
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022 4135

Latency Optimal Storage and Scheduling of
Replicated Fragments for Memory

Constrained Servers
Rooji Jinan , Graduate Student Member, IEEE, Ajay Badita , Member, IEEE,

Pradeep Kiran Sarvepalli , and Parimal Parag , Senior Member, IEEE

Abstract— We consider the setting of a distributed storage
system where a single file is subdivided into smaller fragments of
same size which are then replicated with a common replication
factor across servers of identical cache size. An incoming file
download request is sent to all the servers, and the download
is completed whenever the request gathers all the fragments.
At each server, we are interested in determining the set of
fragments to be stored, and the sequence in which fragments
should be accessed, such that the mean file download time for
a request is minimized. We model the fragment download time
as an exponential random variable independent and identically
distributed for all fragments across all servers, and show that
the mean file download time can be lower bounded in terms of
the expected number of useful servers summed over all distinct
fragment downloads. We present deterministic storage schemes
that attempt to maximize the number of useful servers. We show
that finding the optimal sequence of accessing the fragments is a
Markov decision problem, whose complexity grows exponentially
with the number of fragments. We propose heuristic algorithms
that determine the sequence of access to the fragments which are
empirically shown to perform well.

Index Terms— Distributed storage systems, mean down-
load time, projective plane designs, replication storage codes,
scheduling.

I. INTRODUCTION

THE recent years have seen a widespread deployment of
distributed storage systems, consisting of large number

Manuscript received October 4, 2020; revised August 3, 2021; accepted
January 29, 2022. Date of publication February 24, 2022; date of current
version May 20, 2022. This work was supported in part by the Science
and Engineering Research Board, Department of Science and Technology,
Government of India, under Grant DSTO-1677; in part by the Department of
Telecommunications, Government of India, under Grant DOTC-0001; in part
by the Robert Bosch Centre for Cyber-Physical Systems; and in part by the
Centre for Networked Intelligence (a Cisco Corporate Social Responsibility
(CSR) Initiative) at Indian Institute of Science, Bengaluru. An earlier version
of this paper was presented in part at the 2021 IEEE International Sympo-
sium on Information Theory [1] [DOI: 10.1109/ISIT45174.2021.9517901].
(Corresponding author: Parimal Parag.)

Rooji Jinan is with the Robert Bosch Centre for Cyber-Physical Systems,
Indian Institute of Science, Bengaluru, Karnataka 560012, India (e-mail:
roojijinan@iisc.ac.in).

Ajay Badita was with the Indian Institute of Science, Bengaluru 560012,
India. He is now with the IOTA Foundation, 10405 Berlin, Germany (e-mail:
ajay.badita@iota.org).

Pradeep Kiran Sarvepalli is with the Department of Electrical Engineering,
Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
(e-mail: pradeep@ee.iitm.ac.in).

Parimal Parag is with the Department of Electrical Communication Engi-
neering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
(e-mail: parimal@iisc.ac.in).

Communicated by C. Hollanti, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3152182.
Digital Object Identifier 10.1109/TIT.2022.3152182

Fig. 1. An example of 3
7

-(7, 7, 3) replication coded system, where a single
file is fragmented into V = 7 fragments, and each fragment is repeated
R = 3 times over B = 7 servers each with storage of K = 3 fragments.
The corresponding block replication code is denoted by (21, 7).

of storage nodes. These nodes are prone to failures and
unpredictable download times [2]. A primary challenge in
such systems is to provide resilience against such events. One
approach for improving the robustness of a distributed storage
system is adding redundancy through error-correcting codes.
It turns out that coded systems also offer fast access to the
data due to parallelization gains. Latency redundancy trade-off
has been studied for maximum distance separable (MDS) and
replication codes in various articles [3]–[8].

For simplicity, we consider a single file of unit size.
A distributed storage system of B servers that can
each store α fraction of this file, is referred to as an
α-B system. A single file of unit size divided into V frag-
ments, encoded into V R fragments, and stored over an α-B
system, is called an α-(B, V, R) coded storage scheme. This
suggests that we can use (n, k) error-correcting codes which
encode k = V information symbols into n = V R encoded
symbols, such that the file can be recovered by downloading
certain coded symbols. In replication coding, we replicate each
of the V file fragments R times, and the file can be recovered
by downloading a single replica of each fragment. On the
other hand, in a (V R, V) MDS code the V file fragments
are encoded into V R fragments, and the entire file can be
reconstructed from any of the V encoded fragments. For an
α-B system, it is assumed that per server storage is K = αV
in terms of the fragments. Fig. 1 shows such a scheme for
3
7 -(7, 7, 3) replication storage scheme.

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7150-2081
https://orcid.org/0000-0002-5886-8801
https://orcid.org/0000-0002-3757-904X
https://orcid.org/0000-0001-8047-6946

4136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

A commonly studied α-(B, V, R) system is where per server
storage α = 1

V [2], [9], [10]. That is, the number of coded
fragments on each of the B parallel server caches is K = 1.
For this case it was shown that MDS codes provide optimal
performance [10] in terms of the mean access delay. However,
if we allow for an additional degree of freedom, namely
a larger subpacketization of the fragments stored on the
servers, then even non-MDS codes can become competitive.
For instance, when K > 1 the staircase codes proposed in [11]
for secure computation have been used to improve upon the
MDS codes1. The mean download time of staircase codes
was shown to be smaller than that of a (B, B/R) MDS code
in [12], [13].

Fixing the subpacketization at V fragments, the code rate
at 1/R, and the number of servers at B, it can be shown
that among all (V R, V) codes stored over an α-B system, an
MDS code has the smallest file download time for a class of
distributions. Even though MDS codes are latency optimal,
they have certain drawbacks. First, encoding and decoding
require complex finite field arithmetic. Popular erasure decod-
ing algorithms for MDS codes such as Reed-Solomon codes
have a decoding complexity O(V 2), see [14] for a recent
overview. For a slow processing system, this could lead to
a non-trivial decoding latency. Second, file sizes often change
in storage systems with frequent writes [15]. In this case, the
entire file has to be encoded again [16]. Third, to be able to
code V fragments of a file into V R MDS coded symbols,
the symbols must belong to a sufficiently large alphabet [17,
Theorem 4.1]. This can be achieved by grouping multiple bits
together in each file fragment. This puts a constraint that each
fragment should be sufficiently large.

Block replication codes score well on all of these fronts.
As the replication codes are binary, encoding and decoding of
replication is trivial and the file sizes can be small. Further,
the file size changes can be accommodated by change in
the associated fragments and their replicas. This is reflected
in widespread adoption [18]–[21] of replication codes in
distributed systems. Furthermore, we will show that the latency
performance of block replication codes becomes comparable
to that of MDS codes with increase in either the number of
fragments or the storage size per server. Hence, we focus on
(V R, V) replication codes that offer good mean download
time for an α-B system. For replication codes, we need to
determine on which servers each of the replicated fragments
should be stored. In addition, we need to consider the order in
which the fragments are accessed at each server. We consider
the problem of optimal storage and access sequence of the
replicated fragments at each of the B servers, such that the
mean download time is minimized. There is no obvious relation
between the fragments stored on each of the servers and the
mean download time. Therefore, determining what fragments
should be stored on each of the servers appears to be a difficult
problem as there are exponentially many ways to store the
fragments on the servers. For a given fragment storage on
each server, the problem of optimal access sequence can be

1We view the staircase codes as (BK, V) codes over a q-ary alphabet,
where each server has K q-ary symbols. It is also possible to view them as
(B, V) MDS codes over a qK alphabet. See also [11, Theorem 1].

posed as a finite horizon Markov Decision Problem (MDP),
which can be solved by standard backward induction algo-
rithm [22]. For the proposed MDP, this algorithm requires
exponentially large memory in number of fragments, and
cannot be implemented efficiently for large system parameters.

A. Related Work

Coding techniques have emerged as a popular technique
to provide reliability in distributed storage systems with
fault-prone network [2], [23]–[26]. Storage codes can also
be designed to achieve additional objectives such as low
repair bandwidth [2], [9], [18], [27], [28], low regenera-
tion bandwidth [24], [29], [30], high locality [31], [32],
low latency [33]–[36], among others. In this work, we are
interested in low latency performance of distributed storage
systems, by using codes. Specifically, we study replication
codes where files are stored redundantly over the system.

It has been shown that redundant storage can reduce latency
as well. In this case, a download request can be served in
parallel by multiple servers storing the requested file [3],
[7], [10], [36]–[41]. Trade-off between latency and cost of
availing redundancy was observed empirically in [37], and
subsequently studied theoretically in [7], [21], [34], [38],
[40], [42], [43]. Two well studied file encoding strategies
used in distributed systems with redundant storage are MDS
coding [10], [23], [34], [42] and replication [19]–[21], [24].
It has been shown that MDS coding outperforms replication
in mean file access latency [4], [10], [44].

In all these works, it was assumed that each server stores a
single coded fragment of the file. In other words, the size of a
file fragment is equal to the memory of the server. If we divide
the file into smaller fragments than the memory available at
the server, then we can store multiple file fragments on each
server. This fact was exploited by [12], [13] to show that the
mean access latency for Staircase codes can be smaller than
MDS codes storing a single coded fragment on each server.
In Staircase codes, the fragments stored on the servers are
not all of equal size. We note that if the file is uniformly
subfragmented and a larger code is used, then performance of
MDS codes can also be improved.

Our work differs from these existing works in the following
ways. We focus on replication codes for equal sized fragments
of a single file stored over multiple servers, such that each
server can store multiple fragments. Each server stores a
different set of fragments introducing an asymmetry among
the servers during the download process. The storage scheme
has a direct impact on the mean download time. Furthermore,
the sequence of access of fragments at each server affects
the download time significantly. We address the problem of
constructing good storage schemes as well as the access
sequence at each server in this work. These aspects have not
been explored in the literature to the best of our knowledge.

B. Main Contributions

We briefly summarize the main contributions of the paper.

i) We study replication codes for file fragments stored
over distributed storage systems. Our study differs

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4137

from previous work in that each server can store
multiple fragments.

ii) We characterize the mean download time of a file when
fragment download times are random and independent
and identically distributed (i.i.d.) exponential, and find
a lower bound in terms of the expected sum of number
of useful servers for each fragment download.

iii) We provide bounds on the number of useful servers
for any storage scheme in an α-B system employing
(V R, V) replication code.

iv) We propose storage schemes that maximize the afore-
mentioned lower bounds on number of useful servers.

v) We establish that finding the optimal fragment access
sequence is an MDP. We propose efficient suboptimal
algorithms that are easy to implement.

vi) We show that among all the (V R, V) codes stored on
an α-B system, an MDS code minimizes the mean
download time. In addition, we show that a (V R, V)
replication code matches the MDS code performance
when α � 1, i.e. K � V .

vii) We propose a random fragment storage scheme along
with a random scheduling policy for (V R, V) replica-
tion codes that performs competitively with respect to
(V R, V) MDS codes when K < V , for large V .

viii) We support our analyses with numerical studies which
provide additional insights into α-(B, V, R) coded
storage schemes. They also illustrate the performance
of various proposed algorithms.

A key takeaway from our work is that a good choice of
storage scheme and access sequence can enable replication
codes to be a practical alternative to MDS codes in situations
where the implementation of MDS codes is not preferable.

C. Organization

We present the system model in Section II and the problem
formulation in Section III. We provide universal performance
bounds in Section IV, based on which we propose determin-
istic storage policies in Section V. Algorithms for fragment
access sequence are studied in Section VI. A random storage
scheme for replication codes together with a random schedul-
ing policy is presented in Section VII. The performance of
replication and MDS codes are compared in Section VIII.
Empirical studies are provided in Section IX, and we conclude
with some final remarks in Section X.

Notation: We briefly summarize the notation used through-
out this article. We denote the set of first N consecutive
positive integers by [N] � {1, . . . , N}, the set of positive
integers by N, the set of non-negative integers by Z+, the
set of non-negative reals by R+. For a set A, we denote the
collection of all subsets by 2A, and the cardinality by |A|.

II. SYSTEM MODEL

We consider the storage of a single file split into V distinct
fragments on a finite number of servers B. Each of these
servers are assumed to have identical storage capacity of K
such fragments. We will initially consider K � V , and define

TABLE I

NOTATIONS FOR VARIOUS STORAGE PARAMETERS

the storage capacity per server in terms of fraction of file
fragments

α � K

V
. (1)

We will see in Section VIII-B, that K � V is a simpler
case and can be studied independently. For (V R, V) block
codes that encode V fragments into V R coded fragments,
the code rate is 1/R. We study (V R, V) replication codes
where each file fragment is replicated R times, and R is called
the replication factor of the code. The system should have
sufficient storage capacity to store all V R fragments, and this
requires that V R � KB, or equivalently R � αB.

We assume any download request for the stored file is forked
to all B servers. This request leaves the system only when
it has collected all the fragments needed to decode the file.
We further assume that only one symbol can be downloaded
at a time from each server and the information stored on the
servers are never lost. At each server b ∈ [B], the request starts
downloading stored fragments in some order. The fragment to
be downloaded at each server depends on the fragments that
have already been downloaded. The download time for the
file is affected by which fragments are stored on each server,
download time of each fragment, and the temporal sequence
in which the fragments are downloaded. In the following
sections, we consider each of these aspects in more detail.

