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ABSTRACT
We consider (k, k) fork-join scheduling on a large number

(say, N) of parallel servers with two sets of heterogeneous

rates. An incoming task is split into k sub-tasks and

dispatched to k servers according to a probabilistic selection

policy, with parameter ps being the selection probability

of slower servers. Mean task completion time admits an

integral form, and thus it is analytically intractable to

compute ps that minimizes it. In this work, we provide

an upper bound on the mean task completion time, and

determine ps that minimizes this upper bound. Numerically,

this choice has been shown to be near-optimal.

1. INTRODUCTION
With increasing shift towards horizontal scaling of

resources, distributed computing has become very popular.

In distributed computing, a task is divided into smaller

sub-tasks and distributed to multiple servers. The task

completion time is limited by the slowest server. In practice,

servers are heterogeneous, i.e., some servers are fast and

some are slow. If these servers are treated equally, some

servers will be congested and others will be under utilized.

This leads to an increase in mean task completion time, and

potential revenue loss for the service provider.

In this work, we consider two classes of servers that we

call slow and fast servers. An incoming task is forked

to k servers and, on completion of all k sub-tasks, the

task leaves the system. We call assignment of these k
sub-tasks to servers as scheduling. We are interested in

finding a scheduling policy that minimizes mean completion

time of incoming tasks. Given the heterogeneous nature of

servers, it is dicult to identify the set of k servers for each

incoming task that minimizes the mean completion time.

For optimal performance, the server assignment depends on

four parameters namely arrival rate, number of sub-tasks k,
ratio of number of slow servers to number of fast servers,

and ratio of server speeds.

We propose a probabilistic policy, where a sub-task is

sent to a slow server with probability ps and to a fast

server with probability 1 − ps. We choose server uniformly

at random without replacement within each class. In the

proposed policy, we use selection probability ps to distribute

the sub-tasks among the servers. As a result, finding optimal

policy is akin to a problem of finding the optimal selection
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probability that minimizes the mean task completion time.

Related Works: Common load balancing strategies

designed to reduce the mean task completion time in a

distributed computing system include the join shortest

queue [14], the join smallest work [1, 7], the water filling

policy [11], etc. The “power-of -d” variants [1, 10, 13] of

these policies are also popular. Other ecient dispatching

policies for parallel server systems include the size interval

task assignment policy [6], Redundant-to-Idle queue [3], load

balancing with timed replicas [9] etc. However, these policies

are designed for a system of parallel homogeneous servers.

Comparison of various load balancing algorithms for

heterogeneous systems can be found in [2]. More recent load

balancing strategies for a system of heterogeneous parallel

servers can be found in [4, 5, 12]. In [4], a “power-of-d”
type load balancing policy for a system with heterogeneous

servers with good response time and stability characteristics

is studied. An algorithmic solution to the load balancing

policy in a heterogeneous system posed as a stochastic

optimization problem is given in [5]. A general “power-of-d”
framework for heterogeneous servers is considered in [8]. An

algorithm that yields a product form stationary distribution

is studied in [12]. In all these works for heterogeneous

servers, task is not sub-divided into multiple sub-tasks,

which is the focus of our work.

Our contributions: We analytically compute the mean

task completion time, under the proposed probabilistic

policy, when the number of servers is arbitrarily large.

This is achieved using the asymptotic independence of

workload distribution. Finding the optimal probability

selection parameter ps that minimizes the mean response

time is analytically intractable. Thus, we find a tight upper

bound on the mean response time, and the probability

selection parameter ps that minimizes this bound. This

probability serves as an approximation for the optimal

selection probability, and we numerically verify that this

approximation is tight.

2. SYSTEM MODEL
We consider a system of N heterogeneous servers with the

set of slow and fast servers denoted by Es and Ef = [N ]\Es

respectively. We denote the number of slow and fast servers

by Ns , |Es| and Nf , N − Ns respectively. The fraction

of slow servers is denoted by fs , Ns
N

. For this system,

we assume a Poisson arrival of tasks with homogeneous

rate N. Each arriving task is subdivided into k sub-

tasks, and dispatched to k distinct servers selected out of N .

We assume that the number of subtasks k  min(Ns, Nf ).

