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A B S T R A C T

Dispatching policies such as join the shortest queue (JSQ), join the queue with smallest
workload (JSW), and their power of two variants are used in load balancing systems where
the instantaneous queue length or workload information at all queues or a subset of them can
be queried. In situations where the dispatcher has an associated memory, one can minimize this
query overhead by maintaining a list of idle servers to which jobs can be dispatched. Recent
alternative approaches that do not require querying such information include the cancel-on-
start and cancel-on-complete replication policies. The downside of such policies however is
that the servers must communicate either the start or the completion time instant of each
service to the dispatcher and must allow the coordinated and instantaneous cancellation of
all redundant replicas. In practice, the requirements of query messaging, memory, and replica
cancellation pose challenges in their implementation and their advantages are not clear. In this
work, we consider load-balancing policies that do not need to query load information, do not
need memory, and do not need to cancel replicas. Our policies allow the dispatcher to append
a timer to each job or its replica. A job or a replica is discarded if its timer expires before it
starts receiving service. We analyze several variants of this policy which are novel and simple
to implement. We numerically observe that the variants of the proposed policy outperform
popular feedback-based policies for low arrival rates, despite no feedback from servers to the
dispatcher.

1. Introduction

Load balancing policies play a vital role in latency reduction in distributed systems such as large data centers and cloud
computing. A typical load-balancing system comprises of a large number of homogeneous servers and a dispatcher that routes
arriving jobs to the queue of these servers. When the instantaneous queue length of different servers is known, an obvious approach
would be to use the join-shortest-queue (JSQ) policy [1]. If instead of queue length, the workload i.e., the pending amount of work
at each server is known, the optimal policy is the join smallest work queue (JSW). Unfortunately, in most practical systems, the
number of servers is large, and therefore obtaining the instantaneous queue lengths or workloads from all servers is difficult.
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A popular remedy for this is to consider the power of 𝑑 choice variant of JSQ and JSW. In a JSQ(𝑑) policy, the dispatcher
amples 𝑑 servers uniformly at random and queries their queue lengths. The job is then routed to a sampled server with the least
umber of waiting jobs. Implementing such a policy requires 2𝑑 messages per job and was shown to have very good performance
haracteristics [2,3]. The equivalent workload-based policy JSW(𝑑) also has a 2𝑑 query overhead per job and was analyzed
ecently [4,5]. For many systems, a 2𝑑 query exchange is considerable overhead, especially when 𝑑 is large or when the timescale
or message exchange is comparable to the actual service requirement of a job [6].

Recent efforts have therefore been directed towards bringing down this overhead using smart feedback techniques [7,8]. The
uthors of [7] consider a hyper-scalable dispatching scheme where the dispatcher maintains queue length estimates for the different
ueues and sends an arriving job to the server with the least estimated queue length. Each server occasionally updates the dispatcher
bout its true queue length and this enables the dispatcher to synchronize its estimates with reality. The authors of [8] introduce
he join-open-queue scheme where servers send busy alerts to the dispatcher at predetermined times. When a server is idle, it
oes not send the alert and thus the dispatcher can infer idle servers without considerable message exchanges. In such cases, there
s some feedback communicated by the servers to the dispatcher, and this can be non-negligible in some settings. Furthermore,
he dispatcher operates under noisy queue/workload information, which affects the system performance. It is well known that for
orrelated processes, there is a tradeoff between the estimated accuracy and the frequency of updates [9,10]. Another policy that
orks under sparse communication and approximate state information can be found in [11].

The feedback communication overhead and the noisiness of estimates get exacerbated in the case of multiple dispatchers, which
s common for modern data centers comprising of a huge number of servers. A load balancing system with multiple dispatchers is
nalyzed in [12,13], where the authors consider policies that require infrequent communication between servers and dispatchers.
n these policies, the dispatchers perform load balancing based on a local estimate of the queue length. It is observed that in such
ystems, jobs could be concurrently dispatched by different dispatchers to the same server which might drive the system to instability.

An alternative low-feedback policy that uses memory, is the join-idle-queue (JIQ) policy. In this policy, idle queues willingly
nform the dispatcher about their idleness and the dispatcher lists this in an associated memory. This policy records accurate
nformation on the idleness of all queues and has very good performance characteristics [14]. An arriving job is sent to an idle
ueue selected randomly from the list of empty queues and therefore this policy has an overhead of a single feedback message in
ach busy period per server. Some recent load balancing policies that make use of memory in their dispatching decisions appear
n [15,16].

An alternative way to achieve good performance without querying instantaneous queue length or workload information is to
se redundancy-based load balancing policies. Two popular variants of redundancy-𝑑 based load balancing are cancel-on-start
c.o.s.) [17] and cancel-on-complete (c.o.c.) [18]. In these policies, independent replicas of an arriving job are sent to 𝑑 randomly
hosen servers. In c.o.s. (resp. c.o.c.), when one of the copies starts receiving service (resp. completes service), the 𝑑 −1 replicas are
anceled. Such policies also have superior delay performance and are quite amenable to analysis. A detailed product form analysis
haracterizing the delay performance for both variants is presented in [19,20]. However, a major implementation problem with
eplication-based policies is the synchronized cancellation of the redundant replicas. The sophistication required for implementing
uch an approach in fact may even be non-trivial. Further, depending on the operating scenario, instantaneous cancellation may not
lways be feasible, thereby adding overhead to the system [21,22]. In many redundancy-based practical systems, replica cancellation
s an undesirable overhead that is often avoided. The authors of [23,24] discuss applications where delay due to request cancellations
annot be tolerated and describe systems where it is difficult to incorporate functionality to terminate requests while being executed.
he authors of [25–27] study systems where replication is implemented without cancellation (r.w.c.). In particular, the authors
f [25] suggest that there is a threshold system load above which replication can be detrimental and cannot offer any improvement
n terms of latency. This provides the motivation for designing a policy that would intelligently replicate only when the workload
onditions are favorable. The idea of replication without cancellation has also been used in multipath routing in networks [28,29].

Besides replication-based policies for latency reduction, latency in distributed storage systems with maximum distance separable
MDS) coded data has been widely studied in literature [30–35]. Although they have superior delay performance, such schemes have
dditional decoding costs and scalability issues besides the cancellation costs. Also, there are efficient replication-based strategies
hat have competitive performance with that of MDS coded systems [36,37] and we do not discuss them in this article. In addition,
oad balancing policies that consider different cost functions like throughput [38], server utilization [39–41] etc. have also been
tudied. We do not delve into these details.

Note that except for the r.w.c. policy, the load balancing policies discussed earlier either involve (a) communication of messages,
r (b) require a memory, or (c) require replication with cancellation. Such policies therefore always have an element of feedback
rom the server to the dispatcher. In this work, we aim to characterize the impact of such communication/memory/coordinated
eplica-cancellation in load balancing by comparing their performance with policies that do not need server feedback information.
n particular, we focus on static load balancing policies that do not demand queue length information or memory at the dispatcher.
he static load balancing approach is very similar to the forward error correction [42, Chapter 1] in communication, where the
essage redundancy is designed in advance without any receiver feedback. Analogously, the traditional server feedback-based load

alancing approaches are similar to adaptive coding policies [42, Chapter 22].
While we allow the dispatcher to possibly replicate jobs to 𝑑 different servers, we assume that the dispatcher does not have

ny server state information and does not send any state-dependent cancellation message. This is in line with some of the practical
olicies discussed in the preceding paragraph. While the random routing policy (𝑑 = 1) is an obvious choice for such static load
alancing, its performance is known to be poor and is therefore of limited interest. Replicate-without-cancellation (r.w.c.) is an
2

lternative candidate, but the impact on the system load due to uncanceled replicas is not clear. At this point, an imminent question is
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can we add some functionality to the system (without incurring much overhead) and achieve much better performance as compared
to random routing or r.w.c.? Further, would it be possible to have comparable or even better performance as compared to policies
like JSQ(𝑑) or JSW(𝑑) that make use of the server state information? An affirmative answer to the latter question even under say
a restricted parameter setting, may go a long way in establishing the true value of feedback information in load balancing.

In this paper, we propose a policy where the dispatcher has the ability to append a server-side cancellation criteria to each job
or its replica. Before picking any job or its replica for service, each server will check if the appended criteria are satisfied or not.
If the criteria are met, then the replica is served or else it is dropped. We consider a criterion that depends on the waiting time of
the replica in a queue. For example, the criteria that we consider is to serve the replica only if it has waited in the queue for no
more than a fixed preset amount of time. More formally, we assume that each arriving job is referred to as the primary replica, and
the dispatcher creates 𝑑 − 1 secondary replicas. The servers where the replicas are sent are chosen randomly. Associated with the
primary and secondary replicas are non-negative discard thresholds 𝑇1 and 𝑇2. A replica is discarded by the server if the waiting time
experienced by the replica is more than its discard threshold and we label our load balancing policy by 𝜋(𝑑, 𝑇1, 𝑇2). Such a criterion
is easy for the server to validate and can be achieved by logging the arrival time information of each job/replica. Furthermore, our
policy can even be implemented in a multiple dispatcher setting without incurring delay overhead and can be designed to not cause
instability. The key essence of our approach is to exploit possible gains from the replication of jobs, but at the same time prevent
overloading the system due to extra replicas by preemptively performing server-side cancellation of potentially wasteful replicas.
We compare this policy against policies with access to side information on the status of the system and show that the proposed load
balancing policy in certain regimes provides a superior latency performance as compared to most of the popular policies. This begs
two important questions:

1. Can a load balancing policy without server feedback perform as well as the ones with server feedback in certain operating
regimes?

2. Are the load balancing policies with server feedback information utilizing the available information optimally?

One needs to answer these two questions to know whether the performance gains derived from using server feedback information
are worth the cost structure imposed by such information gathering in the system. We note that answering the first question will
need a more thorough study on the characterization of the value of information in such systems and can be an independent study
of its own. However, our work provides evidence to show that the utilization of the server feedback information is sub-optimal in
many of the prominent load-balancing policies with information feedback. Ideally, if the information utilization is optimal, then
the load-balancing policies with extra feedback information are never supposed to perform worse than policies without feedback
with the same amount of redundancy and under similar system settings. In this work, we have been successful in designing a policy
without server feedback which is numerically shown to outperform the policies with feedback in certain load regimes.

We observe that when 𝑇1 and 𝑇2 are both finite, arriving jobs could potentially be lost without service. Keeping this in mind,
the two key performance metrics that we consider are the conditional mean response time of jobs admitted into the system and
the loss probability of an arriving job. Note that for systems where loss cannot be tolerated, we can set 𝑇1 = ∞ and adapt
suitably. To analyze our policy, we make use of the cavity process method of [43,44] along with an assumption on the asymptotic
independence of the stationary workloads at the different queues as the number of servers 𝑁 → ∞. While we prove that the
queues are asymptotically independent over any finite time horizon, the absence of monotonicity arguments makes it difficult to
extend this result to time-stationary regimes when thresholds 𝑇1, 𝑇2 are finite. When both the discard thresholds are infinite, the

orkload monotonicity of queues continues to hold, and the asymptotic independence for stationary workloads is easy to prove. Note
hat asymptotic independence is difficult to prove in general, and proofs are available only under specific service disciplines, load
alancing policies, and assumptions on service distributions [43–45]. Having said that, the use of this assumption as a conjecture
s widespread [22,43,46] and supported by extensive numerical evidence.

.1. Key contributions

We have listed our key contributions below.

1. We propose a distributed load balancing policy 𝜋(𝑑, 𝑇1, 𝑇2), where the dispatcher needs no feedback from the servers. Further,
replicas are discarded at a server if the waiting time exceeds the discard threshold.

2. We show that the workloads in the various queues in the system are asymptotically independent over any finite time
horizon. We empirically verify that the independence assumption on the limiting marginal workload distribution is a good
approximation even for a finite number of servers.

3. To analyze the proposed load balancing policy 𝜋(𝑑, 𝑇1, 𝑇2), we derive the expressions for key performance metrics such
as the loss probability 𝑃𝐿 in Lemma 6, the conditional mean response time 𝜏 for admitted jobs in Theorem 7, and the
moment generating function (MGF) for the limiting workload distribution of an arbitrary queue under the policy 𝜋(𝑑, 𝑇1, 𝑇2).
Furthermore, we invert this function for an exponential service time distribution, to obtain the limiting workload distribution
in Corollary 10.

4. We analytically show in Lemma 18 that the proposed policy 𝜋(𝑑,∞, 0) always outperforms the random routing policy
under exponential service times. We also provide an analytical comparison with the c.o.c.(𝑑) policy when service times are
exponential in Proposition 20.
3
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5. We conduct numerical experiments to show that the 𝜋(𝑑,∞, 0) policy can outperform the c.o.s.(𝑑), JSQ(𝑑), and JIQ(𝑑), in
a low arrival rate regime. This policy converges to the c.o.s.(1) policy in the high arrival rate regime. We observe that the
arrival rate threshold for this switch in regime increases with redundancy 𝑑.

6. We also provide the performance comparison of our policy with other server feedback-based policies for general service time
distributions and observe similar performance improvement as seen under exponential service times.

