
A Scalable Container-based Virtualized Data Center
Emulation Framework

Gaurav Gautam, Sandhya Rathee, Preetam Patil, and Parimal Parag
Centre for Networked Intelligence, RBCCPS and EECS Division, Indian Institute of Science, Bengaluru, India

Email:{gauravgautam, sandhyar, preetampatil, parimal}@iisc.ac.in.

Abstract—Data Center Networks (DCNs) powering cloud
services as well as social networks pose unique network de-
sign/optimization challenges. In response, numerous solutions
have been proposed utilizing SDN, programmable data plane, and
telemetry. However, testbeds supporting the experimental features
while imitating DCN traffic—for implementing and analyzing
such solutions—are not trivial to build. We present a data center
emulation framework for development and validation of data
center algorithms and protocols using lightweight virtualized
components such as containers and virtual switches. The frame-
work facilitates automated creation of DCN topologies, telemetry,
SDN controller, and data center workload generation at scale. The
framework also enables combining diverse virtualized elements
and hardware elements. This demo exhibits our in-progress
framework implementation that is capable of instantiating a leaf-
spine topology with P4-capable switches, gNMI telemetry, BGP
routing and end-hosts.

Keywords—Data Center, Containers, Mininet, Testbed.

I. INTRODUCTION

Cloud service providers delivering on-demand compute,
storage, and networking services use massively scalable data
centers. So do the social media platforms powering the data-
hungry social networking apps. Data center networks (DCNs)
consist of a large number of computing and storage servers
connected by switches and routers in a well-managed archi-
tecture. To satisfy on-demand services and to drive operational
efficiency, resources are provisioned dynamically within the
data centers. The dynamic nature and massive scale results
in increased complexity in configuring and managing DCNs.
Owing to the preference towards using Ethernet as a converged
infrastructure, DCNs carry traffic with diverse throughput
and latency demands. Multi-tenancy in public cloud imposes
service level objectives that add further to the complexity.
DCNs are shown to suffer from unique problems such as incast
[1] and degradation of mice flow performance due to elephant
flows [2].

Software-Defined Networking (SDN) proposes to address
some of the challenges in DCNs. In SDN enabled networks,
a centralized controller—aided by telemetry information—can
program the data plane for enhanced control over routing and
load balancing [3]. Recent enhancements such as data plane
programmability through P4 [4] and in-band network telemetry
(INT) [5] have enabled specific solutions for TCP conges-
tion control [6]. Implementing and experimentally validating
such proposals requires hardware/virtual devices supporting
experimental features such as P4. Further, proposed solutions
need to be validated against realistic workloads. To the best
of our knowledge, there are no standardised benchmarks to

generate traffic faithfully representing represent DCN network
workloads. Therefore, we propose to develop an SDN enabled
DCN emulation framework that supports customizable topol-
ogy generation, telemetry, and workload generation.

Mininet [7], [8] is commonly utilised for emulating SDNs.
The major limitation of Mininet is that it is not scalable.
A mininet instance runs within a single host (shared kernel
space). Integrating multiple mininet instances (running on
different servers) in non-trivial. The ngSDN [9] platform is
useful for experimenting with P4 based network. But ngSDN
also uses Mininet to emulate the network topology. These
platforms are more general, they are not experiment ready.
You have to add your telemetry, routing, and traffic support.
We present a scalable container-based virtualized platform for
programmable DCN. We provide a scalable topology where
you just need to update the script for number of leaf, spine,
and host. It uses containers to instantiate the topology both
switches and hosts. Thus, it does not require installation of
switch binaries in your local system. Also, using the proposed
platform the user is given the freedom to choose different
programmable switches.

Our proposed solution is not limited to one host. The
testbed can be spread over a cluster running over multiple
hosts. Our goal to make it a hybrid testbed where we can
have real systems, hardware switches, software switch, and
containers—all working together seamlessly. To execute any
application in mininet, like traffic generation applications, it
needs to be installed in the system whereas that is not the
case with containers. Containers are useful when we need to
run different workloads such as web applications, iperf flows,
distributed storage nodes, etc.

