=N1(c)+2

(t1,r� t1,r�1).

Using the definition of the event Ej�`0 = {N1(c) = j � `0}
and the fact that n0 < k, we observe that

Pn0

j=`0 Ej�`0
= 1.

Therefore, we can write the mean duration of Stage 1 as

E [t2 � t1] = c+
n0X

j=`0

pj�`0E
⇥
(t1,j�`0+1 � (t1 + c))

�� Ej�`0

⇤

+
n0X

j=`0

pj�`0

k�`0X

r=j�`0+2

E
⇥
(t1,r � t1,r�1)

�� Ej�`0

⇤
.

Substituting conditional means from Eq. (38) and Eq. (37)
in the above equation, and using Remark 9 on the mean of
the difference of order statistics of i.i.d. exponential random
variables, we get Eq. (40).

We next show that Eq. (41) holds. Recall that the server
utilization in Stage 1 is

W1 =
k�`0�1X

r=0

(t1,r+1 � t1,r)(n� `0 � r).

Step 1: Expansion of server utilization. Using the defi-
nition in Eq. (34) of rth completion time sr in Stage 1 from
forking time t1, denoting m = j � `0 2 {0, . . . , n0 � `0},
and using Eqs. (13), (14), (15) for the completion duration
(t1,r+1�t1,r), we can re-write the server utilization in Stage 1
in terms of the indicator to the events Em = {N1(c) = m},
as

W1 = n1c+
n0�`0X

m=0

Em

hm�1X

r=0

(sr+1 � sr)(n0 � `0 � r)

+ (c� sm)(n0 � j) + (t1,m+1 � t1 � c)(n� j)

+
k�`0�1X

r=m+1

(t1,r+1 � t1,r)(n� `0 � r)
i
.
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Step 2: Rearrangement and expectation. Rearranging the
second and the third term in the above expression for server
utilization in Stage 1 in to the terms of sr’s, we getPm�1

r=0 (sr+1�sr)(n0�`0�r)+(c�sm)(n0�j), and finally
c(n0 � j) +

Pm
r=1 sr.

Therefore, we can write the mean server utilization in
Stage 1 in terms of the conditional means E [sr|Em] as

E [W1] = cn1 +
n0�`0X

m=0

pm
⇣
c(n0 � j) +

mX

r=1

E [sr|Em]

+ (n� j)E [(t1,m+1 � t1 � c)|Em]

+
k�`0�1X

r=m+1

(n� `0 � r)E [(t1,r+1 � t1,r)|Em]
⌘
.

Step 3: Conditional mean of inter-service completion
times. Substituting conditional means from Eq. (38) and
Eq. (37) in the above equation, and using Remark 9 on the
mean of the difference of order statistics of i.i.d. exponential
random variables, we obtain

E [W1] = cn1 + c(n0 � `0) +
k � `0

µ

+
n0�`0X

m=0

pm
⇣ mX

r=1

E [sr|Em]�m
�
c+

1

µ

�⌘
.

Step 4: Conditional mean of summation of completion
times. From the conditional joint distribution of the vector
s = (s1, . . . , sm) defined in Eq. (35), we can find the moment
generating function of sum Y ,Pm

r=1 sr conditioned on the
event Em as

�Y |Em
(✓) = E

⇥
e�✓Y |Em

⇤
=
⇣µ(1� e�(✓+µ)c)

↵(✓ + µ)

⌘m
,

where ↵ = 1 � e�µc. Since the conditional ex-
pectation E [Y |Em] = � d

d✓�Y |Em
(✓)|✓=0, we obtain

E [
Pm

r=1 sr|Em] = m
⇣
c + 1

µ

⌘
� mc

↵ . Substituting this result
in the expression for mean server utilization, we get

E [W1] = cn1 + c(n0 � `0) +
k � `0

µ
+

c

↵
E [N1(c)] .

From Lemma 3, we see that N1(c) is a binomial random
variable with parameters (n0 � `0,↵) and hence E [N1(c)] =
(n0 � `0)↵ and Eq. (41) follows.

APPENDIX G
NUMERICAL RESULTS OF SINGLE-FORKING AND

MULTI-FORKING FOR HEAVY-TAILED DISTRIBUTIONS

Analytical computation of the mean task completion time
and mean server utilization is not straightforward, for forking
systems with general distribution of coded subtask execution
times. This is due to the fact that at the forking time of `0
completions, additional forked servers n1 and remaining initial
servers n0 � `0 are not synchronized. Recall that to compute
both the performance metrics, one need to compute the mean
duration between coded subtask completions. To perform this
computation, one needs to keep track of excess service time
for n0 � `0 remaining initial servers.

Therefore, we empirically compute these performance met-
rics when the coded subtask execution times are heavy-
tailed. Specifically we focus on the case when coded subtask
execution times are i.i.d. with Pareto and Weibull distributions,
and compare the results to the ones obtained for the shifted ex-
ponential distribution. To make fair comparison, we maintain
same system parameters, as the ones selected in Section V. In
particular, we take the number of subtasks k = 12 and number
of coded subtasks n = 24, such that any k coded subtasks
suffice to complete the task. We conducted a Monte Carlo
simulation of single-forking and two-forking, and computed
the empirical means for both the performance metrics.