.2. Organization

We introduce the system model and notations in Section 2. This is followed by a discussion on the cavity process method and
ts application to our problem along with a discussion on the asymptotic independence of the workloads at different queues. In
ection 3, we compute the performance metrics for the proposed policy 𝜋(𝑑, 𝑇1, 𝑇2) for a general service time distribution, in terms
f limiting marginal workload distribution. In Section 4, we find the closed-form expression for marginal workload distribution
hen the service time distribution is exponential. We also compute the conditional mean of response time for admitted jobs, for

ome special cases of 𝜋(𝑑, 𝑇1, 𝑇2) policy. We provide a comparison of our policy with policies with feedback for various service time
istributions in Section 5. We conclude with a summary of our work and future directions in Section 6.

. System model and preliminaries

We consider a load balancing system with 𝑁 servers, where jobs arrive according to a Poisson process of rate 𝜆𝑁 . There is
a dispatcher associated with this system whose objective is to minimize the response time experienced by each job by suitably
balancing the workload across different servers. Owing to the popularity of redundancy-based load-balancing policies, we assume
that the dispatcher has the ability to replicate an arriving job across multiple servers.

Throughout this article, we denote the set of first 𝑛 consecutive positive integers as [𝑛] ≜ {1,… , 𝑛}, the set of non-negative
integers as Z+, the set of positive integers as N, the set of non-negative reals as R+ and the set of positive reals as R+. We also use
he notation 𝑥 ∧ 𝑦 ≜ min {𝑥, 𝑦}.

.1. Service

We denote the service time for 𝑛th arriving job at 𝑖th server by 𝑋𝑛,𝑖 ∈ R+. We assume that the random job service time sequence
𝑋𝑛,𝑖 ∈ R+ ∶ 𝑛 ∈ N, 𝑖 ∈ [𝑁]) is independent and identically distributed (i.i.d.) with an exponential distribution 𝐺 ∶ R+ → [0, 1] defined
or all 𝑥 ∈ R+ as 𝐺(𝑥) ≜ (1 − 𝑒𝜇𝑥)1{𝑥⩾0}, such that mean E𝑋𝑛,𝑖 =

1
𝜇 for each job 𝑛 and server 𝑖. The motivation for independent

andom service time for each replica at all servers comes from the uncertainties in the time taken to service a job at any server due
o other independent background processes [47,48]. The identical distribution models the homogeneity of servers with identical
onfiguration and compute power. Recent studies suggest that the service times in distributed computing systems can be modeled
o have two components; a constant startup delay and a random memoryless component [49–52]. Whenever the startup time is
egligible the service time distribution can be approximated by an exponential distribution. This along with analytical tractability
otivated us to assume that the service times follow i.i.d. exponential distribution with rate 𝜇. We denote the tail distribution of

he service time or the complementary service time distribution by �̄� ≜ 1 −𝐺. When we focus on a single queue 𝑖, we will drop the
subscript 𝑖 for brevity.

An alternative and more generalized service model is the S&X model [53] where the service time of 𝑛th job at server 𝑖 is defined
to be the product random variable 𝑌𝑛,𝑖 ≜ 𝑆𝑖 ⋅ 𝑋𝑛 where 𝑆𝑖 is the slowdown factor at the server 𝑖 and 𝑋𝑛 denotes the random size
f the incoming job 𝑛. The random slowdown factor 𝑆𝑖 is assumed to have a mean greater than or equal to 1. The random job size
equence is assumed to be i.i.d. across the jobs. Owing to the difficulty in the analysis posed by this model (also noted in [22,53]),
e focus on i.i.d. service time model in this work. The i.i.d. exponential service time model can be considered as a special case of

he S&X model where the slow down factor 𝑆 is i.i.d. exponential with unit rate across servers and the service times of job 𝑋𝑖 have
constant size of 1

𝜇 . Another interesting special case of S&X model is when the slowdown factor is deterministic and the job sizes
are i.i.d. . This special case has been discussed in detail in Appendix E.

2.2. Threshold based cancellation

We assume that the dispatcher has limited functionality and that it cannot cancel redundant copies when one of the replicas
has received (or started receiving) service. Instead, we assume that the dispatcher can append discard instruction along with each
replica. Before a job/replica starts service, each server will read the discard instruction and possibly discard the replica based on the
instruction. We call this a redundancy-based approach with server-side cancellation of replicas. For ease of exposition, we assume
that the instruction is almost identical for all copies in the system and hence the overhead of implementing this approach is minimal.
In this article, we restrict to instructions that are characterized by a threshold 𝑇 ∈ [0,∞). In particular, we assume that the server
serves a replica if it is chosen for service within 𝑇 units of its arrival or else discards the replica. We call 𝑇 as the discard threshold
4

for brevity.
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2.2.1. Primary replica and discard threshold
We consider the following dispatching policy based on the above idea of a discard threshold. When a job arrives, the dispatcher

amples a single primary server uniformly at random and sends a primary replica of the job to the server along with the primary
iscard threshold 𝑇1.

.2.2. Secondary replicas and discard thresholds
For each job arrival, the dispatcher creates 𝑑 −1 secondary replicas, samples 𝑑 −1 other servers uniformly at random, and sends

ach of the secondary replicas to the sampled 𝑑 − 1 servers after appending each replica with a secondary discard threshold of 𝑇2
here 𝑇2 ⩽ 𝑇1. We choose the secondary discard threshold to be smaller than the primary discard threshold to ensure that the

econdary replicas will not overload the system when the current workloads at the queues are high. Furthermore, note that we
xpect the secondary replicas to be helpful only if the primary is delayed.

Since our policy is parametrized by the number of replicas 𝑑, primary discard threshold 𝑇1, and secondary discard threshold
2, we shall henceforth denote the proposed policy by 𝜋(𝑑, 𝑇1, 𝑇2) for simplicity. Following are some special cases of our discard

threshold based redundancy-𝑑 policy that we analyze in this article.

1. Replication with identical thresholds, 𝜋(𝑑, 𝑇 , 𝑇 ): In this policy, each job is replicated 𝑑 times and assigned to 𝑑 servers chosen
at random. Each job replica will have a threshold of 𝑇 time units which can possibly result in a loss of jobs. When 𝑇 = ∞,
the policy reduces to that of a simple replication-𝑑 policy without cancellation.

2. Replication with no loss, 𝜋(𝑑,∞, 𝑇2): Under this policy, as the primary threshold 𝑇1 = ∞, each primary replica of the job is
definitely served. The advantage of this policy is that no jobs are lost.

3. Replication on idle secondary servers, 𝜋(𝑑,∞, 0): This is a special case of replication policy with minimal redundancy addition
since secondary replicas only join idle queues.

2.3. Server

We assume that each server has an infinite-sized buffer where arriving job replicas can wait for service, on a first come first
served (FCFS) basis. We let the random variable 𝑊𝑛,𝑖 denote the waiting time for the 𝑛th arriving job at server 𝑖 ∈ [𝑁]. Due to FCFS
ervice, the random variable 𝑊𝑛,𝑖 is also the effective workload present at server 𝑖 that must be served before 𝑛th job replica can
eceive service. An arriving replica is executed at a server 𝑖 if its discard threshold 𝑇 is larger than the observed workload 𝑊𝑛,𝑖, and
s discarded otherwise.

Each arriving job in the system results in a potential arrival at a maximum of 𝑑 randomly sampled queues. Depending on the
iscard threshold 𝑇 and waiting time 𝑊𝑛,𝑖, the job either receives service or is discarded. If a replica is served, then it results in an
ctual arrival at the corresponding server queue.

efinition 1. For the 𝑛th arriving job, let 𝐼𝑛,1 be the singleton set of servers where the primary replica is dispatched, and 𝐼𝑛,2 be
he set of servers to which the secondary replicas are dispatched. For the job 𝑛, whether server 𝑗 is selected for service of a primary
r secondary replica is denoted by indicators 𝛾1𝑛,𝑗 ≜ 1{𝑗∈𝐼𝑛,1} and 𝛾2𝑛,𝑗 ≜ 1{𝑗∈𝐼𝑛,2} respectively.

efinition 2. If a replica for job 𝑛 is dispatched to a server 𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2 with current workload 𝑊𝑛,𝑗 , then we define the indicator
hat the job is not discarded at this server 𝑗 as

𝜉𝑛,𝑗1{𝑗∈𝐼𝑛,1∪𝐼𝑛,2} ≜ 1{

𝑊𝑛,𝑗⩽𝑇1
}𝛾1𝑛,𝑗 + 1

{

𝑊𝑛,𝑗⩽𝑇2
}𝛾2𝑛,𝑗 . (1)

e denote the set of servers where the replicas for job 𝑛 are not discarded by 𝐼𝑛 ≜
{

𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2 ∶ 𝜉𝑛,𝑗 = 1
}

. A job is not discarded
hen 𝐼𝑛 ≠ ∅ and we denote this by indicator 𝜉𝑛 ≜ 1{𝐼𝑛≠∅}. We can write this in terms of the set of servers 𝐼𝑛,1, 𝐼𝑛,2, the indicator
𝑛,𝑗 , and its complement 𝜉𝑛,𝑗 ≜ 1 − 𝜉𝑛,𝑗 for all 𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2,

𝜉𝑛 ≜ 1 −
∏

𝑗∈𝐼𝑛,1

𝜉𝑛,𝑗
∏

𝑗∈𝐼𝑛,2

𝜉𝑛,𝑗 . (2)

From the symmetry in the system, the marginal workload for each server 𝑗 has an identical distribution. We denote the limiting
arginal workload distribution for any server 𝑗 ∈ [𝑁] by 𝐹 ∶ R+ → [0, 1], such that 𝐹 (𝑥) ≜ lim𝑛→∞ 𝑃

{

𝑊𝑛,𝑗 ⩽ 𝑥
}

for 𝑥 ∈ R+, when
he limit exists. Since 𝐹 is the limiting marginal workload distribution seen by an arriving customer, it follows from the PASTA
roperty that 𝐹 is also the stationary distribution of marginal workload in the system.

.4. Performance metrics

We consider the following two stationary performance metrics, the limiting mean response time and the limiting loss probability.
ince our dispatcher replicates each arriving job to at most 𝑑 servers, the response time of an arriving job is the minimum of the
ojourn times experienced by its different replicas. When both the thresholds 𝑇1 and 𝑇2 are finite, each replica can be discarded
ithout service, leading to a loss. For lost jobs, the response time metric is meaningless. Hence, we obtain the mean response time
f a job, conditioned on the event that it is not discarded. A job is serviced when at least one of its replicas is not discarded at
he servers sampled by the dispatcher, i.e. when the workload at one of these servers is smaller than or equal to the corresponding
iscard threshold.
5



Performance Evaluation 162 (2023) 102381R. Jinan et al.

D

S
m
t
o
t
d

E
s
s
t
a
t
o

o
t
t
l

2

(
d
s
L
q
p
t
w
o
𝑋
a
d
p


s
J
o
f
w
p
o
r

Definition 3. The limiting loss probability for policy 𝜋(𝑑, 𝑇1, 𝑇2) is denoted by 𝑃𝐿 ≜ lim𝑛→∞ E𝜉𝑛.

efinition 4. We denote the response time of 𝑛th job by 𝑅′
𝑛 ∈ R+ ∪ {∞} and the response time of this job if it is not discarded job

by 𝑅𝑛 = 𝜉𝑛𝑅′
𝑛 ∈ R+. We denote the distribution function for an undiscarded job at stationarity by 𝐻 ∶ R+ → [0, 1] such that for all

𝑥 ∈ R+

𝐻(𝑥) ≜ lim
𝑛→∞

𝑃
{

𝑅𝑛 ⩽ 𝑥
}

.

The tail distribution �̄� ∶ R+ → [0, 1] is defined as �̄�(𝑥) ≜ 1 −𝐻(𝑥) for all 𝑥 ∈ R+. We study the conditional mean response time for
a job given that it is not discarded, which is defined as

𝜏 ≜
lim𝑛→∞ E[𝑅𝑛]
lim𝑛→∞ E[𝜉𝑛]

=
∫𝑥∈R+

�̄�(𝑥)𝑑𝑥

1 − 𝑃𝐿
. (3)

In this article, we analyze the performance of the 𝜋(𝑑, 𝑇1, 𝑇2) load balancing policy for different special cases mentioned in
ection 2.2, based on the two performance metrics of conditional mean response time and loss probability. Computing the limiting
arginal workload distribution at a single queue is straightforward and can be performed by isolating the considered queue from

he rest of the system. However, a job response time is the minimum response time for all possible job replicas, and computation
f the conditional mean requires the knowledge of the joint distribution of workloads at all queues with a job replica. We point out
hat the workloads at different queues are not independent of each other due to the correlated arrivals. We illustrate the workload
ependence at different servers in the following example.

xample 1. Consider a system of two servers with initial workloads 𝑊1(0) = 𝑊2(0) = 0. Suppose the job arrival process to the
ystem is Poisson with the homogeneous rate 𝜆, and each arriving job has a constant size 𝑐. The jobs are replicated and sent to both
ervers and they are accepted at the servers if their current workloads are smaller than a threshold of 𝑇 . We denote the inter-arrival
imes by the random sequence (𝑍𝑛 ∈ R+ ∶ 𝑛 ∈ N), and the 𝑛th arrival instant by 𝑆𝑛 ≜

∑𝑛
𝑘=1 𝑍𝑘 for all 𝑘 ∈ N. Then the workload

t server 𝑖 at the 𝑛th arrival instant is denoted by 𝑊𝑛,𝑖, and can be written recursively, as 𝑊𝑛+1,𝑖 = (𝑊𝑛,𝑖 + 𝑐 − 𝑍𝑛+1)+. We observe
hat 𝑊𝑛,1 = 𝑊𝑛,2 for all 𝑛 ∈ N. Further, we have 𝑊𝑖(𝑡) = (𝑊𝑛,𝑖 − 𝑡)+ for all 𝑡 ∈ [𝑆𝑛, 𝑆𝑛+1), and hence 𝑊1(𝑡) = 𝑊2(𝑡) for all 𝑡 ∈ R+. We
bserve that the workloads in these two queues are completely identical at all times, and not independent of each other.