A. Storage Model

For a specific code which encodes the V file fragments into
V R encoded fragments, we refer to the mapping of fragments
stored on each server as the storage scheme.

Definition 1 (Occupancy Set): The set of servers on which
a fragment v ∈ [V] is replicated is called the occupancy set,
and is denoted by Φv ⊆ [B] such that |Φv| � R.

The storage scheme is completely determined by the col-
lection of occupancy sets Φ � (Φv : v ∈ [V]).

Definition 2 (Fragment Set): The set of fragments stored on
a server b ∈ [B] is called the fragment set, and is denoted by
Sb ⊆ [V], such that |Sb| � K and

Sb � {v ∈ [V] : b ∈ Φv} . (2)

The notations used for the various storage parameters is
summarized in Table I.

We classify the storage of (V R, V) codes on α-B systems
as completely utilizing and underutilizing. A storage scheme
is said to be completely utilizing if

∑
v∈[V] |Φv| = BK and

underutilizing if
∑

v∈[V] |Φv| < BK . If V R < BK , then an

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

α-B system is clearly underutilizing. A (V R, V) replication
code with V R = BK can still be underutilizing, if there
exists a fragment v whose multiple replicas are stored on
some server b. In this case, |Φv| < R and |Sb| < K . Here,
the storage of extra replicas on the same server provide no
parallelization benefit, and they are discarded as soon as one of
the replicas gets downloaded. Therefore, we focus on storage
schemes where each server stores at most a single replica of
each fragment.

Definition 3: For (V R, V) replication coded file fragments
stored on B servers with storage capacity of K fragments
satisfying V R = BK , the completely utilizing α-(V, R)
replication storage ensemble is defined as the collection

S �
{

Φ ∈ (2[B])[V]

∣∣∣∣∣ |Φv| = R, |Sb| = K for all v, b

}
. (3)

B. Fragment Download Time Model

The fragment download time at each server is modeled by
a random variable that captures uncertainty due to network
delays and server background processes [45]. We denote
the fragment download time for fragment v at the server b
by a nonnegative random variable Tbv. We assume that all
fragments are of equal size and the servers are identical, in
the sense that the marginal distribution of Tbv is identical for
all fragments v ∈ Sb at all servers b ∈ [B]. The background
processes vary widely across the servers and with respect
to time. Together with this observation and motivated by
analytical tractability, we assume that the fragment download
times Tbv are independent across servers and fragments.
That is, we assume fragment download times to be i.i.d.,
which is a popular assumption in the literature [3], [5], [10],
[20], [40], [46].

It has been shown that shifted exponential distribution is
a good model for the random download time in data center
networks [8], [12], [40], [47], where the constant shift is the
startup time for servers, and the memoryless part accounts
for the uncertainty. In the case when the startup time is
negligible when compared to the mean download time, expo-
nential distribution is a good approximation for the download
time distribution. Therefore, we also assume the common
distribution function F for the random fragment download
time to be exponentially distributed with rate μ, such that

F (x) � P ({Tbv � x}) = 1 − e−μx, for all x � 0.

C. Download Sequence and Scheduling

Recall that the request is completely serviced when all
the V distinct fragments have been downloaded. Due to the
stochastic nature of fragment download, the order in which
the request downloads the fragments is random. We assume
that the request only downloads the fragments which have
not been downloaded before, and such download sequences
are referred to as minimal downloading sequences. A mini-
mal downloading sequence for replication codes consists of
unique fragments. The �th downloaded fragment is denoted
by v�, and the sequence of downloaded fragments until �th

download is called download subsequence and denoted by
I� � (v1, . . . , v�). Since all the downloaded fragments are
unique, sometimes we regard the download subsequence I�

as a set and ignore the ordering of fragments. The distinction
between the set and the subsequence will be clear from the
context.

Given the sequence of downloaded fragments, the process
of determining which fragment is made available for down-
loading at each server is referred to as scheduling. We will
only be interested in the class of scheduling policies that
result in minimal download sequences, and refer to them
as work-conserving. These scheduling policies do not waste
the servers’ work by downloading replicas of the fragments
that have already been downloaded. In other words, the
scheduler only selects the remaining fragments at each server.
Therefore, after a fragment download, the request immediately
stops downloading that fragment from other servers. Instead,
it starts downloading the scheduled fragment among one of the
remaining fragments at that server. After the �th download, the
set of remaining fragments on a server b ∈ [B] is denoted as

S�
b � Sb \ I�, � ∈ [V]. (4)

Definition 4 (Work-Conserving Scheduling): The work-
conserving scheduling can be formally defined as a function
Ψ : S × 2[V] → [V][B], that selects one of the remaining
fragments at each server b after � downloads for a storage
scheme Φ ∈ S. That is, for all � ∈ {0, . . . , V − 1}, we have

Ψ(Φ, I�)(b) ∈ S�
b, for all b ∈ [B] such that S�

b �= ∅. (5)

We denote the restriction of work-conserving scheduling pol-
icy Ψ to a fixed storage scheme Φ ∈ S by ΨΦ : 2[V] → [V][B]

such that

ΨΦ(I�)(b) = Ψ(Φ, I�)(b).

Motivated by analytical tractability, we have assumed an
idealized model of perfect and immediate cancellation at all
parallel servers serving the same fragment.

III. PROBLEM FORMULATION

In this section, we give a precise formulation of the main
problem we study. Our main goal is to minimize the mean
download time for a file stored using a storage scheme Φ from
the completely utilizing α-(V, R) replication storage ensemble
and work-conserving scheduling scheme Ψ, when the service
times at each server are independent and exponentially dis-
tributed with rate μ. We denote the download time of �th
distinct fragment v� by D�, where D0 � 0 and � ∈ {0, . . . , V }.
This indicates that a download subsequence I� of � fragments
has been downloaded at time D�. With this notation, the file
download time is denoted by DV .

If the request has downloaded all the fragments available at
a server, the corresponding server is called useless. A server
that has fragments not yet downloaded by the request, is called
useful. We borrow this nomenclature of useful and useless
servers from [10]. The set of useful servers after �th download
is denoted by U(I�) and its cardinality by N(I�). More

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4139

precisely, we have

U(I�) �
⋃

v/∈I�

Φv, N(I�) � |U(I�)| . (6)

The request is being served by N(I�) parallel servers in the
duration [D�, D�+1). From the independent and memoryless
service assumption at all servers of rate μ, we have

E

[
D�+1 − D�

∣∣∣I�

]
=

1
N(I�)μ

.

The download time for V fragments can be written as the
sum of download time of individual fragments, i.e. DV =∑V −1

�=0 (D�+1 − D�). From the linearity and the tower prop-
erty of expectation, it follows that the mean download time
averaged over all fragments is

1
V

E [DV] =
1
V

E

[
V −1∑
�=0

1
N(I�)μ

]
. (7)

We see that the mean download time depends on U(I�), the set
of useful servers remaining after �th download, which in turn
depends on the storage scheme Φ and the scheduling policy
Ψ. We present the following lemma that provides us a lower
bound on the mean file download time in terms of the sum of
mean number of useful servers.

Lemma 1: For any positive random vector X ∈ R
V
+,

we have 1
V E

[∑V
i=1

1
Xi

]
� V�V

i=1 E[Xi]
.

Proof: Since the arithmetic mean is always larger than the
harmonic mean, we can write 1

V

∑V
i=1

1
Xi

� V/(
∑V

i=1 Xi).
Taking expectation on both sides, and applying Jensen’s
inequality [48] to the convex function f(x) = 1

x and positive
random variable

∑V
i=1 Xi, we get the result. �

Remark 1: It follows from Lemma 1 that the mean down-
load time can be lower bounded as

1
V

E [DV] � V

μ
∑V −1

�=0 E [N(I�)]
. (8)

Remark 2: Suppose that the random download times at the
servers are i.i.d. having shifted exponential distribution with
rate parameter μ and shift parameter θ � 0. Then, we will get
1
V E [DV] = θ + 1

V E

[∑V −1
�=0

1
μN(I�)

]
. Applying Lemma 1 to

the second term, we get

1
V

E [DV] � θ +
V

μ
∑V −1

�=0 E [N(I�)]
.

In some important settings, the sum
∑

� E [N(I�)] is analyt-
ically more tractable when compared to

∑V −1
�=0 E [1/N(I�)].

Motivated by this fact, instead of minimizing the mean down-
load time in Eq. (7), we minimize the lower bound in Eq. (8),
which is then equivalent to maximizing

∑V −1
�=0 E [N(I�)].

Guided by this observation, we now pose the following
problem.

Problem 1: Find the storage scheme Φ in completely
utilizing α-(V, R) replication storage ensemble and restriction
ΨΦ of work-conserving scheduling policy Ψ to this storage

scheme, that maximizes the mean number of useful servers
averaged over all fragments, i.e.

(Φ∗, Ψ∗
Φ∗) = arg max

(Φ,ΨΦ)

1
V

V −1∑
�=0

E [N(I�)] .

We divide this problem into two subproblems. The first
subproblem is to find the optimal scheduling policy given a
fixed storage scheme.

Problem 2: 1-A Find the optimal work-conserving schedul-
ing policy restricted to a fixed completely utilizing α-(V, R)
replication storage scheme Φ, i.e.

Ψ∗
Φ = argmax

ΨΦ

1
V

V −1∑
�=0

E [N(I�)] .

The optimal work-conserving scheduling policy Ψ∗ is the
collection of restrictions Ψ∗

Φ for all storage schemes Φ ∈ S.
The second subproblem is to find the optimal storage

scheme given a fixed scheduling policy.
Problem 3: 1-B Given a work-conserving scheduling policy

Ψ, find the optimal completely utilizing α-(V, R) replication
storage scheme Φ ∈ S, i.e.

Φ†(Ψ) = argmax
Φ∈S

1
V

V −1∑
�=0

E [N(I�)] .

By solving Problem 2 for each storage scheme Φ ∈ S, we
can find the optimal work-conserving scheduling policy Ψ∗.
Subsequently, we can obtain the optimal storage scheme Φ∗ =
Φ†(Ψ∗) by solving Problem 3 for the optimal scheduling Ψ∗.
It follows that if we can solve the above two sub-problems,
then we can find the optimal solution (Φ∗, Ψ∗

Φ∗) to Problem 1.
It turns out that Problem 2 can be posed as an MDP,

for a given storage scheme Φ. This MDP suffers from
the well-known curse of dimensionality [49], and becomes
intractable for large values of number of fragments. We pro-
pose heuristic scheduling algorithms that are computationally
efficient. These algorithms are empirically shown to have a
good performance for given storage schemes.

In contrast to Problem 2, it is not clear at the outset, how
to efficiently solve Problem 3. A brute force way of solving
this problem would be to compute the mean download time
for all storage schemes Φ ∈ S under the optimal scheduling
policy Ψ∗

Φ, or its surrogate suboptimal heuristic algorithms,
and searching among all storage schemes. Since this brute
force search is computationally expensive, we propose an
alternative suboptimal approach that involves two steps.

Step 1. We first find universal lower bounds LΦ
1 (�), LΦ

2 (�) for
the number of useful servers N(I�), such that for
thresholds 0 < ι1, ι2 � V − 1,

N(I�) �
{

LΦ
1 (�), � < ι1,

LΦ
2 (�), � � ι2.

(9)

The lower bounds depend only on the storage scheme
Φ and not on the specific work-conserving scheduling
policy Ψ.

Step 2. We next find storage schemes that maximize the
lower bounds LΦ

1 (�) and LΦ
2 (�). The resulting storage

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

schemes behave well even with the worst possible
work-conserving scheduling policy.

IV. PERFORMANCE BOUNDS

In this section, we study the aggregate number of useful
servers for completely utilizing α-(V, R) replication storage
schemes Φ ∈ S, in conjunction with a work-conserving
scheduling policy Ψ. In particular, we provide bounds on
the number of useful servers N(I�) after each download
� ∈ {0, . . . , V − 1}.

A. Upper Bound on N (I�)

First, we prove a simple upper bound for the number of
useful servers for any α-(V, R) storage scheme.

Theorem 1: For a completely utilizing α-(V, R) replication
storage scheme Φ ∈ S defined in Eq. (3), the number of useful
servers N(I�) after � downloads is upper bounded in terms of
m � �B/R�,

N(I�) �
{

B, � � V − m

(V − �)R, � > V − m.
(10)

Proof: From the construction of a completely utilizing
α-(V, R) storage scheme, it follows that all servers are useful
before any download is initiated, i.e. N(I0) = B. Further,
no servers are useful after all fragments have been down-
loaded, i.e. N(IV) = 0. Taking cardinality of the set of useful
servers given in Eq. (6), we get

N(I�) = |∪v/∈I�
Φv| �

∑
v/∈I�

|Φv| = (V − �)R.