A. Pareto distribution

We assume the execution time distribution at each server to
be i.i.d. with the common distribution being Pareto with scale
xm and shape ↵ > 1, such that the complementary distribution
F̄ (x) is given by

P {T1 > x} = {x2[0,xm]} +
⇣xm

x

⌘↵
{x>xm}. (42)

We observe that Pareto distribution has a deterministic shift
xm that captures the constant start-up time, similar to the shift
in the shifted exponential distribution. Theorem 1 suggests
that the regime of n0 < k is not interesting for single-forking,
when the constant shift is large for execution time distributions
with bounded support. Even though the support for the Pareto
distribution is unbounded, this insight continues to hold.

In the following numerical studies, we chose shape ↵ =
2.63 and scale xm = 4.96 for the Pareto distribution. These
parameter choices result in the mean coded subtask execution
time to be xm↵

↵�1 = 8.

B. Weibull distribution

We assume the execution time distribution at each server
to be i.i.d. with the common distribution being Weibull with
scale � and shape ↵, such that the complementary distribution
is given by

F̄ (x) = P {T1 > x} = e�(
x
� )

↵

{x>0}. (43)

We observe that Weibull distribution has no deterministic
shift that captures the constant start-up time. However, when
the shape parameter ↵ � 1, then the distribution starts
concentrating around the mean ��(1 + 1

↵ ). Even though the
support for Weibull distribution is unbounded, its behavior
starts resembling to that of a distribution with bounded support
in interval [c1, c2]. Theorem 1 suggests that the regime of
n0 < k is not interesting for single-forking, for execution time
distributions with bounded support, when c2 is sufficiently
small. We observe that for appropriate choice of scale param-
eter � and shape parameter ↵ � 1 for Weibull distribution,
this insight continues to hold true.

In the following numerical studies, we chose scale � = 4
and shape ↵ = 16 for the Weibull distribution. These param-
eter choices result in the mean coded subtask execution time
to be 3.8.



5

C. Results

We plot the empirical mean of server utilization with
respect to the empirical mean of task completion time with
single-forking for Pareto distribution in Fig. 9a and Weibull
distribution in Fig. 9b, for a fixed number of initial servers n0

and varying the fork task threshold `0 2 [n0^k]. We plot per-
formance curves for different choices of the number of initial
numbers n0 2 [n]. From the Fig. 9a for utilization-completion
performance curve when the coded subtask completion time
distribution is Pareto, we observe that the performance curve
uniformly increases with n0 when n0 < k = 12, and then
it uniformly decreases with n0 when k 6 n0 6 17. For the
number of initial servers 18 6 n0 6 n = 24, the curve starts
shifting left and up. In particular, the mean server utilization
increases in n0 < k, and decreases for k 6 n0 6 17.

From the Fig. 9b for utilization-completion performance
curve when the coded subtask completion time distribution
is Weibull, we observe that the performance curve uniformly
decreases with n0 when n0 < k = 12, and then the curve
starts shifting left and up with n0 when k 6 n0 6 n = 24.
For the number of initial servers k 6 n0 6 n = 24, the curve
starts shifting left and up.

Thus, we observe in both the plots that the performance
curves for the regime n0 < k are above the curve for
n0 = k, and hence this regime is not interesting for Pareto and
Weibull distributions for our choice of distribution parameters.
Further, these plots suggest that for any n0 > k, there is a
tradeoff between two performance metrics. As expected, the
average task completion time increases and the average server
utilization decreases, with increase in the fork task threshold.

However, the performance curves behave in a qualitatively
different manner from the shifted exponential curve. For
shifted exponential distribution, all performance curves are
constant for n0 6 k, which implies that the mean server
utilization remains identical for any choice of number of
initial servers n0 < k, however the mean task completion
time increases in `0 2 [n0] for each n0. Due to heavy tailed
nature of the Pareto and Weibull distribution, we observe
that the mean server utilization is not constant for n0 < k.
Further, when the number of initial servers n0 approaches n,
we observe that the mean task completion time doesn’t depend
much on the fork task threshold `0, however the mean server
utilization is decreasing in `0.

Solving the optimization problem in Eq. (29) for the linear
cost E [S] + �E [W ] and varying the tradeoff parameter �,
we can plot the optimal performance tradeoff curve for both
single-forking and two-forking. Optimal performance curve
for Pareto distribution is plotted in Fig. 10a and for Weibull
distribution in Fig. 10b. Similar to the shifted exponential
distribution case, we observe that the performance curve for
two-forking is only marginally below the corresponding curve
for single-forking, for both Pareto and Weibull distributions.