However, we show that for the proposed load balancing policy 𝜋(𝑑, 𝑇1, 𝑇2), the workloads at different queues are independent
f each other for any finite time horizon [0, 𝑡] when the job arrival process is homogeneous Poisson, the replicas have i.i.d. service
ime distribution, and the number of servers 𝑁 grows large while keeping the number of replicas 𝑑 fixed. Furthermore, to compute
he joint workload distribution, we use the cavity process method [4,22,43,44] that assumes the asymptotic independence of the
imiting marginal workload at server queues. The next subsection provides a brief discussion of the cavity process method.

.5. Cavity process method

Here, we explain the principle of a cavity process method as applied to popular load balancing policies such as least loaded
JSW(𝑑)) or join-shortest-queue (JSQ(𝑑)) and then specialize the discussion to our policy 𝜋(𝑑, 𝑇1, 𝑇2). See [4,22,43,44] for more
etails about this approach. In the JSW(𝑑) (resp. JSQ(𝑑)) system with 𝑁 queues and Poisson arrival rate of 𝜆𝑁 , 𝑑 queues are
ampled for each arriving job. The arriving job is executed on the sampled server with the smallest workload (resp. queue length).
et {(𝑡), 𝑡 ⩾ 0} denote the collection of probability measures on R+. This is called the environment process. We tag one of the
ueues in the 𝑁 queue system as the cavity queue and denote the cavity process by (𝑋(𝑡), 𝑡 ⩾ 0) which represents the workload
rocess (resp. the queue length process) at the cavity queue under policy JSW(𝑑) (resp. JSQ(𝑑)). The potential arrival rate of jobs to
he cavity queue under both policies is 𝜆𝑑. For a potential arrival at the cavity queue at time 𝑡, we compare 𝑑 −1 random variables
ith law (𝑡) and cavity random variable 𝑋(𝑡−). The potential arrival becomes an actual arrival to the cavity queue if the value
f 𝑋(𝑡−) is lower than the values taken by the 𝑑 − 1 other variables, else the job is discarded. When the job is accepted, we have
(𝑡) = 𝑋(𝑡−) + 1 for the JSQ(𝑑) policy and 𝑋(𝑡) = 𝑋(𝑡−) + 𝑥 for the JSW(𝑑) policy where 𝑥 is the service requirement of the

rriving job. When the job is discarded, we have 𝑋(𝑡) = 𝑋(𝑡−). For the JSW(𝑑) policy, the workload 𝑋(𝑡) at the cavity queue
ecreases at a unit rate, and for the JSQ(𝑑) policy, the queue length 𝑋(𝑡) of the cavity queue decreases by one at a unit rate. The
rocess (⋅) is called as the equilibrium environment process if 𝑋(⋅)(𝑡) has distribution (𝑡) for all times 𝑡. If (𝑡) =  for all 𝑡, then

is called as equilibrium environment.
The cavity process method was used in [43,44] to analyze the JSW(𝑑) and the JSQ(𝑑) policy. A key step in the analysis is to

how asymptotic independence between the workloads/queue length random variables at the different queues. While the analysis for
SW(𝑑) holds for any service requirement distribution, the proof for JSQ(𝑑) is only known for the case when the service requirement
f a job has a decreasing hazard rate distribution. In [4], this approach is used further to obtain the functional differential equation
or the workload distribution of the cavity queue. In [22], several workload-based load-balancing policies based on redundancy
ere considered and the cavity process method was used to identify the workload distribution for a wide range of load-balancing
olicies. While the asymptotic independence of the queues was only conjectured, this was very recently proved in [45] for a variety
f such replication-based policies, including most of the policies of [22]. Asymptotic independence of workloads at stationarity
equires a change of limits, which is shown to hold true under the system monotonicity properties in [45]. We prove the asymptotic
6
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Fig. 1. The 𝑁 server system under 𝜋(𝑑, 𝑇1 , 𝑇2) policy with a job arrival rate 𝜆𝑁 . The dispatcher dispatches 𝑑 replicas per job and the potential arrival rate at
ny cavity queue is 𝜆𝑑.

ndependence of workloads under our settings for any finite time horizon in Proposition 5. However, since the proposed load-
alancing policy does not satisfy monotonicity properties, we are only able to provide empirical validation at time stationarity.

For the proposed 𝜋(𝑑, 𝑇1, 𝑇2) policy, we use this cavity process method along with the conjecture that the workload distribution
cross any finite subset of queues is asymptotically independent. For the proposed policy shown in Fig. 1, we note that the potential
rrival rate to the cavity queue is �̄� ≜ 𝜆𝑑. If the copy at the cavity queue is a primary replica, then 𝑋(𝑡) = 𝑋(𝑡−) + 𝑥 if 𝑋(𝑡−) ⩽ 𝑇1
lse the copy is discarded. Similarly, if the replica at the cavity queue is a secondary one, then the replica is served if 𝑋(𝑡−) ⩽ 𝑇2.
learly, the potential arrival at the cavity queue becomes an actual arrival based on the workload level at the queue. Remarkably,

or our policy, there is no influence on the cavity queue of the 𝑑 − 1 random variables with law (⋅). With the assumption of the
symptotic independence of the workload at finitely many queues, and using the cavity process approach, we can view the cavity
ueue as an 𝑀∕𝐺∕1 queue with workload-dependent arrival rates. The workload distribution of the cavity queue is in fact the
quilibrium environment  for our system. See [54] for one possible approach to obtain the workload distribution for an 𝑀∕𝐺∕1
ueue with workload-dependent arrival rates. In the following, we use a different approach based on the Lindley type recursion and
oment generating function (MGF) to obtain the workload distribution for the queue at the cavity. We believe that this approach

s novel and can be applied to more general load-balancing policies beyond this work.
Next, we discuss the conjecture on asymptotic independence. First, we provide the result on asymptotic independence of

orkloads over a finite horizon. The proof is very similar to the proof of asymptotic independence of queues over a finite time
orizon for JSQ(𝑑) dispatch policy, shown in [44, Proposition 7.1].

roposition 5 (Asymptotic Independence Over Finite Time Horizon). Consider an 𝑁 server system under 𝜋(𝑑, 𝑇1, 𝑇2) dispatch policy. When
he number of servers 𝑁 grows asymptotically large, the marginal workload distributions at any finite number of queues are independent
ver a finite time horizon.

See Appendix A for proof.

emark 1. The above proposition holds true for general i.i.d. service time distributions as well as for the identical service time
odel discussed in Appendix E. For the ease of exposition, we omit the details.

For the power-of-𝑑 variants of dispatch policies, once the asymptotic independence is shown for a finite time horizon, one
an show the asymptotic independence at time stationarity as well when the workloads satisfy certain monotonicity conditions.
See Appendix A for further details.) Although we do not have such monotonicity property under 𝜋(𝑑, 𝑇1, 𝑇2) policy when either of
he two thresholds 𝑇1, 𝑇2 are finite, we conjecture that the asymptotic independence of server workloads continues to hold true at
ime stationarity.

onjecture 1 (Asymptotic Independence at Stationarity). Consider an 𝑁 server system under 𝜋(𝑑, 𝑇1, 𝑇2) dispatch policy. When the number
f servers 𝑁 grows asymptotically large, the system has a unique equilibrium workload distribution under which workloads at any finite
umber of queues are independent.

See Appendix B for empirical validation of this conjecture. Please note that Conjecture 1 can be proved for a limited regime of
rrival rates, by adapting the proof of [44, Theorem 2.3] to our setting. However, the empirical evaluations suggest that asymptotic
ndependence is a valid assumption under all arrival rates under the studied policy.
7
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Remark 2. We first obtain the MGF for the workload at the cavity queue. We then use this to obtain the conditional mean response
time for the different policies, under Conjecture 1. We illustrate the accuracy of our expressions in Appendix B by comparing them
with simulation experiments for different values of 𝑁 . As a validation of the assumption, we see that as 𝑁 increases, the mean
esponse time from simulations approaches the analytical values.

. Performance analysis

As mentioned before, we can compute the identical marginal workload distribution at all 𝑁 servers for the proposed 𝜋(𝑑, 𝑇1, 𝑇2)
dispatch policy. However, the expressions for both the performance metrics of conditional mean response time and loss probability,
can only be obtained under Conjecture 1. This computation is an approximation for a finite number of servers. However, we
empirically verify that this approximation is quite accurate even for a small number of servers.

3.1. Loss probability

When both primary and secondary thresholds are finite, some jobs can be discarded from the system. Under Conjecture 1, we
compute the limiting loss probability of a job being discarded in the following Lemma.

Lemma 6. The limiting loss probability of a job under 𝜋(𝑑, 𝑇1, 𝑇2) dispatch policy with equilibrium workload distribution 𝐹 and tail
distribution of service time �̄� is given by 𝑃𝐿 = 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1.

Proof. From (2) in Definition 3, we obtain 𝑃𝐿 = lim𝑛→∞ E
[

∏

𝑗∈𝐼𝑛,1 𝜉𝑛,𝑗
∏

𝑗∈𝐼𝑛,2 𝜉𝑛,𝑗
]

. The result follows from the independence of the
indicators (𝜉𝑛,𝑗 ∶ 𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2), under the assumption of asymptotic independence of workloads 𝑊𝑛,𝑗 across the servers 𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2
when 𝑛 → ∞, and the fact that the mean of indicators are E[𝜉𝑛,𝑗1{𝑗∈𝐼𝑛,1∪𝐼𝑛,2}

|

|

|

𝐼𝑛,1, 𝐼𝑛,2] = 𝐹 (𝑇1)𝛾1𝑛,𝑗 + 𝐹 (𝑇2)𝛾2𝑛,𝑗 . □

3.2. Conditional mean response time

Note that when the discard thresholds 𝑇1, 𝑇2 are finite, then all jobs that arrive at a server with workload 𝑤 > 𝑇1 will be lost.
For lost jobs, the response time metric is meaningless. Hence, we obtain the conditional mean response time given that the job is
not discarded. A job is serviced when at least one of its replicas is not discarded at the servers sampled by the dispatcher, i.e. when
the workload at one of these servers is smaller than or equal to the corresponding discard threshold.

Theorem 7. The conditional mean response time of an undiscarded job under 𝜋(𝑑, 𝑇1, 𝑇2) policy with equilibrium workload 𝑊 having
distribution 𝐹 and tail distribution of service time �̄�, is given by

𝜏 = 1
1 − 𝑃𝐿 ∫𝑥

[

(𝐹 (𝑇1) + 𝑘(𝑥, 𝑇1))(𝐹 (𝑇2) + 𝑘(𝑥, 𝑇2))𝑑−1 − 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1
]

𝑑𝑥,

where 𝑘(𝑥, 𝑇 ) ≜ E
[

�̄�(𝑥 −𝑊 )1{𝑊 ⩽𝑇 }
]

is the tail distribution of sojourn time for an undiscarded job at stationarity with discard threshold 𝑇 .

Proof. Refer to Appendix C. □

Remark 3. To understand the mean conditional response time, we need to understand the tail distribution 𝑘(𝑥, 𝑇 ). Exchanging
integral and expectation from the monotone convergence theorem for non-negative functions, we observe that the mean sojourn
time for an undiscarded job is

∫𝑥∈R+

𝑘(𝑥, 𝑇 )𝑑𝑥 = E
[

1{𝑊 ⩽𝑇 }

(

∫

𝑊

0
𝑑𝑥�̄�(𝑥 −𝑊 ) + ∫

∞

𝑊
𝑑𝑥�̄�(𝑥 −𝑊 )

)]

= E
[

𝑊 1{𝑊 ⩽𝑇 }
]

+
𝐹 (𝑇 )
𝜇

.