Since the number of useful servers cannot exceed the total
number of servers B, we get N(I�) � min {B, (V − �)R} for
any �. We verify that B � (V −�)R if and only if m � V −�,
and the result follows. �

From Theorem 1, we can obtain an upper bound on the
number of useful servers averaged over the number of frag-
ments and the number of servers.

Remark 3: Recall that for a completely utilizing α-(V, R)
replication storage scheme B/R = V/K = 1/α. When B/R
is an integer, summing up both sides of Eq. (10), and dividing
both sums by the product BV , we obtain

1
BV

V −1∑
�=0

N(I�) � 1 − (m + 1)
2V

. (11)

This gives us a normalized upper bound on the sum of the
number of useful servers.

Remark 4: Note that this upper bound is true for all
completely utilizing α-(V, R) replication storage schemes and
all work-conserving scheduling policies. That is,

sup
Φ∈S

sup
ΨΦ

1
BV

V −1∑
�=0

N(I�) � 1 − (m + 1)
2V

.

Remark 5: Consider an underutilizing α-(V, R) replication
storage scheme where each fragment v ∈ [V] is assumed
to be replicated on Rv servers, where Rv � R and
1
V

∑
v∈[V] Rv < R. Since, the number of useful servers before

the commencement of download can only be smaller than or
equal to B and Rv � R for all v ∈ [V], following the exact
steps as above shows that the above given upper bound holds
for an underutilizing α-(V, R) replication storage scheme.

B. Lower Bound on N (I�)

Next, we proceed to find a lower bound for the number
of useful servers N(I�) after � downloads for a completely
utilizing α-(V, R) storage scheme. To this end, we define two
important properties of a storage scheme Φ ∈ S. For servers
a, b ∈ [B] and fragments v, w ∈ [V], we define the maximum
overlap of fragment sets and occupancy sets as

τM � max
a�=b

|Sa ∩ Sb| , λM � max
v �=w

|Φv ∩ Φw| . (12)

In the initial stages of download when the number of
fragments downloaded is less than O(K2), the number of
useful servers is primarily determined by the overlap between
the fragment sets. More precisely, we have the following lower
bound on N(I�).

Theorem 2: Consider a completely utilizing α-(V, R) repli-
cation storage scheme Φ with the maximum overlap of frag-
ment sets τM , as defined in Eq. (12). Let �i � iK−i(i−1) τM

2

for i ∈
{

0, 1, . . . , � K
τM

�
}

, then the number of useful servers
after � downloads can be lower bounded as

N(I�) � LΦ
1 (�) (13)

�
�K/τM�∑

i=0

(B − i)�{�i��<�i+1}, for � < ι1 � ��K/τM�+1.

Proof: For i � K
τM

, we will show that N(I�) � B − i
for � < �i+1 by contradiction. We assume that the number of
downloaded fragments � < �i+1, and the number of useful
servers N(I�) < B − i. That is, the number of useless
servers is B − N(I�) > i. Then, there exist (i + 1) servers
{b1, . . . , bi+1} ⊂ [B], which are no longer useful after �
downloads. This implies that the union of their fragment
sets ∪i+1

j=1Sbj is included in the downloaded fragment set I�.
Since any two servers can have at most τM file fragments in
common, jth server has at least (K − (j − 1)τM) fragments
distinct from the fragments stored in first (j−1) servers. Thus,

� �
∣∣∪i+1

j=1Sbj

∣∣ �
i∑

j=0

(K − jτM) = �i+1.

This contradicts our assumption. It follows that for each
i ∈

{
0, . . . , � K

τM
�
}

, the largest lower bound for N(I�) in

the interval �i � � < �i+1 is (B − i). Thus, we get the
result. �

Remark 6: From Theorem 2, we observe that for any i ∈
{0, . . . , �K/τM�}, the derived lower bound on the number of
useful servers after � downloads is LΦ

1 (�) = B − i for �i �
� < �i+1. Maximizing the lower bound LΦ

1 (�) is equivalent to
maximizing the intervals {�i, . . . , �i+1 − 1}. From Theorem 2,
it follows that the interval duration is �i+1 − �i = K − iτM .
We observe that the interval durations are maximized for the
overlap parameter τM = 1.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4141

We can also give a lower bound on the number of useful
servers when most of the fragments have been downloaded.
In this case the number of useful servers is determined by the
overlap between occupancy sets. By considering the largest
possible overlap of the occupancy sets, we can show the
following lower bound on N(I�).

Theorem 3: Consider a completely utilizing α-(V, R) repli-
cation storage scheme Φ ∈ S with the maximum overlap of
occupancy sets λM , as defined in Eq. (12). Then, the number
of useful servers is lower bounded as

N(I�) � LΦ
2 (�) � (V − �)

(
R − (V − � − 1)

λM

2

)
, (14)

for � � ι2 � V − �R/λM� − 1.
Proof: After � downloads, the set of downloaded frag-

ments is I�, and the set of remaining fragments is [V] \ I�.
Since � = V − i, we denote the set of remaining fragments
as {w1, . . . , wi}. Recall that the set of useful servers is the
union of servers storing the remaining fragments U(I�) =
∪v/∈I�

Φv = ∪i
j=1Φwj . We can write the number of useful

servers as

N(I�) =
∣∣∪i

j=1Φwj

∣∣ =
i∑

j=1

(
∣∣Φwj

∣∣− ∣∣∣∪j−1
r=1(Φwj ∩ Φwr)

∣∣∣).
Since any two occupancy sets can have at most λM servers
in common, we get N(I�) �

∑i
j=1(R− (j − 1)λM), and the

result follows. �
Remark 7: We observe from Theorem 3 that LΦ

2 (�) is
maximized for overlap parameter λM = 1.

When the maximum overlap of fragment sets is τM = 1,
then we have the following lower bound on the number of
useful servers.

Lemma 2: For a completely utilizing α-(V, R) replication
storage scheme with the maximum overlap of fragments τM

set to be 1, the number of useful servers N(I�) satisfies

N(I�) � N(I�−1) − min
{

R,

⌊
� − 1
K − 1

⌋}
.

Proof: We denote the set of servers that turn useless after
�th download by G� � U(I�−1) \ U(I�), and its cardinality
by |G�| = N(I�−1) − N(I�). Each server b ∈ G� has the �th
downloaded fragment v�, and all its remaining fragments have
been downloaded in first (�−1) downloads. Further, since the
maximum overlap of fragment sets for these storage schemes
is τM = 1, it follows that the sets (Sb \ {v�} : b ∈ G�) are
disjoint. That is, we can write

∪b∈G�
(Sb \ {v�}) ⊆ I�−1.

Since |I�−1| = � − 1 and |Sb \ {v�}| = K − 1 for all b ∈ G�,
we get |G�| � �−1

K−1 . Further noting that the �th downloaded
fragment can occur on a maximum of R servers, we obtain
the result. �

V. DETERMINISTIC PLACEMENT SCHEMES

FOR REPLICATION CODES

In this section, we establish a connection between storage
schemes and combinatorial designs. This connection allows

us to systematically construct new storage schemes for a
given α-B system. As discussed in Section III, instead of
the objective function 1

V

∑V −1
�=0 E [N(I�)], we focus on the

universal lower bounds LΦ
1 (�) and LΦ

2 (�) defined in Eq. (9),
on the number of useful servers N(I�). From Remark 6 and
Remark 7 in Section IV, we observe that the overlap parameter
τM = 1 maximizes the lower bound LΦ

1 (�) in the region
� < ι1, and the overlap parameter λM = 1 maximizes the
lower bound LΦ

2 (�) in the region � � ι2. The connection
to designs allows us to optimize the storage schemes for λM

and in some cases τM as well. We then study the performance
of a particular class of storage schemes with desired overlap
parameters, constructed from a combinatorial design called
projective plane. Numerical studies are reported in Section IX.

A. Storage Schemes From Combinatorial Designs

In this section, we establish a correspondence between
storage schemes and designs. Then using this correspondence
we propose storage schemes from designs, with desirable
overlap parameters τM and λM .

Definition 5 (Design): A design is a pair (P ,B) satisfying
the following conditions:
D1) P is a set of elements called points.
D2) B is a collection of nonempty subsets of P called blocks.

Remark 8: Every completely utilizing α-(V, R) replica-
tion storage scheme corresponds to a design ([V],B) where
|B| = B = R

α and

B = {Sb ⊆ [V] : b ∈ [B]} .

Conversely, every design (P ,B) leads to a replication storage
scheme with |P| fragments stored on B = |B| servers, where
bth server is storing the fragments indexed by the bth block
of B.

In addition, if every block has the same size K , and every
point occurs R times, then we say that R is the replication
number. From such a design, we can obtain an α-(|P| , R)
replication storage scheme where α = R/ |B|.

The class of designs that are suitable for completely utilizing
α-(V, R) replication storage schemes, where all the servers
have the same storage capacity, are the so-called t-designs.
A design (P ,B) is said to be a t-design with parameters
t-(V, K, λ) if

1) there are V points in P ,
2) every block in B contains exactly K points,
3) every t-subset of P is contained exactly in λ blocks of B.

The following result is well known from design theory, see
for instance [50].

Proposition 1 ([50]): For every t-(V, K, λ) design with B
blocks and replication number R, we have

BK = V R, (15)

B

(
K

t

)
= λ

(
V

t

)
, (16)

From the one to one correspondence between designs and
replication storage schemes shown in Remark 8, it follows
that the set of blocks in which a point p appears is precisely

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

TABLE II

CORRESPONDENCE BETWEEN DESIGNS AND STORAGE CODES

the occupancy set of the fragment corresponding to point p.
Further, the total number of blocks that contain the point p is
the replication factor R of the corresponding fragment. In our
setting, the points are the fragments, and the blocks are the set
of fragments on each server. Table II summarizes the mapping
between design and storage parameters.

In practical systems, typically, the number of servers and
the storage capacity at each server is fixed. In addition,
Eq. (15) tells us that among V and R, only one can be chosen
independently. That is, among the two design parameters, the
number of fragments into which each file is fragmented and
the replication factor, choosing one determines the other one.
Similarly, having chosen V , the parameter λ is completely
known for any t-design.

In general, it is an open question whether a t-design with a
given set of parameters exists and if it exists how to construct
that design. For some specific parameters, there are explicit
constructions of designs. A popular and well studied case is
where t = 2. These designs are called balanced incomplete
block designs (BIBDs). Then, from Eq. (16), we have

BK(K − 1) = λV (V − 1), (17)

and using Eq. (15) we obtain

λ =
R(K − 1)
(V − 1)

. (18)

A special case of BIBDs of interest is where the number
of points is equal to the number of blocks. In other words,
the number of servers is equal to the number of fragments.
Such BIBDs are also called symmetric BIBDs. Then, from
Eq. (15), we note that the replication factor is equal to
the memory at each server. Further, we also have the prop-
erty that any two distinct blocks intersect in λ points, see
[50, Theorem 2.2]. An important symmetric design is the
projective plane for which explicit constructions are known.

Another well known 2-design for which an explicit con-
struction is known is the affine plane which can be obtained
from a projective plane. The memory requirements at each
server scale as O(

√
B) for storage schemes derived from

projective planes (and affine planes) with B servers. If we
are interested in storage schemes with a fixed size of memory,
then we could consider constructing a storage scheme from a
Steiner triple systems [50]. They are also 2-designs, but with
the block size fixed at K = 3. In the following table we

TABLE III

PARAMETERS OF VARIOUS COMPLETELY UTILIZING α-(V, R)
REPLICATION STORAGE SCHEMES FROM DESIGNS

summarize the storage schemes from the designs we discussed
above. As can be seen from the Table III, there is a flexibility
in the choice of the design parameters allowing us to construct
storage schemes for various α-B systems. Additional storage
schemes can be constructed using results from design theory.
For instance a t-(V, K, λ) design implies the existence of
(t−i)-(V −i, K−i, λ) design for i < t, see [50, Theorem 9.2].
Therefore a K

V -(V, R) storage scheme obtained from a
t-(V, K, λ) design implies a K−i

V −i -(V − i, R′) storage scheme

where R′ = λ
(V −i−1

t−i−1)
(K−i−1

t−i−1) and i < t.

B. Storage Schemes From Projective Planes

As mentioned earlier, Theorems 2 and 3 motivate us to
construct storage schemes where λM and τM are small. Since
they are both nonnegative, one might try to make them both
zero. However, λM = 0 implies that K = 1 which has
been studied extensively. Similarly, τM = 0 implies that
R = 1 in which case there is no redundancy. For these
reasons, we do not study these two cases in this paper. The
next possible choice would be λM = 1 and τM = 1. Note,
that λM = 1 implies that the maximum occupancy overlap
is less than or equal to one. For simplicity, we consider the
symmetric case, where for any two distinct fragments u, v
we have |Φu ∩ Φv| = 1. Such a storage scheme immediately
leads us to Steiner systems which are BIBDs with λ = 1. This
motivates the study of storage schemes from such 2-designs.
If we similarly restrict that the fragment sets also satisfy
a similar overlap property, i.e. |Sa ∩ Sb| = 1 for distinct
blocks a, b, then such a BIBD must also be symmetric in
that number of blocks is identical to the number of fragments
[50, Corollary 2.5]. A well studied class of symmetric BIBDs
is that of projective planes.