The task is assumed to be completed when all k sub-tasks
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are completed, and it leaves the system. The sub-task

completion time at server i for task n is denoted by a random

variable Xn
i . We assume that (Xn

i : i 2 [N ], n 2 N)
is independent for servers [N ] and across tasks n 2 N.
The sub-task completion time distribution at server i is

denoted by GXi , and we assume that this distribution is

identical for servers with same rate. The completion time

distribution at slow and fast servers is denoted by Gs and

Gf respectively. The service rates of slow and fast servers

are denoted by µs and µf respectively, where µs < µf . That

is, EXn
i =

1
µs

{i2Es} +
1
µf {i2Ef}.

We consider a probabilistic selection of k servers out of

N . Servers are selected sequentially, and are chosen to be

either slow or fast with probabilities (ps, p̄s) respectively. If
the server is selected to be slow or fast, then it is chosen

to be one of the slow or fast servers uniformly at random.

For task n, let En
be the k-set of probabilistically selected

servers, then we denote the random set of selected slow and

fast servers by Ins , En\Es and Inf , En\Ef respectively,

and denote the random number of slow and fast servers as

Kn
s , |Ins | and Kn

f , k − Kn
s respectively. For task n, we

can write the probability of selecting ks slow servers as

q(ks) , P {Kn
s = ks} =

 
k

ks

!
pks
s (1− ps)

k−ks . (1)

Consequently, we can compute the probability that a slow

server i 2 Es is selected by the dispatcher for an incoming

task, as
Pk

ks=1 q(ks)
(
Ns1
ks1)

(
Ns
ks
)

=
1
Ns

Pk
ks=1 ksq(ks) =

kps
Ns

.

This probability is independent of the incoming task, and

hence the arrival at each slow server is a thinned Poisson

process with arrival rate λs , λN kps
Ns

=
kps
fs

. Analogously,

we can compute the probability that a server i 2 Ef is

selected by the dispatcher for an incoming task as
kp̄s
Nf

independent of the task. Consequently, the arrival process

at each fast server is thinned Poisson process with arrival

rate λf , (λkp̄s)/f̄s.

3. MEAN TASK COMPLETION TIME
We denote the marginal workload at server i seen by

nth incoming task by Wn
i , and its limiting distribution

by FWi such that FWi(x) , limn!1 P {Wn
i 6 x} . If one

of the k sub-tasks for the nth task is dispatched to a

server i 2 En
, then the sub-task completion time at this

server is denoted by Tn
i , Wn

i + Xn
i . Since the sub-task

completion times are i.i.d. , Wn
i and Xn

i are independent

and for any x 2 R+, FTn
i
(x) , P {Wn

i +Xn
i 6 x} =R

R+
P {Wn

i 6 x− y} dGXi(y). Due to symmetry in the

system, the marginal workload distribution is identical at

all slow servers and at all fast servers. The limiting

distribution for marginal workload at a slow and a fast server

is denoted by Fs and Ff respectively. We denote the limiting

distribution for sub-task completion time at any server i as
JTi : R+ ! [0, 1], which can be written for any x 2 R+, as

JTi(x) = limn!1 P {Tn
i 6 x} =

R
y2R+

FWi(x − y)dGXi(y).

It follows that limiting distribution of sub-task completion

times are identical up to the parameters for slow and fast

servers and we denote them by Js and Jf respectively.

The completion time for task n is denoted by Tn
, and

is the maximum of the sub-task completion times at the

selected En
servers, and written as Tn , maxi2En Tn

i . The
limiting distribution of task completion times is denoted by

H : R+ ! [0, 1], and defined as H(x) , limn!1 P {Tn 6 x}
for all x 2 R+. In the following, we present our technical

results. In the following results, it is assumed that the

workloads at individual queues are independent of each

other as the number of servers is asymptotically large.

Proofs are omitted due to space constraints.

Theorem 1. The limiting distribution of

mean task completion time is given by H(x) =Pk
ks=0 q(ks)Js(x)

ksJf (x)
k−ks .