II. DESIRED FEATURES OF A DCN TESTBED

Emulating realistic hyperscale data center behaviour while
consuming proportionally miniscule computation and storage
resources is a challenge. Our testbed targets the following goals

• Support for different virtualization technologies such
as VMs, containers, and microVMs.

• Ability to plug in hardware instances of switches and
end-hosts to make it a hybrid (software and bare-
metal) test-bed.

• Scale-out architecture: the emulated topology should
at least emulate a few repeatable data center design
elements such as pods faithfully. Since achieving it—
albeit at reduced scale—in a single host is unlikely, the

COMSNETS 2022 - Demos and Exhibits

978-1-6654-2104-1/22/$31.00 ©2022 IEEE 452

20
22

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
O

M
m

un
ic

at
io

n
Sy

st
em

s &
 N

ET
w

or
kS

 (C
O

M
SN

ET
S)

 |
 9

78
-1

-6
65

4-
21

04
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CO
M

SN
ET

S5
36

15
.2

02
2.

96
68

44
3

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:42 UTC from IEEE Xplore. Restrictions apply.

architecture should support spanning multiple physical
servers.

• Workload traffic generation, with customizable traf-
fic profiles that represent data center traffic (such
as streaming, distributed databases, map-reduce, dis-
tributed storage, and HTTP microservices).

• Support for Network Operating System (such as
ONOS).

• Automated creation of data center typologies, e.g., fat-
tree, D-cube, Jellyfish, etc.

• Ability to implement and test algorithms and protocols
for path optimization, congestion control, etc.

• Border gateways to emulate WAN and inter Data
center networking will be an added advantage.

Fig. 1. Proposed architecture

III. ARCHITECTURE

Figure 1 presents the architecture of our proposed platform.
It has four modules:

1) Network topology
2) Device configuration
3) Telemetry collector
4) Controller

The underlying network topology consists of network
switches (conventional/programmable) and end-hosts. Network
topology module provides choice to the user to choose among
different type of topologies—such as fat-tree topology or leaf-
spine topology—with a configurable number of switches and
hosts as per user requirement. The user can choose type of
switch (bmv2, openVswitch, or conventional switch) as well.
Once the topology is ready, the devices need to be configured
depending on the network policies. The device configuration
module translates the network polices into forwarding rules.
The controller requires knowledge about the current state of
the network for its decision making. To achieve this, the testbed
is accompanied with a central telemetry collector. Telemetry
collector has three sub-modules: collector, database, and visu-
alizer. It is the responsibility of the collector to fetch telemetry

data from underlying network and store it in a database. We
use influxdb to store the collected telemetry. For visualization
we use Grafana [10] that accesses telemetry information from
influxdb [11]. The user needs to specify the parameter to the
visualizer module and it will produce the requested graphical
representation. Using a centralized controller, we control all
these components and write experiment scripts. The centralized
controller can be seen as a combination of set of utilities
to control containers, routing, and telemetry. The proposed
architecture provides flexibility to add individual iperf [12]
flows and traffic profile for mixed traffic. One can change
host container image to add traffic of one’s own choice. The
workflow of our experiment is given in figure 2.

Python3 is being used as the primary language to write
libraries and experiments. Docker instances are controlled by
docker-py [13] API and system commands. One can send
commands to control container using docker-py or ssh. An
additional server is running on each container instance using
which important data can be pulled by socket programming.
Containers are used to compile and push P4 code to data plane,
and these containers are built upon containers and libraries
provided by P4 tutorial [14], and ngSDN [9].

IV. DEMO RESULTS

In this demo, we demonstrate the capabilities of our
container-based DCN testbed to (a) create and start a virtual-
ized topology, (b) configure the network using libraries, (c) run
traffic profiles, and (d) collect telemetry data. We also present
results from preliminary experiments using the testbed to share
some insights about the scalability aspects and demonstrate the
completed features.

Fig. 2. DCN experiment workflow

Currently, the implementation supports scalable leaf-spine
topology. A simple container acts as a switch with BGP
routing using FRR[15]. It also has a capability to use P4-
programmable bmv2[16] switch. Telemetry data from the
switches can be collected over the gNMI protocol .