A projective plane is a 2-(q2 + q + 1, q + 1, 1) design and
can be constructed from F

3
q , where q is power of a prime and

Fq is a finite field with q elements. From these designs we
obtain an α-(q2 + q + 1, q + 1) replication storage scheme,

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4143

TABLE IV

A 3
7

-(7, 3) REPLICATION STORAGE SCHEME BASED
ON A PROJECTIVE PLANE

TABLE V

A 3
7

-(7, 3) REPLICATION STORAGE SCHEMES BASED ON CYCLIC SHIFT

where α = (q+1)
(q2+q+1) . A 3

7 -(7, 3) replication storage scheme

constructed from a projective plane is shown in Table IV.
If we relax the constraint that two blocks do not necessarily

intersect in λM points, then also it is possible to construct
a storage scheme from a 2-design with λM = τM = 1.
Specifically, the affine planes lead to storage schemes with
these parameters. These are 2-(q2, q, 1) designs. From these,
we can construct 1

q -(q2, q + 1) replication storage schemes.
Remark 9: Recall that the overlap parameters τM =

λM = 1 for any α-(V, R) replication storage scheme derived
from a 2-(q2+q+1, q+1, 1) design. Aggregating results from
Theorem 2 for τM = 1, Theorem 3 for λM = 1, and Lemma 2
for τM = 1, we can obtain a lower bound on the number of
useful servers for number of downloads � ∈ {0, . . . , V − 1}.

C. Cyclic Shift Based Storage

We conclude this section by considering a simple α-(V, R)
storage scheme. The set of servers storing replicas of a
fragment v ∈ [V] are cyclically shifted by v. More precisely,
the occupancy set of a fragment v is given by

Φv+R−1 = {v, v + 1, · · · , v + R − 1} , (19)

where the addition is modulo B whenever the sum exceeds
B. We observe that |Φv ∩ Φv+j | = |Φv ∩ Φv−j | = R − j
for j ∈ [R − 1], v ∈ [V] where the addition and subtraction
is modulo V whenever the sum exceeds V or difference go
below 1. Thus, the maximum overlap between the occupancy
sets λM = R − 1.

In addition, we can write the fragment set at server b ∈ [B]
for this storage scheme as

Sb = {b, b + 1, . . . , b + K − 1} , (20)

where the addition is modulo V whenever the sum exceeds V .
Here, we observe that |Sb+j ∩ Sb| = |Sb−j ∩ Sb| = K − j for
j ∈ [K − 1], b ∈ [B] where the addition and subtraction
is modulo B whenever the sum exceeds B or difference go
below 1. Thus, the maximum overlap between the servers
τM = K − 1. An example is given in Table V.

While the maximum overlap parameters for this scheme are
τM = K − 1 and λM = R − 1, the overlap parameters have
a wide spread. Any server will have a fragment set overlap i,
where i ∈ [K − 1], with exactly two other servers and will

have zero overlap with the remaining max(0, B − 2K + 1)
servers. Similarly, the occupancy set of each fragment will
have an overlap of j, where j ∈ [R − 1], with the occupancy
sets of exactly two other fragments and will have zero overlap
with the occupancy sets of remaining max(0, V − 2R + 1)
fragments.

From the bounds in Theorems 2 and 3, we expect that
cyclic shift based storage schemes should perform somewhat
poorly compared to the projective plane designs based schemes
presented previously, as we will corroborate in Section IX.
If B = V , the fragments in the ith locations of the servers
can be arranged to be a permutation of [V] giving a natural
nonadaptive scheduling policy. Later, in Section IX we will
study the performance of this scheme along with an adaptive
scheduling policy to highlight the importance of scheduling.
The worst case overlap parameters for cyclic shift based stor-
age schemes are very large, and this is reflected in their large
mean download time with nonadaptive scheduling. However,
the performance is not only affected by λM and τM but also
by the spread of the occupancy set overlaps and fragment
set overlaps. Taking advantage of this fact we can improve
the performance of this scheme with adaptive scheduling.
Specifically, the adaptive scheduling algorithms exploit the
spread of the overlap parameters, to drive the system state
towards good residual fragment sets with small overlap.

VI. WORK-CONSERVING SCHEDULING

As already discussed in Section III, Problem 2 can be
reformulated as an MDP, given a completely utilizing α-(V, R)
storage scheme. In view of the complexity of the MDP, we pro-
pose two classes of efficient suboptimal work-conserving
scheduling algorithms. One class of algorithms are nonadap-
tive while the other are adaptive. The nonadaptive algorithms
fix the schedule at each server ahead of the file download.
In adaptive algorithms, the schedule of remaining fragments
to be downloaded at each server is causally aware of the
sequence of fragment downloads. We show that both classes of
algorithms offer good performance through numerical studies.
As will be seen in Section IX, adaptive algorithms can give
a better performance than the nonadaptive ones. Adaptive
work-conserving scheduling provides more flexibility in the
download process which can be exploited to reduce the
mean download time. Nonadaptive scheduling policies may
be preferred in some cases, when adaptive fragment selection
incurs non-negligible delay.

A. Nonadaptive Work-Conserving Scheduling

Given a completely utilizing α-(V, R) replication storage
scheme Φ, we can find the fragment set Sb at each server
b ∈ [B]. In the nonadaptive case, the scheduling decisions
are embedded in the placement order πb

Φ : [K] → Sb of
fragment set at each server b ∈ [B], and is fixed prior to the
commencement of download. A nonadaptive work-conserving
scheduling is defined by the collection of placement order
πΦ � (πb

Φ : b ∈ [B]). Given the set of downloaded fragments
I� after � downloads, the fragment to be downloaded from a
server b is the first residual fragment stored at this server in

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

the order of placement. This fragment is denoted by πb
Φ(kb

�+1),
where

kb
�+1 � inf {k ∈ [K] : πb(k) /∈ I�} , b ∈ U(I�).

A placement order π induces a scheduling policy Ψ
such that ΨΦ(I�)(b) = πb

Φ(kb
�+1). Finding a nonadaptive

work-conserving scheduling policy is equivalent to finding a
placement order. Therefore, given an α-(V, R) replication stor-
age scheme Φ ∈ S, the optimal nonadaptive work-conserving
scheduling policy is given by

π†(Φ) = argmax
π(Φ)

1
V

V −1∑
�=0

E [N(I�)] .

One way to find the optimal nonadaptive work-conserving
scheduling policy is to search over all possible placement
orderings. This search is highly computationally intensive, and
it is not clear how to efficiently find the optimal nonadap-
tive work-conserving scheduling policy. As such, we discuss
heuristic nonadaptive work-conserving scheduling policies in
Section IX that attempt to maximize the mean number of
useful servers, aggregated over all downloads.

B. Adaptive Work-Conserving Scheduling

Recall that, for a fixed completely utilizing α-(V, R) replica-
tion storage scheme Φ, the corresponding adaptive scheduling
policy is a map ΨΦ : 2[V] → [V][B]. In particular, the policy
schedules a residual fragment ΨΦ(I�)(b) = wb

�+1 ∈ S�
b on

each useful server b ∈ U(I�), after � downloads. That is,

ΨΦ(I�) : b �→S�
b, for all b ∈ U(I�), all � ∈ {0, 1, . . . , V −1}.

We first show that the evolution of downloaded fragments
can be modelled as a Markov chain for any work-conserving
scheduling policy ΨΦ given a fixed completely utilizing α-
(V, R) replication storage scheme Φ. We then pose optimal
dynamic scheduling problem defined in Problem 2 as an MDP.

Let Xt ⊆ [V] be the set of downloaded fragments at time
t. We can write �th download instants in terms of the process
X � (Xt ∈ 2[V] : t ∈ Z+) as

D� = inf {t > 0 : |Xt| = �} .

At the �th download instant D�, the set of downloaded
fragments is I� = XD�

. Further, the set of useful servers
at this instant is U(I�). At time D�, the fragment scheduled
on any useful server b ∈ U(I�) is the scheduling decision
ΨΦ(I�)(b) ∈ S�

b . Since the process X is piecewise constant
and only changes at decision epochs, we are interested in
the associated discrete time process sampled at the decision
epochs {D0, D1, . . . , DV −1}. Defining Y� � XD�

for all
� ∈ {0, 1, . . . , V − 1}, we can write the sampled process as
Y � (Y� : � ∈ {0, 1, . . . , V − 1}).

Lemma 3: For a fixed completely utilizing α-(V, R) replica-
tion storage scheme Φ, scheduling policy ΨΦ, and i.i.d. expo-
nential fragment download times, the continuous time process
X = (Xt ∈ 2[V] : t ∈ Z+) is Markov. Hence, the associated

sampled process Y is a discrete time Markov chain with the
transition probabilities given by

pI�,I�∪{v} =
1

N(I�)

∑
b∈U(I�)

�{ΨΦ(I�)(b)=v}, v /∈ I�. (21)

Proof: Refer Appendix A. �
1) MDP Formulation: Since we have already shown that

the set of downloaded fragments evolves as a discrete-time
Markov chain at the decision epochs, we can reformulate
Problem 2 as an MDP. Recall that the objective function
1
V

∑V −1
�=0 E [N(I�)] is additive over the downloads. Therefore,

we can consider this to be a finite MDP with V stages, where
the reward in stage � is

r�(I�) � N(I�)
V

, � ∈ {0, . . . , V − 1} . (22)

Given a fixed completely utilizing α-(V, R) replication storage
scheme Φ, our goal is to find the optimal work-conserving
scheduling policy ΨΦ such that the aggregate reward is max-
imized over the finite time horizon, i.e.

Ψ∗
Φ = arg max E

[
V −1∑
�=0

r�(I�)

]
. (23)

Since the rewards are additive for our current problem,
we can define a reward-to-go function u�+1(ΨΦ(I�)) =
E

[∑V −1
j=�+1 rj(Ij)

]
at the �th download time instant D�, of the

current state I� and the decision rule ΨΦ(I�). We can re-write
this reward-to-go function as

u�+1(ΨΦ(I�))

=
∑
v/∈I�

pI�,I�∪{v}
[
r�+1(I� ∪ {v}) + u�+2(ΨΦ(I� ∪ {v}))

]
.

Then, the optimal reward-to-go function from (� + 1)th stage
is given by

u∗
�+1(I�) = max

ΨΦ
u�+1(ΨΦ(I�)), � ∈ {0, . . . , V − 1} .

This is the well known Bellman’s optimality equation and it
follows from [22, Theorem 4.3.3] that

u∗
0 = max

ΨΦ
E

[
V −1∑
�=0

r�(I�)

]

and the optimal work-conserving scheduling policy is the one
that achieves the optimal reward-to-go function i.e.

Ψ∗
Φ = argmax

ΨΦ
u0(ΨΦ).

In order to solve this optimal scheduling decision we can use
the standard backward induction algorithm [22]. However, the
computational complexity of the backward induction algorithm
to solve the optimal scheduling problem grows exponentially
with the number of file fragments.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4145

2) Greedy Scheduler: A greedy solution to MDP maximizes
the immediate reward E [r�+1(I�+1)] after � downloads.

Theorem 4: For a given completely utilizing α-(V, R)
storage scheme, the adaptive work-conserving scheduler that

maximizes the expected immediate reward E

[
r�+1(I�+1)

∣∣∣I�

]
after � downloads is given by

ΨΦ(I�)(b) = arg min
v∈S�

b

ρg
� (v), � ∈ {0, · · · , V − 1} , (24)

where the greedy ranking function ρg
� (v) for a fragment v after

� downloads is defined as

ρg
� (v) �

∑
b∈Φv

�{|S�
b|=1}. (25)

Proof: After each download �, maximizing the immediate
reward of the mean number E [N(I�+1)|I�] of useful servers
after next download, is equivalent to minimizing the expected
additional number of servers that become useless after next
download i.e., N(I�) − E [N(I�+1)|I�]. Conditioned on the
set of downloaded fragments I�, the number of useful servers
N(I�) is deterministic. Therefore, we can write the conditional
expectation of the reduction in the number of useful servers
after (� + 1) downloads, as

E

[
N(I�) − N(I�+1)

∣∣∣I�

]
=

∑
b∈U(I�)

E

[
�{S�

b={v�+1}}
∣∣∣I�

]
,

where v�+1 is the (� + 1)th downloaded fragment. Note that
v�+1 is a random variable given I�, and it takes value among
all scheduled fragments with probability distribution given by
Eq. (21). We can re-write the conditional expectation of the
reduction in the number of useful servers given � downloads,
as

E

[
N(I�) − N(I�+1)

∣∣∣I�

]
=
∑
v/∈I�

pI�,I�∪{v}
∑

a∈Φv

�{|S�
a|=1}.