Defining 𝑘(𝑥) ≜ lim𝑇→∞ 𝑘(𝑥, 𝑇 ) for all 𝑥 ∈ R+, we observe that ∫𝑥∈R+
𝑘(𝑥)𝑑𝑥 = E𝑊 + 1

𝜇 is the mean sojourn time of any arriving
customer at stationarity. Since 𝑊 1{𝑊 ⩽𝑇 } ⩽ 𝑇1{𝑊 ⩽𝑇 }, we get

∫𝑥∈R+

𝑘(𝑥, 𝑇 )𝑑𝑥 ⩽ E𝑊 ∧ (𝑇𝐹 (𝑇 )) +
𝐹 (𝑇 )
𝜇

. (4)

emark 4. For a single primary replica 𝑑 = 1, the loss probability 𝑃𝐿 = 𝐹 (𝑇 ) and the conditional mean response time for admitted

obs is 𝜏 = 1
𝜇 +

E
[

𝑊 1{𝑊 ⩽𝑇 }
]

𝐹 (𝑇 ) ⩽ 1
𝜇 + 𝑇 .

emark 5. When the thresholds 𝑇1 and 𝑇2 are infinity, we see the tail workload distributions 𝐹 (𝑇1) = 𝐹 (𝑇2) = 0 and we have
𝑘(𝑥) = 𝑘(𝑥,∞) = E�̄�(𝑥 −𝑊 ). It follows that the tail distribution of response time is �̄�(𝑥) = 𝑘(𝑥)𝑑 .

emark 6. Since workload 𝑊 ⩾ 0, we have 𝑘(𝑥, 0) = �̄�(𝑥). Thus, for the thresholds 𝑇1 = ∞ and 𝑇2 = 0, the loss probability is zero
and the tail distribution of response time is �̄�(𝑥) = 𝑘(𝑥)�̄�(𝑥)𝑑−1𝑑𝑥.
8
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4. Workload distribution and conditional mean response time under exponential service times

In this section, we evaluate the limiting workload distribution 𝐹 in the cavity queue under various load balancing policies
discussed in Section 2.2 when the service time of each job is independent and follows an identical exponential distribution with
rate 𝜇. We choose the service times to be exponentially distributed as they are amenable to analytical computations, due to their
memoryless property. Let us first introduce some preliminary definitions prior to introducing the results.

Recall that the indicator that the 𝑗th server is selected by 𝑛th job as a primary or secondary server is 𝛾1𝑛,𝑗 or 𝛾2𝑛,𝑗 respectively.
urther, the workload seen by the 𝑛th job arrival at server 𝑗 is 𝑊𝑛,𝑗 and the service time for 𝑛th job, if it joins server 𝑗, is given by

𝑋𝑛,𝑗 . Since we are interested in a single cavity queue 𝑗, we drop the subscript 𝑗 in the following. For 𝑇2 ⩽ 𝑇1, we can use Lindley’s
recursion to write the single queue workload sequence (𝑊𝑛 ∶ 𝑛 ∈ N) in terms of random service time sequence (𝑋𝑛 ∶ 𝑛 ∈ N) and
inter-arrival time sequence (𝑍𝑛 ∶ 𝑛 ∈ N), as

𝑊𝑛+1 =

(

𝑊𝑛 +𝑋𝑛

(

(𝛾1𝑛 + 𝛾2𝑛 )1[0,𝑇2](𝑊𝑛) + 𝛾1𝑛1(𝑇2 ,𝑇1](𝑊𝑛)
)

−𝑍𝑛+1

)

+

, 𝑛 ∈ Z+. (5)

We define 𝐽𝑛 ≜ (𝛾1𝑛 + 𝛾2𝑛 )1{𝑊𝑛∈[0,𝑇2]} + 𝛾1𝑛1{𝑊𝑛∈(𝑇2 ,𝑇1]} as the indicator for a replica to arrive at the server for each arrival 𝑛 ∈ N, to
re-write Lindley’s recursion (5) for the evolution of marginal workload as 𝑊𝑛+1 = (𝑊𝑛 +𝑋𝑛𝐽𝑛 − 𝑍𝑛+1)+ where 𝜎(𝐽𝑛) ⊆ 𝜎(𝑊𝑛, 𝛾1𝑛 , 𝛾

2
𝑛 )

nd the conditional mean E[𝐽𝑛 ∣ 𝑊𝑛] =
𝑑
𝑁 1[0,𝑇2](𝑊𝑛) +

1
𝑁 1(𝑇2 ,𝑇1](𝑊𝑛) for all 𝑛 ∈ N. It follows that (𝑊𝑛 ∶ 𝑛 ∈ N) is a reflected random

walk with step-size sequence (𝑋𝑛𝐽𝑛 −𝑍𝑛+1 ∶ 𝑛 ∈ N) and hence the limiting workload distribution 𝐹 (𝑤) = lim𝑛→∞ 𝑃
{

𝑊𝑛 ⩽ 𝑤
}

exists
for all 𝑤 ∈ R if E[𝑋𝑛𝐽𝑛 ∣

{

𝑊𝑛 = 𝑤
}

] < E𝑍𝑛+1 for all 𝑤 except in a finite bounded set. In order to derive the stationary workload
distribution in the cavity queue, we make use of the moment-generating function of the stationary workload.

Definition 8. The moment-generating function of the limiting workload 𝑊 in a single queue, restricted to different workload
regimes is defined as

𝛷𝑊 (𝜃) ≜ E
[

𝑒−𝜃𝑊
]

, 𝛷2(𝜃) ≜ E
[

𝑒−𝜃𝑊 1{𝑊>𝑇2}
]

, 𝛷1(𝜃) ≜ E
[

𝑒−𝜃𝑊 1{𝑊>𝑇1}
]

.

Remark 7. We observe that 𝛷𝑊 (𝜃)−𝛷2(𝜃) = E
[

𝑒−𝜃𝑊 1[0,𝑇2](𝑊 )
]

and 𝛷2(𝜃)−𝛷1(𝜃) = E
[

𝑒−𝜃𝑊 1(𝑇2 ,𝑇1](𝑊 )
]

exists for all 𝜃 ∈ R, since
𝑒−𝜃𝑊 is bounded in bounded intervals [0, 𝑇2] and (𝑇2, 𝑇1] for all 𝜃 ∈ R. Further, this implies that the moment-generating functions
𝛷𝑊 (𝜃), 𝛷1(𝜃), 𝛷2(𝜃) converge for the same set of values of 𝜃. We further observe that 𝜃 ⩾ 0 is sufficient for the existence of all three
moment-generating functions.

Theorem 9. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the moment generating
function 𝛷𝑊 (𝜃) for the waiting time of admitted jobs at any queue under 𝜋(𝑑, 𝑇1, 𝑇2) policy is

𝐹 (0)(1 + �̄�
𝜃 + 𝜇 − �̄�

) +
(

(𝜇 − 𝜆)𝐹 (𝑇2) + 𝜆𝐹 (𝑇1)
)

[

𝑒−𝜃𝑇2
𝜃 + 𝜇 − 𝜆

− 𝑒−𝜃𝑇2
𝜃 + 𝜇 − �̄�

]

− 𝜇𝐹 (𝑇1)
[

𝑒−𝜃𝑇1
𝜃 + 𝜇 − 𝜆

− 𝑒−𝜃𝑇1
𝜃 + 𝜇

]

, (6)

where 𝐹 (0) = 1 − �̄�
𝜇 +

[

�̄�−𝜆
𝜇 𝐹 (𝑇2) +

𝜆
𝜇𝐹 (𝑇1)

]

and �̄� = 𝑑𝜆.

Proof. The detailed proof is in Appendix D. □

orollary 10. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the single queue
workload distribution under 𝜋(𝑑, 𝑇1, 𝑇2) policy is given by

𝐹 (𝑤) = 𝐹 (0)
(

1 +
�̄�(1 − 𝑒−(𝜇−�̄�)𝑤)

𝜇 − �̄�

)

− 𝜇𝐹 (𝑇1)
( (1 − 𝑒−(𝜇−𝜆)(𝑤−𝑇1)+ )

𝜇 − 𝜆
−

(1 − 𝑒−𝜇(𝑤−𝑇1)+ )
𝜇

)

+ ((𝜇 − 𝜆)𝐹 (𝑇2) + 𝜆𝐹 (𝑇1))
( (1 − 𝑒−(𝜇−𝜆)(𝑤−𝑇2)+ )

𝜇 − 𝜆
−

(1 − 𝑒−(𝜇−�̄�)(𝑤−𝑇2)+ )
𝜇 − �̄�

)

. (7)

Remark 8. From the expression (7) for limiting marginal workload distribution at the cavity queue, we observe that there are
three distinct regimes for the distribution. When the workload in a cavity queue lies in the duration [0, 𝑇2), the arrival rate to the
queue is �̄�. The cavity queue behaves like an 𝑀∕𝑀∕1 queue with arrival rate �̄� and service rate 𝜇, and the marginal workload
distribution reduces to

𝐹 (𝑤) = 𝐹 (0)
(𝜇 − �̄�𝑒−(𝜇−�̄�)𝑤

𝜇 − �̄�

)

, 𝑤 ∈ [0, 𝑇2).

Similarly, when the workload in a cavity queue lies in the duration [𝑇2, 𝑇1), the arrival rate to the queue is 𝜆. Accordingly, the
ehavior of the cavity queue in this region is similar to an 𝑀∕𝑀∕1 queue with arrival rate 𝜆 and service rate 𝜇. As expected, the
arginal workload distribution reduces to

𝐹 (𝑤) = 𝐹 (𝑇2) +
(𝜇𝐹 (0) − (𝜇 − �̄�)𝐹 (𝑇2)) (1 − 𝑒−(𝜇−𝜆)(𝑤−𝑇2)), 𝑤 ∈ [𝑇2, 𝑇1).
9
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Since there are no more arrivals to a cavity queue when the workload is larger than the threshold 𝑇1, the workload distribution is
expected to decay exponentially with the service rate 𝜇. Unsurprisingly, the marginal workload distribution is

𝐹 (𝑤) = 𝐹 (𝑇1) + 𝐹 (𝑇1)(1 − 𝑒−𝜇(𝑤−𝑇1)), 𝑤 ⩾ 𝑇1.

Next, we study some special cases of the 𝜋(𝑑, 𝑇1, 𝑇2) policy listed in Section 2.2.

4.1. Replication with identical thresholds

First, we study the system under the replication with identical discard thresholds policy, 𝜋(𝑑, 𝑇 , 𝑇 ). Note that as the system allows
loss, it is always stable. The next result follows from Corollary 10 by substituting 𝑇1 = 𝑇2.

Corollary 11. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the limiting marginal
workload distribution at the cavity queue at stationarity under 𝜋(𝑑, 𝑇 , 𝑇 ) policy, is given by

𝐹 (𝑤) =

⎧

⎪

⎨

⎪

⎩

𝐹 (0)( 𝜇
𝜇−�̄� − �̄�

𝜇−�̄� 𝑒
−(𝜇−�̄�)𝑤), 0 < 𝑤 ⩽ 𝑇

𝐹 (𝑇 ) + �̄�
𝜇 𝑒

�̄�𝑇𝐹 (0)(𝑒−𝜇𝑇 − 𝑒−𝜇𝑤), 𝑤 > 𝑇

where 𝐹 (0) =
[ (1− �̄�

𝜇 )

1−( �̄�𝜇 )
2𝑒−(𝜇−�̄�)𝑇

]

1{𝜇≠�̄�} + 1
�̄�𝑇+21{𝜇=�̄�} and 𝐹 (𝑇 ) = 𝜇

�̄� (1 − 𝐹 (0)).

Using the above corollary, we now compute the loss probability and conditional mean response time using Theorem 7.

orollary 12. The equilibrium loss probability of a job under discard threshold-based dispatching policy 𝜋(𝑑, 𝑇 , 𝑇 ) with equilibrium
orkload distribution 𝐹 and tail distribution of service time �̄�, is given by 𝑃𝐿 =

(

1 − 𝜇
�̄� (1 − 𝐹 (0))

)𝑑
, where probability of zero workload

(0) is given in Corollary 11.

emark 9. Note that the effective arrival rate at each cavity queue under replication with identical thresholds policy is �̄�1{𝑤⩽𝑇 }.
owever, as the jobs are discarded as soon as the current workload exceeds the threshold 𝑇 , the queues remain stable even when

he arrival rate to the system exceeds the service rate. In particular, the above results says that for �̄� = 𝜇, we get the workload
istribution 𝐹 (𝑤) = �̄�

�̄�𝑇+2𝑤1{0<𝑤⩽𝑇 } +
1−𝑒−�̄�(𝑤−𝑇 )

�̄�𝑇+2 1{𝑤>𝑇 } and the loss probability 𝑃𝐿 =
(

1
�̄�𝑇+2

)𝑑
.

From Theorem 7, we know the conditional mean of limiting response time under 𝜋(𝑑, 𝑇 , 𝑇 ) policy is 𝜏 = 1
1−𝑃𝐿

∫𝑥
(

(𝐹 (𝑇 )+𝑘(𝑥, 𝑇 ))𝑑−
̄ (𝑇 )𝑑

)

𝑑𝑥. Thus, we need the tail distribution 𝑘(𝑥, 𝑇 ) of sojourn time for an undiscarded job to evaluate the mean response time of
the 𝑁 server system under the policy 𝜋(𝑑, 𝑇 , 𝑇 ).