One such spine-leaf topology is illustrated in Figure 3.
Each spine switch is connected to every leaf switch and every
leaf switch is connected to two hosts. The user can vary the

COMSNETS 2022 - Demos and Exhibits

453Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Topology visualization generated by DCN framework

number of spine switches, leaf switches, and hosts through a
configuration file.

We conducted the following experiments using a VM
having 32 CPUs and 62GB RAM for results here. Figure 4
demonstrates the time taken to create and start the topology
consisting of containers and links. Here, the number of spine
switches and hosts per leaf are constant – 2 spine switches
and 8 hosts per leaf switch. The number of links vary w.r.t to
the number of leaf switches, there will be ten links per leaf
node (i.e., two links for spine switches, and eight links for
hosts). Time taken to create and start the containers and links
increases w.r.t to increase in the number of leaf switches or
links in the network.

200 400 600 800 1,000

200

400

600

800

1,000

1,200

No. of Links

Ti
m

e(
se

c)

spine switch=2; host per leaf= 8

Fig. 4. Number of links vs. time to create and start topology for leaf-spine
topology

Figure 5 illustrates the bandwidth utilization of a flow.
The chart on top shows the bandwidth utilization of the link
connecting spine switch and leaf switch and the bottom chart
is showing the bandwidth utilization of the link connecting the
leaf switch and the host. The charts are automatically updated
every 5 seconds.

The iperf measurements on the VM host with no con-
tainers running yielded an aggregate 149 Gbps throughput.
When we started our topology with 2 spines, 60 leaves and
2 hosts/leaf (without any workloads), the iperf throughput
on VM host dropped to 100 Gbps. Next, we started iperf
workloads in the container topology. When traffic was taking
one hop route(host->leaf->host), we found throughput to be
saturating around 35 Gbps. We observed that increasing the
number of hops results in reduced throughput. This indicates
that the network stack processing overheads are significant in
the container environment. We are currently investigating the
bottlenecks in our framework further.

Fig. 5. Example screenshot of DCN telemetry using grafana

To demonstrate data plane programmability features of our
testbed, we also conducted experiments on INT [5] wherein
we were able to trace the path and measure queue latency of
packets (results omitted due to lack of space).

V. ACKNOWLEDGMENT

This work is supported by the Centre for Networked
Intelligence (a Cisco CSR initiative) at the Indian Institute of
Science, Bengaluru.

REFERENCES

[1] W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker, “Comprehensive
understanding of tcp incast problem,” in 2015 IEEE Conference on
Computer Communications (INFOCOM), pp. 1688–1696, IEEE, 2015.

[2] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, (New York, NY, USA),
p. 267–280, Association for Computing Machinery, 2010.

[3] Y.-C. Wang and S.-Y. You, “An efficient route management framework
for load balance and overhead reduction in sdn-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[4] “P4 open source programming language.” https://p4.org/. Accessed:
21-11-2021.

[5] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, vol. 15, 2015.

[6] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, et al., “Hpcc: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication, pp. 44–58, 2019.

[7] “Mininet project.” http://mininet.org/. Accessed: 18-11-2021.
[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM Workshop on Hot Topics in Networks, p. 19, ACM, 2010.

[9] “Next-gen sdn tutorial (advanced).”
https://github.com/opennetworkinglab/ngsdn-tutorial. Accessed:
18-11-2021.

[10] “Grafana dashboard.” https://grafana.com/. Accessed: 18-11-2021.
[11] “Influxdb.” https://www.influxdata.com/. Accessed: 18-11-2021.
[12] “iperf tool.” https://iperf.fr/. Accessed: 18-11-2021.
[13] “Docker sdk for python.” https://github.com/docker/docker-py. Ac-

cessed: 18-11-2021.
[14] “P4 tutorial.” https://github.com/p4lang/tutorials. Accessed: 18-11-

2021.
[15] “Frrouting project.” https://frrouting.org/. Accessed: 18-11-2021.
[16] “Behavioral model (bmv2, software p4 reference switch).”

http://bmv2.org/. Accessed: 18-11-2021.

COMSNETS 2022 - Demos and Exhibits

454Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:42 UTC from IEEE Xplore. Restrictions apply.

		2022-01-10T09:20:43-0500
	Certified PDF 2 Signature