(26)
The above sum is a convex combination of greedy rank ρg

� (v)
over the probability distribution of scheduled fragments v.
It follows that the greedy algorithm must schedule the frag-
ment with the lowest greedy rank, at each useful server
b ∈ U(I�) after � downloads. �

Remark 10: Note that the greedy rank ρg
� (v) is equal to

the number of servers that become useless if fragment v gets
downloaded at the (� + 1)th download instant.

3) Ranked Schedulers: Recall that a scheduling algorithm
has to schedule a remaining fragment to be downloaded at
each of the useful servers, at each download instant. The
greedy scheduler discussed previously, computes a function
ρg

� (v) at each download instant � for each remaining fragment
v and schedules the fragment with smallest rank at each useful
server. Instead of ρg

� (v), we could consider other functions for
remaining fragments giving us a class of algorithms for various
rank functions. The rank function ρ� quantifies the suitability
of the fragment to be scheduled for download. Fragments
with lower rank are prioritized over fragments with higher
rank while they are scheduled for downloading. The complete
algorithm for a choice of ρ� : [V] \ I� → R is given below.

One big issue with the greedy approach is that it does
not optimize the expected number of useful servers over all

Algorithm 1 Suboptimal Adaptive Work-Conserving Sched-
uler
Input: α-(V, R) replication storage scheme Φ
Output: ((ΨΦ(I�)(b) : b ∈ U(I�) : � ∈ {0, . . . , V − 1})
1: Set S0

b = Sb = {v ∈ [V] : b ∈ Φv} for all b in [B]
2: for � ∈ {0, · · · , V − 1}, do
3: for b in U(I�) do
4: ΨΦ(I�)(b) = argminv∈S�

b
ρ�(v)
 Ties can be broken

randomly or by any other rule.
5: end for
6: Update S�+1

b = S�
b \ {v�+1} for all b in U(I�+1)

7: end for

downloads. The greedy approach is oblivious to the evolution
of I� and the choices it makes can steer the algorithm in a
direction that does not minimize the mean download time.
In particular, in the initial stages of download when � is small,
the greedy ranking function ρg

� (v) = 0 for many fragments and
the likelihood of not making the optimal choice is high.

A better choice for the ranking function should be more
sensitive to the download sequence and be able to assign a
nonzero value even in the initial stages. This implies that a
good ranking function must have some desirable properties.
In the following discussion we attempt to derive some of them.
First, we make the simplifying assumption that the ranking
function ρ�(v) for a remaining fragment v /∈ I� only depends
on the collection {S�

b : b ∈ Φv}.
Recall that our goal is to maximize the number of useful

servers, not just at the �th download but over all the subsequent
downloads. Intuitively, a choice of the metric ρ(v) that ensures
scheduling a fragment which is less likely to lead to servers
storing single fragments in the future, might perform better
compared to a greedy approach. To this end, we make the
following two observations. The first observation is that a
server becomes useless if all its stored fragments are down-
loaded. That is, N(I�+1) =

∑
b∈[B] �{S�+1

b �=∅}. The second
observation is that a fragment download reduces the number
of remaining fragments on each of the server it is stored. If a
remaining fragment v /∈ I� is downloaded next, then∣∣S�+1

b

∣∣ =
∣∣S�

b

∣∣− �{b∈Φv}, b ∈ U(I�).

This suggests that we want to schedule fragments that are
stored on servers with large cardinality of remaining fragment
set. This implies that good ranking functions should have the
following monotonicity property.

Definition 6 (Monotonicity): Consider two fragments v, w /∈
I� after � downloads, and a bijection f : Φw → Φv such that∣∣S�

b

∣∣ �
∣∣∣S�

f(b)

∣∣∣ for all servers b ∈ Φw. Then, we say that
v �� w. A ranking function ρ� is said to be monotonic if
ρ�(v) � ρ�(w) for all v �� w.

Remark 11: We note that greedy ranking function ρg
� has

the monotonic property, however, it maps to zero for many
fragments for small �.

Unfortunately, there are many collections of remaining
fragment sets which can not be compared. We still need to
rank such fragments, and therefore we propose the following

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4146 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

Fig. 2. This plot shows the comparison of empirical average of the normalized
number of useful servers ˆE [N(I�)]/B between the optimal scheduling using
the backward induction algorithm and a ranked scheduler given in Algorithm 1
with the harmonic ranking function. The storage scheme is the projective
plane (PP) based 3

7
-(7, 3) replication storage, and the initial arrangement

follows uniform diversity (UD) at each layer as in Table VII.

harmonic ranking function ρh
� : Ic

� → R at the �th download
instant, for each of the remaining fragments v /∈ I�, as

ρh
� (v) �

∑
a∈Φv

1
|S�

a|
, v /∈ I�, � ∈ {0, . . . , V − 1} . (27)

Remark 12: Note that the ranking function ρh
� has the

monotonic property, and the value ρh
� (v) for a fragment v is

the harmonic sum of the cardinality of the set of remaining
fragments

∣∣S�
a

∣∣ at each server a ∈ Φv after � downloads.
We observe that, as the reciprocals of numbers increases

steeply as the numbers get smaller, this harmonic sum is highly
sensitive to low size of remaining fragment set at servers. That
is, the rank of a fragment increases significantly if the servers
on which it is hosted has very few remaining fragments to
be downloaded. Then, scheduling the fragment with the least
value of the ranking function helps in decreasing the download
probability of fragments which are stored on servers with
low number of remaining fragments. This in turn reduces the
probability of reduction of number of useful servers at each
download instant.

Algorithm 1 is computationally efficient, easy to imple-
ment, and requires us to only keep track of the downloaded
fragments for a given completely utilizing α-(V, R) storage
scheme. We know that ideally, the best algorithm should
provide a solution that is jointly optimal over all down-
load instants. However, this algorithm only provides the best
solution for the current download instant and does not take
into account the impact of the current scheduling decision
on the future evolution of the system. Yet, we observe that
its performance is comparable with the optimal backward
induction algorithm when implemented for a small number
of fragments as seen from Fig. 2.

We conclude this section with a brief discussion on the
impact of scheduling and decoding on latency. For replication
codes, the decoding cost is negligible since the fragments
are uncoded. However, there is a scheduling cost associated

with adaptive scheduling. We measure the increase in latency
in terms of the computational cost of adaptive scheduling
at each server, after each fragment download. We estimate
this computation cost2 for Algorithm 1. Assuming that the
computation of metric ρ�(v) requires at most c computations,
we need to compute the rank ρ�(v) for |S�

b| � K fragments at
each server. Finding the minimum of these ranks takes O(|S�

b |)
time. Therefore, there is an additional delay of O(cK) at each
server, due to scheduling computations. Since there are V
fragments, the total delay is O(cV K) over all the downloads.
For harmonic rank scheduler the cost of computing the rank
ρ�(v) is O(R). Thus, the adaptive ranked scheduling for
replication coded storage increases the latency by O(V RK).

In case of MDS codes, the scheduling cost is negligible
since any fragment can be scheduled and this could be decided
before the current download is complete. However, for MDS
codes there is an additional cost due to decoding. For Reed-
Solomon codes, a popular class of MDS codes, practical
erasure decoding algorithms have complexity O(V 2), see for
instance [14]. Thus the increase in latency due to decoding
complexity of MDS codes is O(V 2).

VII. RANDOMIZED STORAGE ENSEMBLE

AND SCHEDULING

In the preceding sections we had considered deterministic
strategies for placement and scheduling. It is natural to con-
sider randomized approaches for these tasks. In this section
we take up this point of view. Our goal is to demonstrate
the competitiveness of replication coded placement schemes
vis-a-vis the MDS coded placement schemes. To achieve this,
we propose a random storage coding model and a random
scheduling policy and analyze their joint performance with
respect to the number of useful servers. To analyze the perfor-
mance, we need to decouple the placement with the scheduling
and the sequence of downloaded fragments. To this end we
modify the system model. The modified system approaches
the system we had considered so far in the limit of large
number of fragments giving us useful results for the system of
interest. More precisely, we consider a hypothetical system of
B servers, each having a storage capacity of V R fragments
and random exponential service rates that can be altered at
every download stage. We propose a random storage scheme
and a random scheduling policy for a (V R, V) replication
code stored over this heterogenous B servers system. For the
proposed random storage scheme and randomized schedul-
ing, we show the following two results when the number
of fragments grow large. We first show that for any fixed
fraction 1 − β of fragment downloads, the download rate
at each server converges to a constant rate μ almost surely.
We next show that the fraction of fragments stored per server
converges to α � R

B almost surely. On average, a random
storage scheme chosen from this ensemble together with a
randomized work-conserving scheduling policy is arbitrarily
close to the solution of Problem 1, asymptotically as the
number of fragments grows large.

2Note that complexity of Algorithm 1 is different from the cost on the
latency since the scheduling at each server is in parallel.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4147

A. Randomized Replication Coded Storage Over B Servers

A storage scheme for a (V R, V) replication code, stored on
a system with B servers each having storage capacity of V R
fragments, is called a (B, V, R) replication storage scheme.

Definition 7: A (B, V, R) replication storage scheme, where
the rth replica of fragment v is stored on server Θv,r ∈
[B], chosen independently and uniformly at random from B
servers, is called a randomized (B, V, R) replication storage
scheme. The collection of all possible realizations of the
random (B, V, R) replication storage scheme is referred to as
the random (B, V, R) replication storage ensemble.

Remark 13: A randomized (B, V, R) replication storage
scheme can be determined by i.i.d. random vectors Θv =
(Θv,r : r ∈ [R]) ∈ [B]R for all fragments v ∈ [V], where

P {Θv,r = b} =
1
B

, for all b ∈ [B].

We observe that the number of replicated fragments V R is
smaller than the total system storage capacity BV R for B > 1,
and hence this is an underutilizing storage scheme.

Note that, the random vector Θv is not a set but a vector.
In particular, more than one replica of a file fragment can be
stored on a single server. For each fragment v, we can compute
the number of replicas of this fragment stored at server b as

Nvb �
∑

r∈[R]

�{Θv,r=b}. (28)

We note that for a fixed server b, (Nvb : v ∈ [V]) are
i.i.d. random variables with mean α � R/B.

Lemma 4: For the random (B, V, R) replication storage
scheme defined in Definition 7, we have

P (∪b∈[B] {Nvb � 2}) � 1 − e
−α(R−1)

2 , v ∈ [V].

Proof: The event of no server storing more than a single
replica of a fragment v in the random replication storage
scheme is given by

E � {Θv,1 �= Θv,2 �= · · · �= Θv,R} .

Since placement of each replica r ∈ [R] for each fragment
v ∈ [V] is i.i.d. uniform over servers in [B], the probability
of this event is

P (E) =
R−1∏
r=0

(
1 − r

B

)
� e−

�R−1
r=0

r
B = e−

α(R−1)
2 .

The result follows as the event ∪b∈[B] {Nvb � 2} is the
complement of the event E. �

As the choice of fragment v in the above Lemma was
arbitrary, it implies that the probability of each file fragment
repeating on some server is non-zero. However, we can
construct an occupancy set Φv for each fragment v from this
vector Θv, by throwing away the repeated entries. That is,

Φv = {b ∈ [B] : Θv,r = b for some r ∈ [R]} .

This implies that |Φv| � R, and this inequality is strict if any
entry in the vector Θv is repeated twice.

We will consider a family of (B, V, R) random replica-
tion storage schemes for increasing values of number of

fragments V , while keeping the ratio α = R
B constant for

the system. In this case, we will show that the fraction of
file fragments stored by each server converges to α for the
proposed random (B, V, R) replication storage scheme. Recall
that the ratio α is the normalized storage capacity of each
server in a completely utilizing α-(V, R) storage scheme. The
normalized number of fragments stored at any server b ∈ [B]
is defined as

αrep
b � 1

V

∑
v∈[V]

∑
r∈[R]

�{Θv,r=b}. (29)

Remark 14: If the normalized number of fragments
αrep

b = α, then the randomized (B, V, R) replication storage
scheme defined in Definition 7 in terms of i.i.d. vectors
(Θv : v ∈ [V])3, is an underutilizing α-(V, R) stor-
age scheme with high probability, since there exists servers
storing redundant replicas of the same fragment with high
probability.

Definition 8: We say that a randomized (B, V, R) replica-
tion storage scheme is an α-(V, R) storage scheme asymptot-
ically in V , if for each server b, limV →∞ αrep

b = α almost
surely.

Theorem 5: The randomized (B, V, R) storage scheme
defined in Definition 7 is an α-(V, R) storage scheme asymp-
totically in V .

Proof: From Eq. (28), the number of replicas of a
fragment v stored at server, Nvb =

∑
r∈[R] �{Θv,r=b}. Note

that (Nvb : v ∈ [V]) is a sequence of i.i.d. random variables
for a fixed b and has mean α = R

B . Since Nvb takes only
non-negative values, we get E |Nvb| = E [Nvb] = α < ∞.
It follows from the L1 strong law of large numbers [51,
Theorem 2.4.1], that αrep

b = 1
V

∑V
v=1 Nvb

a.s−−−−→
V →∞

α. �

B. Randomized Scheduling Over Heterogenous B Servers

The number of fragments on each server b ∈ [B] after
downloading set of fragments I� is given by N �

b �
∑

v/∈I�
Nvb.