Corollary 1. The mean task completion time for the

heterogeneous system under consideration is given by

lim
n!1

E[Tn
] =

kX

ks=0

q(ks)

"Z

w2R+

[1− Js(w)
ksJf (w)

k−ks

#
dw.

Memoryless sub-task completions: We note that

when the service time is exponentially distributed, each

queue observed in isolation is an M/M/1 queue. That is,

when sub-task completion times at slow and fast servers are

distributed exponentially with rates µs and µf respectively,

and the respective loads are defined as ⇢s , s
µs

and

⇢f , f

µf
, the limiting marginal workload distribution at

slow and fast servers are Fs(w) = 1 − ⇢se
−(µs−s)w and

Ff (w) = 1 − ⇢fe
−(µf−f )w

. Furthermore, the limiting

sub-task completion times for slow and fast servers are

Js(x) = 1 − e−(µs−s)x, Jf (x) = 1 − e−(µf−f )x
. Thus,

the resulting limiting mean of task completion time isR
x2R+

dx[1− (1− pse
−(µs−s)x − p̄se

−(µf−f )x
)
k
].

Theorem 2. The optimal selection probability ps for

the slow servers that minimizes the limiting mean of task

completion time for k = 1 is the solution of the following

equation µs

⇣
1− ps

fsµs

⌘2

= µf

⇣
1− p̄s

f̄sµf

⌘2

.

Remark 1. The optimal selection probability ps is the

positive root of a quadratic equation. We can verify that

ps 2 [0, 1].

Remark 2. For exponentially distributed sub-task

completion times, we can write the limiting mean of

response time as
Pk

x=1(−1)
x−1

�
k
x

�Px
i=0

�
x
i

� pis(1−ps)
xi

i(µs−s)+(x−i)(µf−f )
.

Here, the analytical computation of the optimal selection

probability ps seems intractable for k > 1. However, the

optimal selection probability can be numerically evaluated.

Upper bound:

Remark 3. For exponentially distributed sub-task

completion times, the limiting mean of sub-task completion

time at server i is ETn
i =

1
µs−s

{i2Es} +
1

µf−f
{i/2Es}.

Theorem 3. The mean task completion time for the

heterogeneous system under consideration for exponentially

distributed sub-task completion times, is upper bounded as

lim
n!1

ETn 6 kpsfs
µsfs − λkps

+
kp̄sf̄s

µsf̄s − λkp̄s
.
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Remark 4. The upper bound on the limiting mean of

task completion time for exponentially distributed sub-task

completion times is minimized by the selection probability

ps for slow servers, that solves the following equation for a

constant k.

µs

⇣
1− kps

fsµs

⌘2

= µf

⇣
1− kp̄s

f̄sµf

⌘2

. (2)

4. NUMERICAL RESULTS
We have carried out the analysis under the regime of

asymptotically large number of servers N , which yields

asymptotic independence of marginal workload distribution

at individual servers. We first demonstrate that this

assumption is robust, by empirically computing the limiting

mean of task completion time for a system with finite

number of servers N 2 {20, 40}, for di↵erent values of

selection probability ps 2 [0, 1]. This empirical curve

and the theoretically obtained expression under asymptotic

independence assumption is plotted in Figure 1. Observe

that the asymptotic independence assumption remains

robust even for finite N , and gets better as N increases. In

addition, the mean task completion time is a convex function

of selection probability ps and thus has a unique minimum.
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Figure 1: Comparison of mean completion time

obtained theoretically and empirically as a function of

selection probability ps for the choice of parameters

k = 10, = 0.09, µs = 2, µf = 2.4, fs = 0.5.
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Figure 2: Comparison of optimal selection probability

ps and its approximation as a function of number of sub-

tasks k for the choice of system parameters N = 40, µs =

2, µf = 2.4, fs = 0.5.

Next, we plot the numerically evaluated optimal selection

probability ps as mentioned in Remark 2 as a function

of number of tasks k 2 {1, . . . , 10} for a system with

N = 40 servers in Figure 2, and for di↵erent arrival

rates  2 {0.01, . . . , 0.09}. We also plot the value of

selection probability ps as a function of k, that minimizes

the upper bound on the limiting mean of task completion

time, given in Remark 4. We observe that this sub-optimal

selection probability is close to numerically evaluated

optimal selection probability for di↵erent arrival rates and

number of sub-tasks. We observe that the di↵erence between
two probabilities increases with increase in the number of

sub-tasks. In addition, we note that the optimal selection

probability of slow servers increases with arrival rate  and

number of sub-tasks k.
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