Lemma 13. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, we can find the following
constants under 𝜋(𝑑, 𝑇 , 𝑇 ) policy,

𝐹 (𝑇 ) = 1 − 𝐹 (0)
[ 𝜇
𝜇 − �̄�

− �̄�
𝜇 − �̄�

𝑒−(𝜇−�̄�)𝑇
]

, 𝐹 (0) =
(1 − �̄�

𝜇 )

1 − ( �̄�𝜇 )
2𝑒−(𝜇−�̄�)𝑇

.

he tail distribution 𝑘(𝑥, 𝑇 ) of sojourn time for an undiscarded job at stationarity is given by

𝑘(𝑥, 𝑇 ) =

⎧

⎪

⎨

⎪

⎩

𝐹 (0)𝑒−𝜇𝑥𝑒�̄�𝑇 , 𝑥 ⩾ 𝑇

𝐹 (0)
(

𝜇
𝜇−�̄� 𝑒

−(𝜇−�̄�)𝑥 − �̄�
𝜇−�̄� 𝑒

−(𝜇−�̄�)𝑇
)

, 𝑥 < 𝑇 .

Proof. We know that the service time is exponential and hence the tail service time distribution is �̄�(𝑥) = 𝑒−𝜇(𝑥)+ , where
𝑥)+ = max {𝑥, 0}. Therefore, we can write 𝑘(𝑥, 𝑇 ) = E

[

�̄�(𝑥 −𝑊 )1{𝑊 ⩽𝑇 }
]

= 𝐹 (𝑇 ) − 𝐹 (𝑇 ∧ 𝑥) + 𝑒−𝜇𝑥 ∫ 𝑇∧𝑥
0 𝑒𝜇𝑊 𝑑𝐹 (𝑤). Considering

he two cases when 𝑥 ⩾ 𝑇 and 𝑥 < 𝑇 , we get

𝑘(𝑥, 𝑇 ) =

⎧

⎪

⎨

⎪

⎩

𝑒−𝜇𝑥 ∫ 𝑇∧𝑥
0 𝑒𝜇𝑊 𝑑𝐹 (𝑤), 𝑥 ⩾ 𝑇 ,

𝐹 (𝑇 ) − 𝐹 (𝑥) + 𝑒−𝜇𝑥 ∫ 𝑥
0 𝑒𝜇𝑊 𝑑𝐹 (𝑤), 𝑥 < 𝑇 .

he result follows from the workload distribution 𝐹 given in Corollary 11. □

orollary 14. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the limiting loss
robability and the conditional mean of limiting response time under 𝜋(𝑑, 0, 0) policy are given by

𝑃𝐿 =
(

�̄�
̄

)𝑑
, 𝜏 = 1

̄ 𝑑

𝑑−1
∑

(

𝑑
)

�̄�𝑖𝜇𝑑−𝑖
.

10
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Fig. 2. We plot the conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for the policy 𝜋(𝑑, 𝑇 , 𝑇 ) as a function of the number of replicas 𝑑, for a fixed
iscard threshold 𝑇 = 1.5, the number of servers 𝑁 = 20, service rate 𝜇 = 1, and different values of arrival rate 𝜆 ∈ {0.01, 0.11,… , 0.61}.

Fig. 3. We plot the conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for the policy 𝜋(𝑑, 𝑇 , 𝑇 ) as a function of discard threshold 𝑇 , for the number
f servers 𝑁 = 20, arrival rate 𝜆 = 0.3, service rate 𝜇 = 1, and for the number of replicas 𝑑 ∈ {1, 2, 3, 6, 9}.

In Fig. 2, we plot the behavior of conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for 𝜋(𝑑, 𝑇 , 𝑇 ) as the number of
eplicas 𝑑 increases. We choose the number of servers 𝑁 = 20 and discard threshold 𝑇 = 1.5. Such a study is relevant for determining
he ideal choice for the number of replicas 𝑑 for a given arrival rate. Here are the main observations.

1. Fig. 2(a) shows that there is an optimal number of replicas 𝑑 that minimizes the conditional mean response time for each
arrival rate. In addition, the optimal number of replicas 𝑑 decreases with an increase in arrival rate. This is expected as
when the system load increases with a finite value for both thresholds, the chance of replicas getting canceled increases.
Even though, increasing the number of replicas ensures that more copies of the job are serviced in parallel, it results in an
increase in load at individual servers. Thus, beyond a certain threshold, it can result in an increase in conditional response
time. For reference, we have also plotted the mean response time for the random routing policy for the different arrival rates
in Fig. 2(a).

2. Fig. 2(b) demonstrates that there is again an optimal number of replicas 𝑑 which minimizes the loss probability for each
arrival rate. For a small number of replicas, there is a high probability of the job getting canceled, since we are sampling
fewer servers. However, a larger number of replicas 𝑑 can cause an increase in workload at the servers, which again results
in an increase in the cancellation of replicas. Server workloads increase with the arrival rate, and hence the loss probability
increases with the arrival rate.

3. From the tradeoff presented in Fig. 2(c), it is clear that we can determine a suitable replication factor 𝑑 that minimizes
both the conditional mean response time and the loss probability simultaneously for each value of arrival rate. Further, this
optimal number of replicas decreases with an increase in arrival rate.

In Fig. 3, we plot the behavior of the conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for the 𝜋(𝑑, 𝑇 , 𝑇 ) policy as a
unction of the discard threshold 𝑇 . We choose the number of servers 𝑁 = 20, the normalized arrival rate 𝜆 = 0.3, and the number of
eplicas 𝑑 ∈ {1, 3, 6, 9}. In addition, we compare the performance of the proposed policy with loss probability 𝑃𝐿 to a lossy random
outing random dropping policy, where there is a Poisson arrival of 𝑁𝜆 to a system of 𝑁 independent servers with i.i.d. exponential
ervice times of rate 𝜇. We assume that each arrival is dropped with probability 𝑃𝐿, and a non-dropped arrival is routed to one of
he 𝑁 servers uniformly at random. The mean response time for the random routing random dropping policy is 𝜇

𝜇−𝜆(1−𝑃𝐿)
. We list

our main observations below.
11
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Fig. 4. For each arrival rate 𝜆 ∈ {0.3, 0.4, 0.5}, we plot the tradeoff between conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for the policy 𝜋(𝑑, 𝑇 , 𝑇 )
as a function of discard threshold 𝑇 , for the number of servers 𝑁 = 20, service rate 𝜇 = 1, and for the number of replicas 𝑑 ∈ {1, 2, 3, 6, 9}.

1. From Fig. 3(a), we see that the discard threshold 𝑇 that minimizes the conditional mean response time varies with the choice
of replication factor 𝑑. Since fewer replicas will be discarded as the threshold 𝑇 increases, we expect the loss probability 𝑃𝐿
to decrease with the discard threshold 𝑇 . We verify this behavior in Fig. 3(b).

2. When the discard threshold 𝑇 ∈ [0, 1], we see significant reduction in conditional mean response time under 𝜋(𝑑, 𝑇 , 𝑇 ) when
compared to random routing. This gain comes at the cost of a nominal loss probability 𝑃𝐿 for 𝑑 ⩾ 3. In fact, the maximum
loss probability is observed to be around 0.095 for 𝑑 = 3.

3. The tradeoff curve in Fig. 3(c) helps in determining the best discard threshold 𝑇 for a fixed replication factor 𝑑. It suggests
that with an increase in the number of replicas, decreasing the discard threshold could be beneficial as the corresponding
increase in loss probabilities is nominal. It also provides a comparison with the conditional mean response time for the JSW(𝑑)
policy. For the considered arrival rate, it shows that the proposed policy beats the JSW(𝑑) policy if a loss is allowed and this
loss to be admitted increases with 𝑑. To be specific, the loss percentage to be borne while using the proposed policy in order
to provide a better performance than the JSW(𝑑) policy are 0.65, 1.35, and 1.8 when the number of replicas is 3, 6, and 9
respectively for a normalized arrival rate of 0.3.

4. We also compare the performance of our policy with the random routing random dropping policy described earlier. From
Figs. 3(a) and 3(c), we can see that 𝜋(𝑑, 𝑇 , 𝑇 ) outperforms this policy while maintaining the same loss probability.

Fig. 4 presents similar plots as Fig. 3(c) but for different normalized arrival rates. They show that the loss probability to be
dmitted by the proposed policy in order to provide a competitive performance to that of the JSW(𝑑) policy increases with the
ncrease in arrival rate. In Fig. 5, we study the behavior of conditional mean response time 𝜏 and the loss probability 𝑃𝐿 for 𝜋(𝑑, 𝑇 , 𝑇 )
s the normalized arrival rate 𝜆 increases. We choose the number of servers 𝑁 = 20, discard threshold 𝑇 = 1.5, and the number of
eplicas 𝑑 ∈ {1, 3, 6, 9}. We list our observations and inferences below which are similar to other discard thresholds.

1. Fig. 5(a) shows that the conditional mean response time for 𝜋(𝑑, 𝑇 , 𝑇 ) policy for 𝑑 > 1 is uniformly smaller than random
routing for all arrival rates. These performance improvements come at the cost of some nominal loss probability for low
arrival rates.

2. Since the 𝜋(𝑑, 𝑇 , 𝑇 ) policy admits loss, we observe from Fig. 5(a) that the conditional response time remains bounded even
for higher arrival rates. However, this property results in a non-trivial loss probability for higher arrival rates, as seen in
Fig. 5(b).

3. From the tradeoff in Fig. 5(c), we again infer that as the arrival rate increases, it is wiser to switch to a lower number of
replicas.

4. As observed earlier, 𝜋(𝑑, 𝑇 , 𝑇 ) can be seen to outperform the random routing with random dropping policy (see Figs. 5(a)
and 5(c)).

emark 10. As mentioned earlier, this policy is to be adopted only in applications that can tolerate a certain amount of loss such
s streaming applications. In addition, the optimal value of policy parameters 𝑑 and 𝑇 depends on the application, especially on the
inimum tolerable loss probability for the given application. We also note that joint optimization of these parameters is difficult

o perform analytically. However, in practice, one can always use the derived expressions to find the best operating point through
pproaches such as grid search.

.2. Replication with no loss

We next study the 𝑁 server system under the replication with no loss policy. Specifically, we assume that the primary discard
hreshold 𝑇1 = ∞, and the secondary discard threshold 𝑇2 < 𝑇1 is finite. In this case, the system is stable if and only if 𝜆 < 𝜇. First,
e obtain the following result from Corollary 10 by substituting 𝑇 = ∞.
12
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Fig. 5. We plot the conditional mean response time 𝜏 and the loss probability 𝑃𝐿 as the normalized arrival rate 𝜆 increases under policy 𝜋(𝑑, 𝑇 , 𝑇 ) for the
number of servers 𝑁 = 20, discard threshold 𝑇 = 1.5, service rate 𝜇 = 1, and the number of replicas 𝑑 ∈ {1, 2, 3, 6, 9}.

orollary 15. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the stationary
workload distribution at the cavity queue under 𝜋(𝑑,∞, 𝑇2) policy exists only for 𝜆 < 𝜇, and is given by

𝐹 (𝑤) =

⎧

⎪

⎨

⎪

⎩

𝐹 (0)( 𝜇
𝜇−�̄� − �̄�

𝜇−�̄� 𝑒
−(𝜇−�̄�)𝑤), 𝑤 ⩽ 𝑇2

𝐹 (𝑇2) +
�̄�

𝜇−𝜆𝐹 (0)𝑒(�̄�−𝜆)𝑇2 (𝑒−(𝜇−𝜆)𝑇2 − 𝑒−(𝜇−𝜆)𝑤), 𝑤 > 𝑇2,

here 𝐹 (0) =
(1− 𝜆

𝜇 )(1−
�̄�
𝜇 )

(1− 𝜆
𝜇 )+

�̄�
𝜇 (

𝜆
𝜇 −

�̄�
𝜇 )𝑒

−(𝜇−�̄�)𝑇2
.

Remark 11. Note that the loss probability is 0 under this policy. Then, from Theorem 7, we have

𝜏 = ∫𝑥

[

𝑘(𝑥,∞)(𝐹 (𝑇2) + 𝑘(𝑥, 𝑇2))𝑑−1
]

𝑑𝑥. (8)

The next lemma provides us with the tail distributions 𝑘(𝑥, 𝑇2), 𝑘(𝑥,∞), and 𝐹 (𝑇2) that enable us to compute the stationary mean
response time 𝜏 under the scheduling policy 𝜋(𝑑,∞, 𝑇2). Note that, we provide the results only for the regime of arrival rates where
the system is stable, that is when 𝜆 < 𝜇.