We consider the system of B servers with independent
random download times distributed exponentially, where the
download rate of a server b ∈ [B] after �th download is
set to

μ�
b � N �

b

α(V − �)
μ. (30)

We next introduce the randomized scheduling for the random
(B, V, R) replication storage scheme.

Definition 9: We define a random scheduler that schedules
a fragment replica stored on a server, independently and uni-
formly at random. That is, after �th download, the probability
of scheduling a fragment v /∈ I� to be downloaded from server
b ∈ U(I�) is given by

P (Ψ(I�)(b) = v
∣∣∣I�, Θ) =

Nvb

N �
b

. (31)

3Even though Θ : [V] → [B]R is a collection of i.i.d. random
variables, we observe that normalized number of fragments on each
server αrep

b are dependent random variables. To see this, we observe that
P {Θv,r = b,Θv,r = a} = 0 �= 1

B2 for any b �= a. It follows that

E
�
αrep

b αrep
a

�
= α2 − 1

B
α �= α2 = E

�
αrep

b

�
E [αrep

a] .

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

Lemma 5: Consider the heterogeneous B server system
with download rates defined in Eq. (30), under the random
(B, V, R) replication storage defined in Definition 7 and
random scheduling defined in Definition 9. For any � ∈
{0, . . . , V − 1}, the fragment download set I� is independent
of the storage vector Θ.

Proof: It suffices to show that P (I�+1 = I�∪{v}
∣∣∣I�, Θ) =

1
V −� for all � ∈ {0, . . . , V − 1}. To this end, we fix the storage
vector Θ and the downloaded fragments I� after � downloads.
We observe that the exponential download rate at each useful
server b ∈ U(I�) is proportional to the number of remaining
useful fragment replicas N �

b . Therefore, the probability of
download completion from a useful server b ∈ U(I�) is given

by N�
b�

a∈U(I�) N�
a

. Together with Eq. (31) for random selection

probability of a fragment and the fact that
∑

b∈U(I�)
Nvb = R,

we can compute the probability of (� + 1)th download being
a remaining useful fragment v /∈ I�, as

∑
b∈U(I�)

N �
b

(V − �)R
P (Ψ(I�)(b) = v

∣∣∣I�, Θ) =
1

(V − �)
.

�
Definition 10: Consider the heterogeneous B server system

with download rates μ�
b for server b and download �. For any

β ∈ (0, 1) and � � V (1−β), we say that this is a homogeneous
B server system with download rate μ asymptotically in V , if
limV →∞ μ�

b = μ almost surely for each server b.
Lemma 6: Consider the heterogeneous B server system

with download rates μ�
b defined in Eq. (30), under the random

(B, V, R) replication storage defined in Definition 7 and
random scheduling defined in Definition 9. For any β ∈ (0, 1)
and � � V (1 − β), this system converges to a homogeneous
B server system with download rate μ asymptotically in V .

Proof: Consider the system at the �th stage of down-
load where � � V (1 − β). We observe that 1 =∑

S⊆[V]:|S|=� �{I�=S}, and hence we can write∑
v/∈I�

Nvb

V − �
=

∑
S⊆[V]:|S|=�

�{I�=S}

∑
v/∈S Nvb

|Sc| .

From Lemma 5, the downloaded fragment set I� and storage
vector Θ are independent. It follows that for a fixed � ∈
{0, . . . , V − 1}, realization {I� = S}, and server b ∈ U(S),
the random sequence (Nvb : v /∈ S) is i.i.d. and has mean α.
Since Nvb takes only non-negative values, we get E |Nvb| =
E [Nvb] = α < ∞. Thus, the result follows from the L1 strong
law of large numbers [51, Theorem 2.4.1] which implies that

�{I�=S}
�

v /∈S Nvb

|Sc|
a.s−−−−→

V →∞
α. �

We can compute the sum of mean number of useful servers
aggregated over first � � V (1 − β) downloads.4

Theorem 6: Consider the heterogeneous B server system
with download rates μ�

b defined in Eq. (30), under the random
(B, V, R) replication storage defined in Definition 7 and
random scheduling defined in Definition 9. For any β ∈ (0, 1)

4Theorem 6 appeared originally as Theorem 9 in [1] which had a gap in
the proof. This is corrected in the current manuscript.

and �β � �V (1 − β)�, we can write

1
BV

�β∑
�=0

E [N(I�)]

=
�β + 1

V
+

(
1 − 1

B

)R(V −�β)(
1 − (1 − 1

B)R(�β+1)
)

V
(
1 − (1 − 1

B)R
) .

Proof: The expectation E [N(I�)] is taken over the ran-
domness in the download sequence (I0, . . . , IV −1), resulting
from the randomness in the service times, scheduling, and
the storage vector Θ = (Θv : v ∈ [V]) of the random
(B, V, R) replication storage ensemble. For a random storage
vector Θ, we will obtain one of the random storage schemes
Φ = (Φv : v ∈ [V]) defined as Φv � ∪r∈[R] {Θvr}. For a
download sequence I�, we can write the set of useful servers
as U(I�) = ∪v/∈I�

Φv = ∪v/∈I�
∪r∈[R] {Θvr} . This implies

that a server b /∈ U(I�) if and only if Θvr �= b for any
v /∈ I� and r ∈ [R]. As the total number of servers is B,
we can deduce that the number of useful servers is given
by N(I�) � |U(I�)| = B −∑b∈[B]

∏
v/∈I�

∏
r∈[R] �{Θvr �=b}.

From Lemma 5, the storage vector Θ and download sequence
I� are independent, and hence

E

⎡
⎣∏

v/∈I�

∏
r∈[R]

�{Θvr �=b}
∑

S⊆[V]:|S|=�

�{I�=S}

⎤
⎦

=
∑

S⊆[V]:|S|=�

E
[
�{I�=S}

]
E

⎡
⎣∏

v/∈S

∏
r∈[R]

�{Θvr �=b}

⎤
⎦ .

From the randomized construction of the storage scheme, the
random storage vector Θ is i.i.d. and P {Θvr �= b} = (1 −
1/B). From the linearity of expectation, it follows that

1
BV

E [N(I�)] =
1
V

(
1 −

(
1 − 1

B

)R(V −�)
)

. (32)

Result follows from summing up the above equation on both
sides over � ∈ {0, · · · , �V (1 − β)�}. �

Corollary 1: For asymptotically large number of fragments,
a random (B, V, R) replication storage scheme defined in
Definition 7 together with the random scheduler defined in
Definition 9, is arbitrarily close to the solution to the Problem 1
almost surely.

Proof: As the number of fragments V tends to infinity,
the following three results hold.

1) From Theorem 5, the proposed random (B, V, R) repli-
cation storage scheme almost surely converges to an
α-(V, R) replication storage scheme. The resulting
scheme is underutilizing with high probability.

2) From Lemma 6, the download rates μ�
b of the servers

b ∈ U(I�) in the heterogenous B server system converges
to the constant service rate μ of α-B server systems, for
downloads � � V (1 − β) and β ∈ (0, 1) can be made
arbitrarily small.

3) From Theorem 6, we obtain
limV →∞ 1

BV

∑V −1
�=0 E [N(I�)] � 1 − β for any

β ∈ (0, 1).

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4149

From Eq. (11) and Remark 5, we observe that the ensemble
mean of normalized number of useful servers for the pro-
posed random (B, V, R) replication storage scheme under the
random scheduling, is arbitrarily close to the upper bound
for any α-(V, R) replication storage scheme, asymptotically
in V . �

VIII. COMPARISON WITH MDS CODES

So far we have looked at storage schemes based on (V R, V)
replication codes. In this section we consider storage schemes
based on (V R, V) MDS codes assuming that the field is large
enough so that a (V R, V) MDS code exists. MDS codes are
known to outperform replication codes in many settings. For
example, MDS codes have better code rates for same fraction
of erasure correction [52], and are shown to be latency optimal
for class of symmetric codes in single fragment storage [10].

In this section, we first show that among all α-(V, R) coded
storage schemes, the ones based on MDS codes minimize
the mean download time. Second, we find the bounds on
the number of useful servers for MDS coded storage, and
show that replication coded storage is asymptotically order
optimal. That is, when the number of fragments grows large,
the average number of useful servers per fragment can be
achieved by random replication. Third, we show that when
each server can store the whole file, i.e. K � V , then the
replication coded storage is as good as a MDS coded storage,
even in the non-asymptotic regime.

Definition 11: Consider a file with V fragments encoded
to V R coded fragments, and completely utilizing storage of
this (V R, V) code on an α-B system. Such storage schemes
are referred to as α-(V, R) coded storage schemes, where the
normalized storage capacity per server is α = R

B and the code
rate is 1

R .
Remark 15: For any α-(V, R) coded storage scheme, the

number of useful servers N(I�) after � downloads is always
upper bounded by the total number of servers B, and hence

1
BV

∑V −1
�=0 N(I�) � 1.

Definition 12: Any V subset of V R coded fragments that
suffices to decode a (V R, V) code, i.e., reconstruct the V
uncoded fragments, is called an information set [10], [53].
For an α-(V, R) coded storage scheme, we can define the
collection of all information sets [10, Section II], as I.

For a completely utilizing α-(V, R) replication storage
scheme, information sets consist of distinct V fragments.
For a completely utilizing α-(V, R) MDS coded storage,
information sets are any V coded fragments, and hence
I = {S ⊂ [V R] : |S| = V }. This implies that the collection
of information sets for MDS code includes collection of
information sets for any other (V R, V) code.

Theorem 7: Among all α-(V, R) coded storage schemes,
MDS codes minimize the mean download time.

Proof: For any completely utilizing α-(V, R) coded stor-
age scheme, each server b is storing a set Sb ⊆ [V R] of
|Sb| = αV out of V R coded fragments. Further, the first �
downloaded symbols I� are an �-subset of some information
set S ∈ I. Then, we can write the set of useful servers after
� downloads as those that have the remaining coded symbols

for such information sets. That is,

U(I�) = ∪S∈I {b ∈ [B] : (S \ I�) ∩ Sb �= ∅} .

Recall that the collection of information sets for MDS codes
includes collection of information sets for any other (V R, V)
code. Using this fact together with the definition of the set
of useful servers, it follows that the largest possible set of
useful servers among all α-(V, R) coded storage schemes,
is the one achieved by MDS coded storage for the same
download sequence I�. From coupling arguments for the
download sequence and Eq. (7) for mean download time,
the result follows by induction on the number of downloaded
fragments. �

A. Asymptotic Order Optimality of Replication Codes

We established that the among all α-(V, R) coded storage
schemes, an MDS code has the largest number of useful
servers. We next find bounds on the number of useful servers
for MDS coded storage, which can be used as a benchmark
to compare replication coded storage.

Lemma 7: For a completely utilizing α-(V, R) MDS storage
scheme, the number of useful servers Nmds(I�) is bounded as

B −
⌊

�

K

⌋
� Nmds(I�) � min {B, V R − �} .

Proof: For an α-(V, R) MDS coded storage scheme, each
V R coded fragment is useful and downloading any V coded
fragments suffices to reconstruct the entire file. Therefore,
if � < V fragments are downloaded, then all the servers
that store any of the remaining V R − � fragments are useful.
As each server can store K = αV fragments each, a server
can become useless if and only if all its K coded fragments
have been downloaded. Therefore, the maximum number of
servers that can be useless after � downloads is ��/K�.

To obtain the upper bound on the number of useful servers,
we make the following observations. First, that all servers
remain useful at the �th download if less then K coded
fragments have been downloaded from them. However, if the
number of remaining coded fragments V R − � < B, then at
most V R − � unique servers are useful. �
The previous lemma will immediately give us the following
result by taking average over all V fragments.

Corollary 2: For a completely utilizing α-(V, R) MDS
coded storage scheme with code rate 1

R � V
B+V , the nor-

malized aggregate number of useful servers is bounded as

1 − 1
2R

(1 − 1
V

) � 1
BV

V −1∑
�=0

Nmds(I�) � 1. (33)

Remark 16: From Corollary 1 we observe that the limit of
average number of useful servers for the random (B, V, R)
replication storage scheme together with the random schedul-
ing can be brought arbitrarily close to the upper bound for
MDS codes in Eq. (33), as the number of fragment grows.
This implies that replication coded storage is asymptotically
order optimal.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4150 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

TABLE VI

A NONADAPTIVE SCHEDULING POLICY FOR THE 3
7

-(7, 3) REPLICATION
STORAGE CODING SCHEME WITH THE FRAGMENTS SCHEDULED IN

INCREASING ORDER OF THEIR INDICES

B. Optimality of Replication Codes for Large Storage

So far, we have considered the case α � 1. In other words,
it means that storage capacity per server is K = αV � V ,
i.e. each server can store at most a single file. We now show
that, when K � V , then there exists a (V R, V) replication
code such that the number of useful servers remains B after
every download, for any work-conserving scheduling policy.
Thus, the average number of useful servers for replication code
meets the universal upper bound for all fragment size V , when
the storage can store at least the entire file.