APPENDIX H
CURVE FITTING OF INTEL DEVCLOUD EXPERIMENT DATA

We obtained the empirical distribution of subtask execution
times from Intel DevCloud experiments. We are interested
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Figure 9: The empirical mean of server utilization with respect to empirical
mean of task completion time while varying the number of fork task threshold
`0, for two heavy-tailed execution time distributions.

in finding out the best fit for the observed empirical distri-
bution among the four distribution families we considered:
(a) exponential, (b) shifted exponential, (c) Pareto, and (d)
Weibull. We can find the best fitting curve [46] for each
of the four families of parametrized distributions by finding
the maximum likelihood estimate (MLE) for the parameters,
assuming the i.i.d. observations. We employ quantile-quantile
(QQ) plots [42], [43], [47] to visually determine which one
of the four fitted distributions is the best fit for the empirical
distribution.

A QQ plot is a visual tool to asses whether the sample
data comes from a specific distribution F : R+ ! [0, 1] or
not. These plots can reveal us the information of outliers,
differences in location and scale, and other differences between
the distributions [43]. Assuming that the observed sample data
T , (T1, . . . , Tn) is generated in an i.i.d. fashion by an
underlying distribution G : R+ ! [0, 1], we can find the

Table I: Parameters for fitted distributions

Distributions Parameter 1 Parameter 2
Exponential Shift c = 0 Rate µ = 0.001535

Shifted exponential Shift c = 571.053 Rate µ = 0.01242
Pareto Scale xm = 571.053 Shape ↵ = 7.64

Weibull Scale � = 665.81 Shape ↵ = 16.7



6

6 8 10 12 14 16 18

90

100

110

120

130

Average task completion time (seconds)

A
ve

ra
ge

se
rv

er
ut

ili
za

tio
n n0=24, No-forking

Single-forking
Two-forking

(a) Pareto distribution

15 20 25 30 35

200

250

300

Average task completion time (seconds)

A
ve

ra
ge

se
rv

er
ut

ili
za

tio
n n0=24, No-forking

Single-forking
Two-forking

(b) Weibull distribution

Figure 10: The optimal performance tradeoff curve between empirical means
of server utilization and task completion time for single-forking and two-
forking, when the execution time distribution is taken to be heavy-tailed.

Figure 11: Quantiles of subtask execution time obtained from Intel DevCloud
experiments are plotted against quantiles of the four fitted distributions: (a)
exponential, (b) shifted exponential, (c) Pareto, and (d) Weibull.

empirical estimate by

Ĝn(x) ,
1

n

nX

i=1

{Xi6x}.

Recall that Ĝ�1
n ( i

n ) = fn(T, i) is the ith order statistics of
sample data T , and we plot (Ĝ�1

n (u), F�1(u)) for all u 2

[0, 1] to compare the closeness of G and F . Closeness of the
points to the 45 degree line indicates the similarity of the
shapes of the distributions. A linear plot indicates that the
sample data is likely coming from the specified distribution,
only differing in scale and shift.

From the Intel DevCloud experiments, we can find the
empirical distribution of subtask execution times. From this
data, we also found the MLE for the parameters of the
exponential, shifted exponential, Pareto, and Weibull distri-
butions, tabulated in Table I. We plotted the QQ plot of the
quantiles of these four fitted distributions against the quantiles
of the empirical distribution. We observe that the QQ plots for
exponential, Pareto, and shifted exponential distributions are
straight lines. However, the line corresponding to the shifted
exponential is the closest to the 45 degree line. We also
observed that the QQ plot for Weibull is curved below the 45
degree line for higher percentiles. The shape parameter of the
fitted Weibull distribution greater than one is also an indication
that the Intel DevCloud experiment data has no heavy tails.

APPENDIX I
DISCUSSIONS

We show that the mean task completion time and the mean
server utilization are respectively increasing and decreasing
function of the fork task threshold `0. We also note that
though the mean task completion time is decreasing function
of the number of initial servers n0, there exists an optimal
number of initial servers n0 for each fork task threshold `0.
For n0 > k, we find that there is a tradeoff between the
two performance metrics and leads to decrease in the mean
server utilization at the expense of mean task completion
time and an efficient choice of the parameters is helpful.
We further observed that the performance tradeoff curve for
these two metrics doesn’t change significantly with increase
in number of forking points beyond one. In addition, we
empirically verified that the insights derived from the shifted
exponential distribution, continue to hold when the coded
subtask execution times at individual servers have heavy-tailed
distributions such as Pareto and Weibull. Furthermore, we
conducted experiments on a real compute cluster to verify that
the empirical distribution of the execution time has a constant
shift and a light tail. As a result, the insights derived from
the analytical study continue to hold on the studied compute
cluster as well.

The key technical challenge in our work is the closed
form computation of mean task completion time and mean
server utilization cost. This computation is possible only
for analytically tractable distributions for subtask completion
times. The key difficulty is in the computation of mean of
difference of order statistics for general distributions. This
problem gets exacerbated due to sequential addition of coded
subtasks, as there is a jump in the number of coded subtasks at
the beginning of the second stage. This problem remains open
for general distributions. In addition, we have considered the
performance metrics for a single task system. Computation
of the two performance metrics of interest, when there is a
sequence of task arrivals, is an open problem as well.