Lemma 16. For a stable 𝑁 server system with i.i.d. exponential service times of rate 𝜇 and Poisson arrivals of rate 𝑁𝜆, the stationary
tail distribution of sojourn time 𝑘(𝑥, 𝑇2) for an undiscarded job under the 𝜋(𝑑,∞, 𝑇2) policy is

𝑘(𝑥, 𝑇2) =

⎧

⎪

⎨

⎪

⎩

𝐹 (0)𝑒−𝜇𝑥𝑒�̄�𝑇2 , 𝑥 ⩾ 𝑇2

𝐹 (0)
[

𝜇
𝜇−�̄� 𝑒

−(𝜇−�̄�)𝑥 − �̄�
𝜇−�̄� 𝑒

−(𝜇−�̄�)𝑇2
]

, 𝑥 < 𝑇2.

he probability mass 𝐹 (0) =
[

�̄�
(

1−𝑒−(𝜇−�̄�)𝑇2
𝜇−�̄� + 𝑒−(𝜇−�̄�)𝑇2

𝜇−𝜆

)

+ 1
]−1

, and we can find the limit 𝑘(𝑥,∞) as

𝑘(𝑥,∞) = 𝑘(𝑥, 𝑇2) +

⎧

⎪

⎨

⎪

⎩

𝐹 (0)�̄�𝑒(�̄�−𝜆)𝑇2𝑒−𝜇𝑥
[

𝑒𝜆𝑥−𝑒𝜆𝑇2
𝜆 + 𝑒𝜆𝑥

𝜇−𝜆

]

, 𝑥 ⩾ 𝑇2
�̄�

𝜇−𝜆𝐹 (0)𝑒−(𝜇−�̄�)𝑇2 , 𝑥 < 𝑇2.

Proof. Since the service time is exponentially distributed with rate 𝜇, we get �̄�(𝑥) = 𝑒−𝜇(𝑥)+ . Therefore, we can write the
function 𝑘(𝑥, 𝑇 ) = E

[

�̄�(𝑥 −𝑊 )1{𝑊 ⩽𝑇 }
]

= 𝐹 (𝑇 ) − 𝐹 (𝑇 ∧ 𝑥) + 𝑒−𝜇𝑥 ∫ 𝑇∧𝑥
0 𝑒𝜇𝑤𝑑𝐹 (𝑤). Setting 𝑇 = ∞ in the above equation, we get

(𝑥,∞) = 𝐹 (∞) − 𝐹 (𝑥) + 𝑒−𝜇𝑥 ∫ 𝑥
0 𝑒𝜇𝑤𝑑𝐹 (𝑤). Substituting the workload distribution 𝐹 from Corollary 15, we get the result. □

We compare the mean response time 𝜏 for jobs under policy 𝜋(𝑑,∞, 𝑇2) in Fig. 6 for different number of replicas 𝑑, when the
number of servers 𝑁 = 20 and the exponential service rates of jobs is 𝜇 = 1. We plot 𝜏 as a function of normalized arrival rate 𝜆 in
Fig. 6(a), where we select a secondary discard threshold 𝑇2 = 2 which is twice the mean service time of a job. We plot 𝜏 as a function
of secondary discard threshold 𝑇2 in Fig. 6(b), where we choose the normalized arrival rate 𝜆 = 0.3. We list out the observations in
the following.

1. Fig. 6(a) shows that the lower replication factor 𝑑 is preferable for larger arrival rates 𝜆. This is due to the fact that system
load increases due to a larger number of redundant replicas, adversely impacting the mean response time performance at
high arrival rates.
13
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Fig. 6. We plot the mean response time 𝜏 for the policy 𝜋(𝑑,∞, 𝑇2) for the number of servers 𝑁 = 20, service rate 𝜇 = 1, and the number of replicas 𝑑.

Fig. 7. We plot the mean response time 𝜏 as a function of arrival rate 𝜆 for 𝜋(𝑑,∞, 𝑇2) policy for a fixed number of servers 𝑁 = 20, service rate 𝜇 = 1, and
umber of replicas 𝑑 ∈ {1, 2, 3, 6, 9}.

2. Fig. 6(b) shows the existence of an optimal discard threshold 𝑇2 for a fixed number of replicas 𝑑, and this optimal threshold
decreases with an increase in the number of replicas.

o conclude, as the normalized arrival rate increases, it is preferable to decrease the number of replicas while choosing an
ppropriate value for the secondary discard threshold.

emark 12. The 𝜋(𝑑,∞,∞) policy is a special case of 𝜋(𝑑, 𝑇 , 𝑇 ) for 𝑇 = ∞ as well as of 𝜋(𝑑,∞, 𝑇2) for 𝑇2 = ∞. We note that no
obs are lost in such a system and therefore, the loss probability is zero. This is an r.w.c. policy and has been studied in [55]. Under
his policy, the arrival rate to any queue is �̄�, and hence the system is stable if only if �̄� < 𝜇. Using Lemma 13 it can be shown that
𝑘(𝑥,∞) = 𝑒−(𝜇−�̄�)𝑥 for this policy under stability. Using this, the mean response time for exponential service time distribution can be
ound to be 𝜏 = 1

(𝜇−�̄�)𝑑 .

We plot the mean response time 𝜏 for policy 𝜋(𝑑,∞,∞) as a function of arrival rate 𝜆 in Fig. 7(a), for the number of servers
𝑁 = 20, service rate 𝜇 = 1, and different number of replicas 𝑑. The figure is indicative of the stability condition 𝜆 < 1

𝑑 for this
policy. The performance gain from using larger values of 𝑑 is also evident, but this comes at the cost of requiring a stricter stability
ondition. Of course, the clear advantage of this policy over random routing (𝑑 = 1) is limited to lower arrival rates. At higher

arrival rates 𝜆, the fact that the redundant replicas cannot be canceled adversely impacts the system performance. For better clarity,
e also provide the percentage improvement of the mean response time of the policy 𝜋(𝑑,∞,∞) over random routing policy across
14

stable regions in Table 1.
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Table 1
Percentage improvement in the mean response time of the policy 𝜋(𝑑,∞,∞) over random routing
with the number of servers 𝑁 = 20 and service rate 𝜇 = 1. See Fig. 7(a).
Replicas 𝜆 = 0.1 𝜆 = 0.15 𝜆 = 0.2 𝜆 = 0.25

d = 2 43.6% 39.18% 33.19% 24.79%
d = 3 57% 48.26% 32.91% −1%
d = 4 62.29% 46.4% −1.91% NA

From the above studies, we observe that the introduction of secondary replicas adds to the system load and deteriorates the
ystem performance for high arrival rates. Therefore, in the following section, we study a policy where secondary replications occur
nly on idle servers.

.3. Replication on idle secondary servers

As mentioned above, we next study the special case of 𝜋(𝑑,∞, 𝑇2) policy where the secondary discard threshold 𝑇2 = 0. In this
ase, the secondary replicas are added only if the sampled secondary servers are idle. Here, we would like to point out a seemingly
imilar policy which is the Redundant to idle queue (RIQ(𝑑)) [53]. We note that, unlike our policy which utilizes absolutely no
eedback information, the RIQ(𝑑) policy utilizes information about the availability of idle servers. If there is no more than a single
dle server, RIQ(𝑑) policy is identical to the Join Threshold Queue (JTQ(𝑑, 𝑇 )) [22, Section 6.6] with threshold 𝑇 set to zero which
e discuss in Section 5. Although the RIQ(𝑑) policy is studied under a more general service model, the analysis is only approximate
nd no closed-form expressions are provided for the performance metrics under this general model. On the other hand, we provide
losed-form expressions for mean workload under our proposed policy with i.i.d. exponential service times. In addition, we have
lso provided implicit expressions for general i.i.d. service times.

The replication on idle secondary servers policy that we discuss here is a special case of replication with no loss policy and we
an obtain the limiting mean response time directly from the previously obtained result.

emma 17. The limiting mean response time of any job under the dispatching policy 𝜋(𝑑,∞, 0) when service times of each job is
.i.d. exponential with rate 𝜇 and arrivals are Poisson with rate 𝑁𝜆, is given by

𝜏 =
𝑑−1
∑

𝑛=0

(

𝑑 − 1
𝑛

)

𝐹 (0)𝑑−1−𝑛𝐹 (0)𝑛+1
[

𝑑𝜇𝜆
(𝜇 − 𝜆)(𝜇(𝑛 + 1) − 𝜆)𝜆

−
𝜆(𝑑 − 1)
𝜆𝜇(𝑛 + 1)

]

, (9)

or 𝜆 < 𝜇, 𝐹 (0) = 𝜇−𝜆
𝜇+𝜆(𝑑−1) , and 𝐹 (0) = 1 − 𝐹 (0).

roof. Substituting 𝑇2 = 0 in Lemma 16 and substituting the terms in (8) gives the result. □

emark 13. To better understand the behavior of 𝜋(𝑑,∞, 0) policy, we can simplify the expression for tail response time
distribution for the cavity queue under this policy with 𝑁𝜆 Poisson arrivals and i.i.d. exponential service rate 1 as �̄�𝑑 (𝑥) =

𝑘(𝑥,∞)(𝐹 (0) + 𝑘(𝑥, 0))𝑑−1 = 𝑒−𝑥
(

1 + 𝑑(𝑒𝜆𝑥−1)
(𝑑−1)𝜆+1

)(

1 − (1−𝜆)(1−𝑒−𝑥)
(𝑑−1)𝜆+1

)𝑑−1
.

The next Lemma shows that the response time under 𝜋(𝑑,∞, 0) policy is stochastically decreasing in 𝑑. Since random routing
corresponds to 𝜋(𝑑,∞, 0) policy for 𝑑 = 1, this Lemma implies that the performance of the 𝜋(𝑑,∞, 0) policy can never be worse than
that of random routing.

Lemma 18. The response time under the policy 𝜋(𝑑,∞, 0) with 𝑁𝜆 Poisson arrivals and i.i.d. exponential service rate 1 is stochastically
decreasing in 𝑑.

Proof. In order to show the stochastic ordering, it suffices to show that the tail response time follows �̄�𝑑+1(𝑥) ⩽ �̄�𝑑 (𝑥) for all
𝑥 ∈ R+ and 𝑑 ∈ N. To this end, we first observe from Remark 13 that �̄�𝑑 (𝑥) = 𝑒−𝑥𝑒𝑓 (𝑑,𝑥) where the function 𝑓 ∶ [1,∞)×R+ → R can
be defined for each 𝑦 ⩾ 1 and 𝑥 ∈ R+ as

𝑓 (𝑦, 𝑥) ≜ (𝑦 − 1) ln(𝑦𝜆 + (1 − 𝜆)𝑒−𝑥) + ln(𝑦𝑒𝜆𝑥 − (𝑦 − 1)(1 − 𝜆)) − 𝑦 ln(𝑦𝜆 + 1 − 𝜆). (10)

We will show that 𝑓 (𝑦, 𝑥) is nonincreasing in 𝑦 ∈ [1,∞) for all 𝑥 ∈ R+, and hence the result follows. It suffices to show that the first
partial derivative of 𝑓 with respect to 𝑦 is upper bounded by zero. To this end, we write

𝜕𝑓 (𝑦, 𝑥)
𝜕𝑦

= 𝑒𝜆𝑥 − 1 + 𝜆
𝑦(𝑒𝜆𝑥 − 1 + 𝜆) + 1 − 𝜆

+
(𝑦 − 1)𝜆

𝑦𝜆 + (1 − 𝜆)𝑒−𝑥
−

𝑦𝜆
𝑦𝜆 + 1 − 𝜆

+ ln
(

1 −
(1 − 𝜆)(1 − 𝑒−𝑥)

𝑦𝜆 + 1 − 𝜆

)

.

We recall that (𝑒𝜆𝑥 − 1) ⩽ 𝜆(𝑒𝑥 − 1) for all 𝜆 ∈ [0, 1] and 𝑥 ∈ R+, 𝑎
𝑦𝑎+1−𝜆 ⩽ 𝑎0

𝑦𝑎0+1−𝜆
for 0 < 𝑎 ⩽ 𝑎0, and ln(1 − 𝑥) ⩽ −𝑥 for all 𝑥 ∈ [0, 1],

to upper bound the partial derivative of 𝑓 with respect to 𝑦 as

𝜕𝑓 (𝑦, 𝑥) ⩽ 𝑦𝜆
−

𝑦𝜆 + (1 − 𝜆)(1 − 𝑒−𝑥)
= −

(1 − 𝜆)2𝑒−𝑥(1 − 𝑒−𝑥) ⩽ 0. □
15

𝜕𝑦 𝑦𝜆 + (1 − 𝜆)𝑒−𝑥 𝑦𝜆 + 1 − 𝜆 (𝑦𝜆 + 1 − 𝜆)(𝑦𝜆 + (1 − 𝜆)𝑒−𝑥)
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Table 2
Percentage improvement in mean response time of the policy 𝜋(𝑑,∞, 0) over random routing with
the number of servers 𝑁 = 20 and service rate 𝜇 = 1. See Fig. 7(b).
Replicas 𝑑 𝜆 = 0.2 𝜆 = 0.4 𝜆 = 0.6 𝜆 = 0.8

3 43.14% 22.02% 7.9% 1.74%
6 57.23% 29.30% 10.37% 2.22%
9 62.33% 31.97% 11.22% 2.39%
12 64.96% 33.35% 11.66% 2.47%

Fig. 8. The mean response time 𝜏 and the mean workload E[𝑊 ] at the cavity queue as a function of normalized arrival rate 𝜆 for the policies 𝜋(𝑑,∞, 0), JIQ(𝑑),
SW(𝑑), JSQ(𝑑), c.o.c.(𝑑) for exponential service distribution of rate 𝜇 = 1, the number of servers 𝑁 = 20 and the number of replicas 𝑑 = 4.