Remark 17: Suppose that the servers are not memory
constrained i.e. α � 1, then we can store the entire file
on each of the servers. To see this observe that we have
R = BK/V = Bα � B. Therefore, we can place all the
distinct V fragments on every server. Thus every server is able
to provide a useful fragment until the entire file is downloaded.
The number of useful servers is always B, which is the best
case.

IX. NUMERICAL STUDIES

In this section, we present the results of our numerical
studies for completely utilizing α-(V, R) replication storage
schemes and work-conserving scheduling policies. The inter-
play of the storage scheme and work-conserving scheduling
policies determines the overall download time for a file.
We use the storage schemes proposed in Section V. We study
the performance of these storage codes in conjunction with
various nonadaptive and adaptive scheduling policies.

Before presenting the numerical results, we first review
some scheduling policies and illustrate them by considering
a completely utilizing 3

7 -(7, 3) replication storage scheme.
We consider the storage scheme constructed from a projective
plane.

Smallest Index First Scheduling: A straightforward non-
adaptive scheduling policy is to schedule the fragments based
on their indices. We could arrange the fragments in the
increasing order of the fragment index. After a fragment is
downloaded, the fragment with the next highest index is moved
to the head of the server. This scheduling policy applied to the
storage scheme in Table IV is shown in Table VI.

Uniform Diversity Scheduling: The previous scheduling
policy leads to an asymmetric scheduling in that all fragments
are not equally distributed at the heads of the servers. For
instance, in Table VI, fragments 4 to 7 are not scheduled
in the first layer. We can make the policy more symmetric,
by scheduling as many distinct fragments at the head of each
server and in each subsequent layer. The motivation being that

TABLE VII

A SCHEDULING FOR 3
7

-(7, 3) REPLICATION STORAGE CODING
SCHEME WITH UNIFORM DIVERSITY AT EACH LAYER

TABLE VIII

COMBINING PUSHBACK (PB) POLICY WITH THE UNIFORM DIVERSITY

(UD) POLICY FOR THE 3
7

-(7, 3) REPLICATION STORAGE CODING

SCHEME. THE FRAGMENTS OF THE FIRST SERVER (IN BLUE) ARE

PLACED IN THE LAST LAYER, DUE TO WHICH THEY ARE
SCHEDULED LAST IN THOSE SERVERS

having a diversity of fragments at the heads of the servers leads
to larger number of fragments being downloaded in parallel.
One such scheduling for the design based 3

7 -(7, 3) replication
storage is shown in Table VII. For storage schemes based on
projective planes and the cyclic shift storage scheme, where
B = V , it is always possible to place fragments in each layer
across the servers as a permutation of all the fragments. Such
a uniform scheduling may not be possible for every storage
scheme.

Pushback scheduling: This scheduling policy aims to max-
imize the number of useful servers toward the end when a
large number of fragments have been downloaded. A heuristic
scheduling policy that aims to maximize N(I�) in this range
is as follows: Pick a server b and schedule the fragments of
Sb last in the other servers i.e. [B] \ {b}. In a projective plane
based storage scheme, the pushback policy will schedule the
fragments stored in bth server on R(R − 1) disjoint servers.
Comparing with the bound given in Theorem 3 for the number
of useful servers, we can see this will lead to larger number
of useful servers at the end.

The pushback policy can be combined with any other
scheduling policy. To combine the pushback policy with
another scheduling policy, we first apply that policy and then
modify this scheduling according to the pushback scheduling.
So when this is applied in conjunction with the uniform diver-
sity scheduling, we take the scheduling for uniform diversity
as in Table VII and the modify it according to the pushback
policy. If we choose the first server fragments to be placed last
then the resulting scheduling is given in Table VIII. Similarly,
when we combine pushback with smallest index first policy
we obtain the scheduling in Table VI.

Adaptive scheduling based on harmonic rank: We now
illustrate an example of an adaptive ranked scheduler with har-
monic ranking function defined in Eq. (27), with design based
3
7 -(7, 3) replication storage code given in Table VII. We will
look at one sample path of download sequence in Fig. 3.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4151

TABLE IX

COMBINING PUSHBACK (PB) POLICY WITH THE SMALLEST INDEX FIRST

POLICY IN TABLE VI FOR THE 3
7

-(7, 3) REPLICATION

STORAGE SCHEME

Fig. 3. We show first two steps of a sample path of download sequence
for a design based 3

7
-(7, 3) replication storage scheme given in Table VII.

The ranked adaptive scheduling defined in Algorithm 1 with harmonic rank
function defined in Eq. (27) is used. For each remaining fragment, we have
listed its identity and rank.

Initially harmonic rank of all fragments is identically unity, and
any stored fragment can be scheduled at any of the 7 servers.
Let us assume that the first downloaded fragment is 1. We now
compute the harmonic rank of the remaining six fragments
{2, 3, 4, 5, 6, 7} as {1.16, 1.16, 1.33, 1.66, 1.66, 1.66} respec-
tively. Thus, Algorithm 1 schedules either fragment 2 or 3 on
server 1, fragment 3 on server 2, either fragment 5 or 6 on
server 3, fragment 4 on server 4, fragment 2 on server 5,
fragment 3 on server 6, and fragment 2 on server 7.

We now present the results of our numerical studies on
a completely utilizing α-(V, R) replication storage scheme
constructed from a projective plane of order q = 11. This
results in a symmetric (V R, V) replication code stored on an
α-B system, where the number of servers B = V = q2+q+1,
the replication factor of each fragment R = q + 1, and
the storage capacity of each server is a fraction α = R/B
of all V fragments. We also considered an alternative com-
pletely utilizing α-(V, R) replication storage scheme based
on cyclic shift of fragments, for the identical parameters
α, V, R. As mentioned earlier, the download time for each
fragment is modelled as an independent random variable that
has an exponential distribution with rate μ = 10−5, chosen to
amplify the differences between various storage schemes and
scheduling policies. We performed Monte Carlo simulations
of our system setup with 1 × 105 runs. We computed the
normalized empirical mean Ê[N(I�)]/B, of number of useful
servers N(I�) after � downloads, averaged over all simulation
runs. Performance of various storage schemes and scheduling

Fig. 4. This plot shows an empirical average of the normalized number
of useful servers Ê[N(I�)]/B for the cyclic shift based 12

133
-(133, 12)

replication storage scheme with nonadaptive scheduling policies.

Fig. 5. This plot shows an empirical average of the normalized number
of useful servers Ê[N(I�)]/B for the projective plane based 12

133
-(133, 12)

replication storage scheme with nonadaptive scheduling policies.

policies are compared by plotting the normalized empirical
average Ê[N(I�)]/B as the fraction of downloads �/V grows.
From Eq. (7), we know that the performance of the scheme
is better if the number of useful servers remains high as
the download progresses. That is, a uniformly higher plot is
indicative of a better performance.

The simulation results for the cyclic shift based storage
scheme for nonadaptive scheduling policies, are shown in
Fig. 4. We observe that the uniform diversity scheduling
has the best performance among the proposed nonadaptive
scheduling policies. The results for the projective plane based
scheme for nonadaptive scheduling policies, are shown in
Fig. 5. In this case, we observe that the scheduling policy
that combines the uniform diversity with pushback has the
best performance.

For the following numerical studies, we consider ranked
schedulers with greedy and harmonic ranking functions, as
adaptive scheduling policies. In Fig. 6 these adaptive schedul-
ing policies are compared with the best nonadaptive policies

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4152 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

Fig. 6. This plot shows an empirical average of the normalized number
of useful servers Ê[N(I�)]/B for 12

133
-(133, 12) replication storage schemes

based on projective plane and cyclic shift, with best nonadaptive scheduling
and rank based adaptive scheduling policies.

for both cyclic shift based and projective plane based storage
schemes. In this case, we have the freedom to choose the initial
schedule, since the rank of all fragments remains identical
before the first download. We explored two types of initial
schedules: i) the smallest index first, and ii) uniform diversity
where all fragments are present. The performance is very
similar in both cases as can be seen in Fig. 6, with the uniform
initialization performing slightly better with respect to the total
download time. This suggests that for a given storage scheme,
the initialization does not affect the overall performance as
much. Note also, that the cyclic storage scheme with adaptive
scheduling still does not perform as well as nonadaptive
scheduling with design based storage scheme. Therefore, it is
important to find a good storage scheme. As mentioned in
Section V-C, the performance of cyclic shift based replication
storage with nonadaptive scheduling is poor due to the large
value of overlap parameters. However, this storage scheme
has low overlap for certain fragment and occupancy sets.
An adaptive scheduling exploits this property by driving the
system state to ensure the good fragment sets such that the
remaining fragments have low overlap in their occupancy sets.

In Fig. 7, we compare the performance of projective plane
based storage scheme for the best performing nonadaptive
and adaptive scheduling policies against the bounds, which
includes the universal lower bounds on N(I�) derived in
Theorems 2 and 3, and the lower bound on the N(I�) obtained
from Remark 9 for projective plane based storage scheme,
the upper bound for N(I�) random replication storage given
in Eq. (10), the average number of useful servers given
in Eq. (32) for heterogeneous server system under random
replication storage and random scheduling. One important
observation is that the performance of the deterministic storage
scheme is superior to the average performance of the random
code ensemble. Therefore, it is worthwhile to develop good
deterministic storage schemes.

Finally, in Fig. 8, we show the variation of the normalized
number of useful servers with increase in the number of

Fig. 7. Comparison of the best nonadaptive and adaptive scheduling policies
for the projective plane based 12

133
-(133, 12) replication storage scheme

with the normalized universal lower bound obtained as given in Remark 9,
the normalized upper bound in Eq. (10), and the average performance of
(133, 133, 12) random replication (Eq. (32)).

Fig. 8. We plot the upper bound on the normalized number of
useful servers in Eq. (10) and the empirical average of the normal-
ized number of useful servers given in Eq. (32) for random replication
scheme with random scheduling, as the number of fragments V increases
in the set {50, 100, 500, 1000} for a fixed storage capacity per server
α = K/V = 0.25.

servers. As indicated in Corollary 1, we observe that the
ensemble mean of normalized number of useful servers for the
proposed random (B, V, R) replication storage scheme with
a random scheduler is arbitrarily close to the upper bound
for any α-(V, R) replication storage scheme given in Eq. (11)
when V is asymptotically large.

Explicit expression for computation of the mean download
time for replication storage schemes is given in Eq. (7), in
terms of E [1/N(I�)] for download � ∈ {0, , . . . , V − 1}.
Even for our simpler setup, analytical computation of the
mean download time remains elusive. We had provided a
lower bound on the mean download time in terms of the
analytically tractable means E [N(I�)] for � ∈ {0, . . . , V − 1}.
We computed the empirical mean of the file download time for

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4153

TABLE X

AVERAGE DOWNLOAD TIMES OF VARIOUS NONADAPTIVE
AND ADAPTIVE POLICIES

proposed replication storage schemes and scheduling policies,
and the corresponding lower bound. We observe that for all
values of selected system parameters, they remain very close.
The following Table X shows the empirical mean download
times for various storage schemes and scheduling policies.

Discussion. Storage schemes based on combinatorial
designs perform better than the naive schemes such as the
cyclic shift based storage schemes. The scheduling policy
significantly affects the performance for the same storage code.

For any storage code, adaptive scheduling leads to better
performance over nonadaptive scheduling. The initial set of
fragments placed at the head of the servers does not noticeably
affect the performance of the adaptive scheduling algorithms.
Adaptive scheduling also reduces the dependence on the
storage code as can be seen that both cyclic and design based
storage schemes lead to comparable performance.

X. CONCLUSION

A. Summary

We considered a single file that is divided into finitely many
fragments. Each fragment is replicated an identical number of
times, and the replicas are stored on a finite server system
with finite storage capacity. A file is considered downloaded,
if one can reconstruct the file from the downloaded frag-
ments. We posed the problem of optimal storage scheme and
scheduling policy to minimize the mean download time of
the entire file, given that each fragment download time is
random i.i.d. and memoryless. We modified the problem from
the minimization of mean download time to the maximization
of the aggregate number of useful servers over all fragment
downloads. We subdivided this problem into two subproblems.
The first subproblem was to find the optimal scheduling policy
given a storage scheme. The second subproblem was to find
the optimal storage scheme for a given scheduling policy.
We provided lower bounds on the number of useful servers,

and proposed design based storage schemes that maximize this
lower bound. Further, we posed the optimal adaptive schedul-
ing policy as an MDP, and provided suboptimal solutions.
We empirically verified that the proposed solution is close
to the upper bound on the number of useful servers, when the
number of fragments is large.

B. Discussion and Further Directions

Our storage scheme and scheduling policy can be general-
ized to other codes as well. The problem of optimal storage
and scheduling policy exists for all coded storage schemes,
except for MDS coded storage. For MDS coded storage
scheme, all fragments are useful until V coded fragments are
downloaded. We showed that MDS coded storage minimizes
the mean download time. However, we observed that either
when the servers have sufficiently large storage or when
the number of fragments is large, the mean download time
performance of replication coded storage is competitive to that
of MDS coded storage.

We note that the exponential service distribution assumption
was needed to compute the expression for mean download
time in terms of number of useful servers. Our study can be
extended to any service distribution that leads to a smaller
mean download time for a more dominant sequence of number
of useful servers. The mean download time for a general
distribution for fragment download time can also be minimized
if it was a decreasing function of the sequence of number of
useful servers. In this case, the design based storage schemes
will continue to do well, since they attempt to maximize
the number of useful servers. However, for non-memoryless
distribution, the scheduling policies are more complicated,
since one needs to take care of age of previously scheduled
fragment replicas, which are not yet downloaded.

We also note that, even though our study was for a single
file, our proposed framework can be extended to multiple
files. Specially, when we assume that each server has a
predetermined fraction of storage for each file, one can find
optimal storage scheme for each of these files separately.
However, the scheduling for multiple files becomes somewhat
more involved in this case. One has to schedule a fragment
at each server that could be useful for one of these files. For
a specific file, one of our proposed scheduling algorithms can
select the fragment to be scheduled. However, it is not clear
apriori, which one of the files should be scheduled.

In our studies, we have ignored the delays in cancelling
the scheduled replicas. We observe that these delays affect
other coding policies as well. There is a subtle difference
though. Each download for a replication coded storage, leads
to cancellation at all other servers where the identical replica
was being downloaded. This can lead to a maximum of (R−1)
cancellations per download. In MDS coded storage, there are
no cancellations until the V th download, when every other
scheduled fragment at other N(IV −1) − 1 servers should be
cancelled.

As can be seen from the preceding discussion, there are
many interesting directions of practical import to explore; we
hope that this work motivates further research in this topic.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

4154 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

APPENDIX A
PROOF OF LEMMA 3

A countable state process with sample paths that are right
continuous with left limits, is Markov if (a) the inter-transition
times are memoryless, (b) conditioned on the current state
the future inter-transition times are independent of the past,
and (c) the jump probabilities depend only on the current
state [54, Chapter 5]. We will show that the countable state
process X satisfies all three conditions given a completely
utilizing replication storage scheme Φ ∈ S and associated
work conserving scheduling policy ΨΦ.

Recall that each sample path of the process X is piece-wise
constant, and transitions only at the download instants. Thus,
the process X is right continuous with left limits. After the �th
download, the time to download the next fragment v�+1 is the
minimum of the residual download time at each of the N(I�)
useful servers given the current state I�. As the service times
at all servers are i.i.d. and exponentially distributed with rate
μ, it follows that the time for next download D�+1 − D� is
exponentially distributed with rate N(I�)μ. The memoryless
property of the service times also implies that the residual
download time at each useful server is independent of the
past. Thus, future inter-transition times (Dj+1 − Dj : j � �)
are independent of the past conditioned on the current state
I�. In addition, since residual fragment download times are
identically exponentially distributed, it follows that probability
of any of the useful servers finishing first is 1

N(I�)
. Since the

scheduled fragment on each useful server depends only on
the current state I�, the transition probability from current
state I� to the next state I�+1 depends only on the current
state. This transition probability is denoted pI�,I�∪{v} =
�

b∈U(I�) �{ΨΦ(I�)(b)=v}
N(I�)

. We observe that the three conditions
outlined above are met by the process X and hence, the result
holds.

�

ACKNOWLEDGMENT

The authors thank the reviewers for their comments which
helped improve the presentation. In particular, they thank
one of the reviewers for pointing out a gap in the proof
of Theorem 6 in a preliminary version of this manuscript.
In addition, the they would like to acknowledge helpful
discussions with Prof. Manjunath Krishnapur. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] R. Jinan, A. Badita, P. Sarvepalli, and P. Parag, “Low latency replication
coded storage over memory-constrained servers,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2021, pp. 2340–2345.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[3] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Feb. 2016.

[4] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field analysis of coding
versus replication in large data storage systems,” ACM Trans. Modeling
Perform. Eval. Comput. Syst., vol. 3, no. 1, pp. 1–28, Feb. 2018.

[5] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant
requests with cancellation overheads,” IEEE/ACM Trans. Netw., vol. 25,
no. 2, pp. 1279–1290, Apr. 2017.

[6] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and B. Van Houdt,
“A better model for job redundancy: Decoupling server slowdown and
job size,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3353–3367,
Dec. 2017.

[7] P. Parag, A. Bura, and J.-F. Chamberland, “Latency analysis for dis-
tributed storage,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
May 2017, pp. 1–9.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[9] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regenerat-
ing codes for distributed storage,” in Proc. Annu. Allerton Conf. Control,
Comput., Commun. (Allerton), Urbana-Champaign, IL, USA, Sep. 2007,
pp. 1–5.

[10] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 6, pp. 4683–4698, Apr. 2019.

[11] R. Bitar and S. E. Rouayheb, “Staircase codes for secret sharing with
optimal communication and read overheads,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 933–943, Feb. 2018.

[12] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900–2904.

[13] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4609–4619, Aug. 2020.

[14] S. E. Mann, “The original view of Reed–Solomon coding and the
Welch–Berlekamp decoding algorithm,” Ph.D. dissertation, Dept. Appl.
Math., Univ. Arizona, Tucson, AZ, USA, 2013. [Online]. Available:
http://hdl.handle.net/10150/301533

[15] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence:
An analysis of Hadoop usage in scientific workloads,” Proc. VLDB
Endowment, vol. 6, no. 10, pp. 853–864, Aug. 2013.

[16] F. Maturana, V. S. C. Mukka, and K. V. Rashmi, “Access-optimal linear
MDS convertible codes for all parameters,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2020, pp. 577–582.

[17] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cam-
bridge Univ. Press, 2006.

[18] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran,
“DRESS codes for the storage cloud: Simple randomized constructions,”
in Proc. IEEE Int. Symp. Inf. Theory Proc., Jul. 2011, pp. 2338–2342.

[19] B. Zhu, H. Li, H. Hou, and K. W. Shum, “Replication-based distributed
storage systems with variable repetition degrees,” in Proc. 20th Nat.
Conf. Commun. (NCC), Feb. 2014, pp. 1–5.

[20] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.

[21] A. Badita, P. Parag, and V. Aggarwal, “Optimal server selection for strag-
gler mitigation,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 709–721,
Apr. 2020.

[22] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 1994.

[23] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed
storage using interference alignment,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Dec. 2010, pp. 161–165.

[24] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proc. 48th Annu. Allerton Conf.,
Sep. 2010, pp. 1510–1517.

[25] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in Proc. USENIX Conf. Hot Topics Storage File
Syst., 2013, p. 8.

[26] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[27] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit
codes minimizing repair bandwidth for distributed storage,” in Proc.
IEEE Inf. Theory Workshop (ITW), Jan. 2010, pp. 1–5.

[28] D. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3021–3037, May 2013.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

JINAN et al.: LATENCY OPTIMAL STORAGE AND SCHEDULING OF REPLICATED FRAGMENTS FOR MEMORY CONSTRAINED SERVERS 4155

[29] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227–5239, Aug. 2011.

[30] K. W. Shum and Y. Hu, “Cooperative regenerating codes,” IEEE Trans.
Inf. Theory, vol. 59, no. 11, pp. 7229–7258, Nov. 2013.

[31] A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,”
IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979–6987, Nov. 2014.

[32] A. Wang, Z. Zhang, and M. Liu, “Achieving arbitrary locality and
availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 1866–1870.

[33] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[34] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[35] G. Liang and U. C. Kozat, “Use of erasure code for low latency cloud
storage,” in Proc. 52nd Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2014, pp. 576–581.

[36] G. Joshi, E. Soljanin, and G. Wornell, “Efficient replication of queued
tasks for latency reduction in cloud systems,” in Proc. Allerton Conf.
Commun., Control, Comput., Sep. 2015, pp. 107–114.

[37] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proc. 9th ACM Conf.
Emerg. Netw. Exp. Technol., Dec. 2013, pp. 283–294.

[38] G. Joshi, E. Soljanin, and G. W. Wornell, “Queues with redundancy:
Latency-cost analysis,” SIGMETRICS Perform. Eval. Rev., vol. 43, no. 2,
pp. 54–56, Sep. 2015.

[39] K. Gardner et al., “Reducing latency via redundant requests: Exact
analysis,” ACM SIGMETRICS Perform. Eval. Rev., vol. 43, no. 1,
pp. 347–360, 2015.

[40] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[41] P. Parag and J.-F. Chamberland, “Novel latency bounds for distributed
coded storage,” in Proc. Inf. Theory Appl. Workshop (ITA), Feb. 2018,
pp. 1–9.

[42] A. Badita, P. Parag, and V. Aggarwal, “Sequential addition of coded sub-
tasks for straggler mitigation,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Jul. 2020, pp. 746–755.

[43] A. Badita, P. Parag, and V. Aggarwal, “Single-forking of coded subtasks
for straggler mitigation,” IEEE/ACM Trans. Netw., vol. 29, no. 6,
pp. 2413–2424, Dec. 2021.

[44] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can
reduce queueing delay in data centers,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2012, pp. 2766–2770.

[45] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, “Improving per-
formance of heterogeneous MapReduce clusters with adaptive task
tuning,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 774–786,
Mar. 2017.

[46] A. O. Al-Abbasi, V. Aggarwal, and T. Lan, “TTLoC: Taming tail latency
for erasure-coded cloud storage systems,” IEEE Trans. Netw. Service
Manage., vol. 16, no. 4, pp. 1609–1623, Dec. 2019.

[47] A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1921–1932, Aug. 2018.

[48] T. M. Cover and J. A. Thomas, Elements of Information Theory (A
Wiley-Interscience Publication). Hoboken, NJ, USA: Wiley, 2006.

[49] R. Bellman, Dynamic Programming (Rand Corporation Research Study).
Princeton, NJ, USA: Princeton Univ. Press, 1957.

[50] D. R. Stinson, Combinatorial Designs: Constructions and Analysis.
Cham, Switzerland: Springer, 2003.

[51] R. Durrett, Probability: Theory Examples. Cambridge, U.K.: Cambridge
Univ. Press, 2019, vol. 49.

[52] R. Durrett, Probability: Theory and Examples, vol. 49. Cambridge, U.K.:
Cambridge Univ. Press, 2019.

[53] P. Gopalan, G. Hu, S. Kopparty, S. Saraf, C. Wang, and S. Yekhanin,
“Maximally recoverable codes for grid-like topologies,” in Proc.
28th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2017,
pp. 2092–2108.

[54] S. M. Ross, Stochastic Processes (Wiley Series in Probability and
Statistics), 2nd ed. Hoboken, NJ, USA: Wiley, Feb. 1995.

Rooji Jinan (Graduate Student Member, IEEE) received the B.Tech. degree
in electronics and communication engineering and the M.Tech. degree in
communication engineering and signal processing from the University of
Calicut, Kerala, in 2012 and 2015, respectively. She is currently pursuing
the Ph.D. degree with the Robert Bosch Centre for Cyber-Physical Systems,
Indian Institute of Science, Bengaluru. She worked as an Assistant Professor at
the Christ College of Engineering, Kerala, from 2016 to 2017. Her research
interests include real time communication systems, low latency distributed
storage, and compute systems.

Ajay Badita (Member, IEEE) received the B.Tech. degree in electronics and
communication engineering from SSCE, affiliated to JNTU Kakinada in 2011,
the M.Tech. degree in electronics and communication engineering from NIT
Rourkela in 2015, and the Ph.D. degree in electronics and communication
engineering from the Indian Institute of Science (IISc), Bengaluru, in 2021.

He has been a Research Scientist at the IOTA Foundation, Berlin, since
2021. His research interests include distributed ledgers, delay-sensitive com-
munication, computation, and storage in distributed systems.

Pradeep Kiran Sarvepalli received the B.Tech. degree in electrical engineer-
ing from IIT Madras and the master’s degree in electrical engineering and the
Ph.D. degree in computer science from Texas A&M University. Following
his Ph.D. degree, he was a Post-Doctoral Fellow at The University of British
Columbia and the Georgia Institute of Technology. Before his doctoral studies,
he worked as an IC Design Engineer with Texas Instruments India, Bengaluru.
He is currently an Associate Professor with the Department of Electrical
Engineering, IIT Madras. His research interests include quantum and classical
error correcting codes, quantum cryptography, quantum computation, and
distributed storage.

Parimal Parag (Senior Member, IEEE) received the B.Tech. and M.Tech.
degrees in electrical engineering from IIT Madras in 2004 and the Ph.D.
degree in electrical engineering from Texas A&M University in 2011.
He joined the Indian Institute of Science in 2014, where he is currently
an Associate Professor with the Department of Electrical Communication
Engineering. Prior to that, he was a Senior System Engineer (Research and
Development) with ASSIA Inc., Redwood City, CA, USA, from 2011 to 2014.
His research interests include the design and analysis of large scale distributed
systems. He was the coauthor of the 2018 IEEE ISIT Student Best Paper.
He was a recipient of the 2017 Early Career Award from the Science and
Engineering Research Board.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2022 at 17:00:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