When the system is lightly loaded, we expect that the replicas of an arriving job will find most servers idle. Thus, all 𝑑 replicas get
erved by 𝑑 parallel servers, leading to improvement in the mean response time performance. However, under heavy traffic regimes,
his policy behaves similarly to the random routing policy where only the primary replica gets served, while all secondary replicas
re likely to get canceled. In this regime, the policies with queue state information can perform better, although this improvement in
erformance comes at the cost of procurement of information. We plot the mean response time 𝜏 for policy 𝜋(𝑑,∞, 0) as a function
f arrival rate 𝜆 in Fig. 7(b), for the number of servers 𝑁 = 20, service rate 𝜇 = 1, and different number of replicas 𝑑. Here, are the
ain observations.

1. The mean response time for 𝜋(𝑑,∞, 0) is uniformly better for larger number of replicas 𝑑, and the gains are highest for lower
arrival rates.

2. Here, the additional replicas are executed only if the server is idle in this policy. Therefore, a higher choice of replication
factor 𝑑 does not increase the system load significantly.

3. For moderate to higher values of arrival rates, all the different choices of the number of replicas have a similar performance
under the stability region of 𝜆 < 𝜇, independent of the number of replicas 𝑑.

e also provide the percentage improvement of the conditional mean response time of the policy 𝜋(𝑑,∞, 0) over random routing
olicy for various values of normalized arrival rate in Table 2.

We note from the numerical comparisons that 𝜋(𝑑,∞, 0) policy offers a superior performance among all 𝜋(𝑑,∞, 𝑇2) policies. It is
lso clear that 𝜋(𝑑,∞, 0) policy performs better than random routing for any value of 𝑑. We now proceed to study the performance
f this policy with respect to some of the best-known load-balancing policies in the literature.

. Comparison with feedback-based policies

As a benchmark, we compare the performance of the proposed 𝜋(𝑑,∞, 0) policy to some popular policies like redundancy-𝑑
ancel on start (c.o.s.), redundancy-𝑑 cancel on complete (c.o.c.), JSQ(𝑑), and Join Threshold Queue (JTQ(𝑑, 𝑇 )) [22, Section 6.6]
hat have information feedback and/or synchronized cancellation of replicas. We choose to set threshold 𝑇 to 0 in the JTQ(𝑑, 𝑇 )
olicy where it is identical to the JIQ(𝑑) policy. It is easy to see that the c.o.s.(𝑑) policy is identical to the JSW(𝑑) policy. For fairness
f comparison, we are comparing only no-loss policies, in which case, the conditional mean response time is the mean response time
or any job. We first present analytical comparison between c.o.s.(𝑑) and c.o.c.(𝑑) followed by the comparison between c.o.c.(𝑑)
nd the proposed 𝜋(𝑑,∞, 0) policy. Then, we proceed to present the comparison through simulation studies. The unavailability of
losed-form expressions for some of the existing policies under comparison and the complicated expressions for the mean response
ime distributions restrict us from providing a complete analytical comparison between all the policies considered.

emark 14. For a large 𝑁 server system with a Poisson arrival rate of 𝑁𝜆, i.i.d. exponential service times of mean 1, assuming
symptotic independence of marginal workloads at stationarity, the limiting tail response time distribution for all 𝑥 ∈ R , under
16
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replication-𝑑 for 𝑑 ⩾ 2 with c.o.s. [4, Theorem 5.3] and c.o.c. [18, Theorem 6], is

�̄�c.o.s.(𝑑)(𝑥) =
1

(𝜆𝑑 + (1 − 𝜆𝑑 )𝑒(𝑑−1)𝑥)
1

𝑑−1

, �̄�c.o.c.(𝑑)(𝑥) =
1

(𝜆 + 𝑒(𝑑−1)𝑥(1 − 𝜆))
𝑑

𝑑−1

.

We next show that cancel-on-complete(𝑑) always outperforms cancel-on-start(𝑑) and 𝜋(𝑑,∞, 0) policy for i.i.d. exponential service.
In particular, we show that �̄�c.o.c.(𝑑)(𝑥) ⩽ �̄�c.o.s.(𝑑)(𝑥) and �̄�c.o.c.(𝑑)(𝑥) ⩽ �̄�𝜋(𝑑,∞,0)(𝑥) for all 𝑥 ∈ R+ and number of replicas 𝑑 ⩾ 2.

Proposition 19. For an 𝑁 server system with a Poisson arrival rate of 𝑁𝜆, i.i.d. exponential service times of mean 1, the stationary
response time of c.o.c.(𝑑) policy is always stochastically dominated by that of c.o.s.(𝑑) policy. That is, �̄�c.o.c.(𝑑)(𝑥) ⩽ �̄�c.o.s.(𝑑)(𝑥) for all
𝑥 ∈ R+ and 𝑑 ⩾ 2.

Proof. Let 𝑥 ∈ R+ and 𝑑 ⩾ 2. From Remark 14, we observe that we only need to show 𝜆𝑑 + (1 − 𝜆𝑑 )𝑒(𝑑−1)𝑥 ⩽ (𝜆 + 𝑒(𝑑−1)𝑥(1 − 𝜆))𝑑 .
However, it follows from the observation (𝜆 + 𝑒(𝑑−1)𝑥(1 − 𝜆))𝑑 ⩾ 𝜆𝑑 + 𝑒𝑑(𝑑−1)𝑥(1 − 𝜆)𝑑 ⩾ 𝜆𝑑 + 𝑒(𝑑−1)𝑥(1 − 𝜆)𝑑 . □

Proposition 20. For an 𝑁 server system with a Poisson arrival rate of 𝑁𝜆, i.i.d. exponential service times of mean 1, the response time
of c.o.c.(𝑑) policy is stochastically dominated by that of 𝜋(𝑑,∞, 0) policy. That is, �̄�c.o.c.(𝑑)(𝑥) ⩽ �̄�𝑑 (𝑥) for all 𝑥 ∈ R+ and 𝑑 ⩾ 2.

Proof. From Remarks 13 and 14, it suffices to show that for all 𝑥 ∈ R+

1

(𝜆 + 𝑒(𝑑−1)𝑥(1 − 𝜆))
𝑑

𝑑−1

⩽ 𝑒−𝑥
(

1 +
𝑑(𝑒𝜆𝑥 − 1)
(𝑑 − 1)𝜆 + 1

)(

1 −
(1 − 𝜆)(1 − 𝑒−𝑥)
(𝑑 − 1)𝜆 + 1

)𝑑−1
.

In order to prove this, we consider a function 𝑔 ∶ [2,∞) × R+ → R defined as

𝑔(𝑦, 𝑥) ≜ −𝑥 + ln(𝑦(𝑒𝜆𝑥 − 1) + 𝑦𝜆 + 1 − 𝜆) + (𝑦 − 1) ln(𝑦𝜆 + (1 − 𝜆)𝑒−𝑥) − 𝑦 ln(𝑦𝜆 + 1 − 𝜆) +
𝑦

𝑦 − 1
ln(𝜆 + 𝑒(𝑦−1)𝑥(1 − 𝜆)).

We observe that 𝑔(𝑦, 0) = 0. Then, we obtain the required result by showing that 𝑔(𝑦, 𝑥) is increasing in 𝑥 for all 𝑥 ∈ R+. To this end,
we compute the first partial derivative of 𝑔(𝑦, 𝑥) with respect to 𝑥, and write

𝜕𝑔(𝑦, 𝑥)
𝜕𝑥

= −(1 − 𝜆) +
𝜆(1 − 𝜆)(𝑦 − 1)

𝑦(𝑒𝜆𝑥 − 1) + 𝑦𝜆 + 1 − 𝜆
−

(𝑦 − 1)(1 − 𝜆)𝑒−𝑥

𝑦𝜆 + (1 − 𝜆)𝑒−𝑥
+

𝑦(1 − 𝜆)𝑒(𝑦−1)𝑥

𝜆 + (1 − 𝜆)𝑒(𝑦−1)𝑥
.

We use the fact that 𝑒𝜆𝑥 − 1 ⩽ 𝜆(𝑒𝑥 − 1) for all 𝜆 ∈ [0, 1] and 𝑥 ∈ R+, to observe that 𝑔(𝑦, 𝑥) is increasing in 𝑥 as

1
(1 − 𝜆)

𝜕𝑔(𝑦, 𝑥)
𝜕𝑥

⩾ (𝑦 − 1) −
(𝑦 − 1)(1 − 𝜆)𝑒−𝑥

𝑦𝜆 + (1 − 𝜆)𝑒−𝑥
+

𝑦𝜆(𝑒(𝑦−1)𝑥 − 1)
𝜆 + (1 − 𝜆)𝑒(𝑦−1)𝑥

=
𝑦(𝑦 − 1)𝜆

𝑦𝜆 + (1 − 𝜆)𝑒−𝑥
+

𝑦𝜆(𝑒(𝑦−1)𝑥 − 1)
𝜆 + (1 − 𝜆)𝑒(𝑦−1)𝑥

⩾ 0. □

Although closed-form expressions for mean response time for c.o.s.(𝑑) and c.o.c.(𝑑) policies can be found in [4, Theorem 5.4]
and [18, Theorem 6] respectively, we do not have closed-form expressions for the mean response time of JIQ(𝑑) and JSQ(𝑑) policies
nder the given settings. The comparison of these policies against the proposed policy via numerical simulations is presented next.
ll the experiments reported in this section have been run for 105 iterations with the number of servers 𝑁 = 20 and the number of
eplicas 𝑑 = 4.

In Fig. 8(a), we plot the mean response time 𝜏 for JIQ(𝑑), JSW(𝑑), JSQ(𝑑) and c.o.c.(𝑑) policies against the replicate on idle
econdary servers (𝜋(𝑑,∞, 0)) policy when the service times are i.i.d. exponentially distributed with rate 1. From the figure, we
bserve that the mean response time for the 𝜋(𝑑,∞, 0) policy for low arrival rates is lower than that of JIQ(𝑑), JSW(𝑑), and JSQ(𝑑)
olicies. Although at higher arrival rates, the JIQ(𝑑), JSW(𝑑), and JSQ(𝑑) policies perform better than our policy, this performance
mprovement comes at the price of information exchange between the servers and dispatcher. In addition, we observe that the
ancel-on-complete policy performs the best for all arrival rates. This is due to the fact that cancel on complete is equivalent to
ater filling at the 𝑑 sampled servers for i.i.d. exponential service [45], and the water filling policy has an additional degree of

reedom to divide jobs arbitrarily on different servers. It should also be kept in mind that c.o.c. policy requires strict coordination
nd communication among the servers to achieve this performance. Moreover, we will see in the next section the performance
mprovement of c.o.c. policy degrades for non-exponential service distributions like Weibull and Pareto and it further suffers from
tability issues.

We now provide a comparison of the expected workloads at the cavity queues in each of these policies in Fig. 8(b). Compared
o other policies, the expected workload at the individual queues is higher in our policy. This is expected as a larger number of
eplicas are processed per job under our policy, unlike the other policies that perform coordinated cancellation of additional replicas.
owever, the extra workload is not huge in the low arrival rate regime. Also, to be noted is that our policy provides a performance

mprovement in this regime in spite of the increment in the average workload. In fact, the increment of the workload is caused by
he additional redundant replicas and it is this additional redundancy that helps in bringing down the overall response time of the
ob.

.1. General service time distribution

We see from our previous analysis that obtaining closed-form expressions for the mean response time for our policy can
17

e difficult when service times are not exponentially distributed. In this section, we provide observations on numerical studies
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Fig. 9. The mean response time as a function of normalized arrival rate 𝜆 for the policies JIQ(𝑑), JSW(𝑑), JSQ(𝑑), c.o.c.(𝑑) with respect to the 𝜋(𝑑,∞, 0) policy,
or the number of servers 𝑁 = 20 and the number of replicas 𝑑 = 4.

onducted on our policy under non-exponential service time distributions. In [22], the authors discuss the analysis for several
orkload-dependent load-balancing policies when job sizes follow a general distribution. However, closed-form expressions are

acking and the solution is determined numerically. Further, the authors of [56] provide a method to derive the expected workload
t the cavity queue of the 𝑁 server system when the jobs are serviced only when the workload at arrival is less than a threshold and
hen service times are i.i.d. and follow a general distribution. They provide expressions, implicit in some cases, for the expected
orkload when the service times are deterministic or follow phase type, Erlang, or exponential distribution. This setting matches our

pecial case of 𝜋(𝑑, 𝑇 , 𝑇 ) policy and their expressions hold valid for this special case. However, the computation of mean response
ime requires numerical evaluations. Therefore, we do not adopt this methodology in our work and we provide only simulation
esults for the comparison of our policy under non-exponential service time distributions.

The mean response time 𝜏 of JIQ(𝑑), JSW(𝑑), JSQ(𝑑) and c.o.c.(𝑑) policies against 𝜋(𝑑,∞, 0) policy is plotted as a function of
ormalized arrival rate 𝜆 in Figs. 9(a)–9(c) when the service times follow Weibull distribution with scale parameter 1 and shape
arameter 5, Pareto distribution with scale parameter 0.83 and shape parameter 5.5, and uniform distribution in the range [0.5, 1.5],
espectively. We observe that except for the c.o.c.(𝑑) policy, the behavior of the remaining policies remains similar to that in Fig. 8(a)
or the exponential distribution case. We observe that the response time performance of c.o.c.(𝑑) policy degrades and the stability
egion shrinks with the change in service time distribution. The 𝜋(𝑑,∞, 0) policy achieves almost the same performance as c.o.c.

without any coordination or communication requirements in the low to medium arrival rate regimes under Weibull and Pareto
distributions. From moderate to high arrival rate regime, the c.o.c. policy tends to get unstable and the proposed policy is superior
to c.o.c.(𝑑) in this regime for non-exponential service distributions. This plot also demonstrates that the performance improvement
of the proposed policy against feedback-based policies is not an artifact of choosing exponential service times.

6. Discussion & future work

In this work, we consider load-balancing policies without feedback and propose a policy based on timed replicas. For every replica
that is created, the policy sends cancellation instructions to servers along with the replica. This instruction specifies an expiry time
for the replica and thereby prevents potentially wasteful replicas from being executed. In this work, we have shown that this policy
and several of its special cases, offer a marked improvement over the random routing policy for a suitable choice of parameters
such as normalized arrival rate 𝜆 and number of replicas 𝑑. We also observed that under certain parameter regimes, the proposed
dispatch policy has better performance when compared to feedback-based policies. We analyze this policy using the cavity queue
approach and the assumption of asymptotic independence of queues at stationarity. Using the MGF approach, we characterize the
limiting mean conditional response time of an undiscarded job and the limiting loss probability for the proposed policy. Our results
partially address the two questions we raised in the introduction.

1. We have proposed a load-balancing policy without any server feedback that outperforms existing policies with the server
feedback in certain operating regimes.

2. The existing load balancing policies with server feedback information are not optimally utilizing the feedback information,
since there exists a no-feedback policy that outperforms them in certain operating regimes.

A key assumption in most of our analysis has been the exponential service requirements for jobs, and that the job replicas require
i.i.d. service time. We believe that relaxing these assumptions and analyzing the proposed 𝜋(𝑑, 𝑇1, 𝑇2) policy for more general service
time distributions and for the case of identical replicas is an interesting open direction. One can think of more nuanced policies.
One such policy that does not require any server feedback, would replicate only short jobs if the service requirement of a job is
known at arrival. One can also think of incorporating feedback in our proposed policy, and consider replicating only if the primary
copy is discarded, or decide the number of replicas based on the queue state. Further, while the performance of 𝜋(𝑑, 𝑇1, 𝑇2) is good
18

for low values of normalized arrival rates 𝜆, it would be interesting to investigate if there exist other zero feedback policies that
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are better than feedback-based policies even for higher values of normalized arrival rates 𝜆. Another interesting direction is to find
load-balancing policies that minimize the limiting mean of response times, and policies that can utilize server feedback in a more
efficient way. Finally, we plan to study the use case for such no-feedback policies in an (𝑛, 𝑘) fork-join system, where a parallelizable
job is distributed across 𝑛 servers and is considered completed when a certain fraction of jobs are executed.
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Appendix A. Proof sketch for Proposition 5

This proof for asymptotic independence of server workload during any finite time horizon, is based on the results provided
in [44, Section 7]. Let the 𝑁 dimensional workload process in the 𝑁 server system be denoted by 𝑊 𝑁 (𝑡) ∈ R𝑁 for 𝑡 ⩾ 0 under the
given load balancing policy. The workload at queue 𝑘 at time 𝑡 is denoted by 𝑊 𝑁,(𝑘)(𝑡). We assume that all queues start with zero

orkloads, and hence are mutually independent. Let 𝑀𝑁 be the measure of the workloads over the Borel sets (R𝑁 ) over R𝑁 . Also,
et 𝑀𝑁,𝑁 ′ denote the projection of 𝑀𝑁 onto the first 𝑁 ′ queues.

Recall that the replica service times are assumed to be independent across the queues and the arrival at each queue follows a
oisson distribution with rate 𝜆𝑑. At any arrival instant, the set of 𝑑 servers selected by the servers is referred to as the selection
et corresponding to the arrival. In the load balancing policy studied in [44], whether a newly arrived job is accepted at a certain
ueue or not depends on the workloads of the other servers in the selection set. However, in our policy whether a job gets accepted
t a queue or not depends only on the current workload at that queue. That is, suppose that the latest arrival to queue 𝑛 before
ime 𝑡 happened at time 𝑡′.

Under the policy of threshold-based cancellation, whether the job joins the queue 𝑘 at time 𝑡′ or not depends only on whether
𝑁,(𝑘)(𝑡′) is less than the preset threshold or not. That is, 𝑊 𝑁,(𝑘)(𝑡) depends only on 𝑊 𝑁,(𝑘)(𝑡′) and service time of the arriving job.

ecall that we assumed the workloads at all queues to be independent initially. However, if the job gets accepted at more than one
ueue in the corresponding selection set, then the correlated arrival of jobs in these queues will make the workloads dependent.

Let us introduce a measure 𝑀𝑇 ,∞,𝑁 ′ over R𝑁 ′ which is the 𝑁 ′ fold product of 𝑀𝑇 ,∞,1. We need to prove that over a finite time
orizon, the joint workload measure of any 𝑁 ′ queues converges to the i.i.d. measure 𝑀𝑇 ,∞,𝑁 ′ asymptotically in the number of
ueues. We consider the convergence of the measures in total variation distance. More precisely, we need to prove that as 𝑁 → ∞,
im𝑁→∞ sup𝐴∈(R𝑁′ )

|

|

|

𝑀𝑇 ,𝑁,𝑁 ′ (𝐴) −𝑀𝑇 ,∞,𝑁 ′ (𝐴)||
|

= 0. Next, we outline the main steps in the proof.
Step 1: Construction of an influence process and the number of influencing servers.
Consider a reversed time process 𝐼𝑁,𝑁 ′ (𝑇 − 𝑡) for 𝑡 ∈ [0, 𝑇 ] constructed as given next. We define 𝐼𝑁,𝑁 ′ (𝑇 ) ≜

{

1, 2,… , 𝑁 ′}. Now,
if there is a potential arrival at time 𝑇 − 𝑡 at a queue 𝑛 ∈ 𝐼𝑁,𝑁 ′ ((𝑇 − 𝑡)−), then 𝐼𝑁,𝑁 ′ (𝑇 − 𝑡) ≜ 𝐼𝑁,𝑁 ′ ((𝑇 − 𝑡)−) ∪ 𝑆 where 𝑆 is the
election set of 𝑑 servers selected by the new arrival. Note that the knowledge of service times and intersecting selection sets at
ach arrival instant can completely describe the workload process 𝑊 𝑁 (𝑡). We define the number of influencing servers at time 𝑇 − 𝑡
or 𝑡 ∈ [0, 𝑇 ], as

𝐶𝑁,𝑁 ′
(𝑇 − 𝑡) ≜ |

|

|

𝐼𝑁,𝑁 ′
(𝑇 − 𝑡)||

|

tep 2: Coupling the number of influencing servers with a 𝑑-ary branching process.
Couple the number of influencing servers 𝐶𝑁,𝑁 ′ (𝑇 − 𝑡) with a process 𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) constructed as follows. We first let

∞,𝑁,𝑁 ′ (𝑇 ) = 𝐶𝑁,𝑁 ′ (𝑇 ) = 𝑁 ′ and recursively define the process at each arrival instant 𝑡 as 𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) ≜ 𝐶∞,𝑁,𝑁 ′ ((𝑇 − 𝑡)−) + 𝑑 −1
f there is an intersection between the influence process 𝐼𝑁,𝑁 ′ ((𝑇 − 𝑡)−) and the set of 𝑑 servers selected by the arrival at time 𝑡.
ote that 𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) ⩾ 𝐶𝑁,𝑁 ′ ((𝑇 − 𝑡)) always. We also observe that 𝐶𝑁,𝑁 ′ (𝑇 − 𝑡) = 𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) for all 𝑡 ∈ [0, 𝑇 ] if the selection

et of servers at all arrival instants intersect with either zero or one server in 𝐼𝑁,𝑁 ′ (𝑇 ) within the time [0, 𝑇 ]. We may therefore
hink of 𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) as the number of influencing servers in an alternate system with the maximum intersection of one server for
elections sets with 𝐼𝑁,𝑁 ′ (𝑇 − 𝑡) over the time horizon 𝑇 .

As the arrival to each queue occurs according to a Poisson process with rate 𝜆𝑑, the process 𝐶∞,𝑁,𝑁 ′ ((𝑇 − 𝑡)) is a 𝜆𝑑 branching
rocess. It follows from [44, Proposition 7.2] that the process 𝐶𝑁,𝑁 ′ (𝑇 ) converges to 𝐶∞,𝑁,𝑁 ′ (𝑇 ) in probability for large 𝑁 . Note
hat, 𝐶𝑁,𝑁 ′ (𝑇 ) being equal to 𝐶∞,𝑁,𝑁 ′ (𝑇 ) guarantees that the number of influencing servers 𝐶𝑁,𝑁 ′ (𝑇 − 𝑡) will be equal to the process
∞,𝑁,𝑁 ′ (𝑇 − 𝑡) for all 𝑡 ∈ [0, 𝑇 ].
Step 3: Extension of the influence process to an infinite server system.
We extend the influence process 𝐼𝑁,𝑁 ′ (𝑇 − 𝑡) to the process 𝐼∞,𝑁,𝑁 ′ (𝑇 − 𝑡) satisfying 𝐶∞,𝑁,𝑁 ′ (𝑇 ) = |

|

|

𝐼∞,𝑁,𝑁 ′ (𝑇 )||
|

. As hinted earlier,
e will be constructing an influence process 𝐼∞,𝑁,𝑁 ′ (𝑇 − 𝑡) in an alternate system comprising infinitely many servers where there is
n intersection of at most one server for 𝐼∞,𝑁,𝑁 ′ (𝑇 −𝑡) with selection sets over the time horizon 𝑇 . Therefore, the workloads at the 𝑁 ′

ervers will stay independent over the time horizon [0, 𝑇 ] in this alternate system. This extended influence process is constructed the
𝑁,𝑁 ′ ∞,𝑁,𝑁 ′ 𝑁,𝑁 ′
19

ame way as we construct 𝐼 (𝑇 − 𝑡) except for the following. If an arrival happens at time 𝑡 and if 𝐶 (𝑇 − 𝑡) ≠ 𝐶 (𝑇 − 𝑡),
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include (𝐶∞,𝑁,𝑁 ′ (𝑇 − 𝑡) − 𝐶𝑁,𝑁 ′ (𝑇 − 𝑡)) new servers to the set 𝐼∞,𝑁,𝑁 ′ ((𝑇 − 𝑡)−) besides the ones in the new selection set. The
inclusion of new servers is always possible as we suppose the system has infinitely many servers. Observe that the branches of this
extended influence process starting from each of the 𝑁 ′ servers will not intersect each other at any point and remain independent
of each other. That is, the construction does not allow any correlated arrivals to occur for this workload process, preserving the
independence of the 𝑁 ′ servers under consideration. That is, the measure corresponding to the workload process at the 𝑁 ′ servers
of this infinite server system with the given influence process denoted as 𝑀𝑇 ,∞,𝑁 ′ will be the 𝑁 fold product of 𝑀𝑇 ,∞,1 due to the
ndependence of the queues. From [44, Lemma 7.2], it can be seen that 𝑀𝑇 ,∞,𝑁 ′ is always independent of 𝑁 . Further, whenever
𝐶𝑁,𝑁 ′ (𝑇 ) = 𝐶∞,𝑁,𝑁 ′ (𝑇 ), the processes 𝐼𝑁,𝑁 ′ (𝑇 − 𝑡) and 𝐼∞,𝑁,𝑁 ′ (𝑇 − 𝑡) are also equal. As seen in Step 2 that 𝐶𝑁,𝑁 ′ (𝑇 ) converges to

∞,𝑁,𝑁 ′ (𝑇 ) in probability for large value of 𝑁 , the result follows.

emark 15. We remark that the above proof does not make any assumption on the distribution of the service time except that
hey are i.i.d. across jobs.

The extension of this independence across the servers to infinite time intervals requires the following monotonicity conditions
o be satisfied and does not follow directly. Let us first define the fraction of servers with workload greater than 𝑤 at time 𝑡 ⩾ 0 as
𝑁
𝑤 (𝑡) ≜ 1

𝑁
∑𝑁

𝑖=1 1{𝑊 𝑁,(𝑖)(𝑡)>𝑤}. Then, [45, Lemma 3] shows that the workloads under JSW(𝑑) and water filling(𝑑) dispatch policies,
satisfy the following monotonicity property.

Proposition 21. Consider two versions of the process, 𝑥𝑁 (.) and �̂�𝑁 (.), such that 𝑥𝑁 (0) ⩽ �̂�𝑁 (0) Then these processes can be coupled so
that, with probability 1, 𝑥𝑁 (𝑡) ⩽ �̂�𝑁 (𝑡) for all 𝑡 ⩾ 0.

This monotonicity property holds for our proposed dispatch and cancellation policy only for the special case where the thresholds
𝑇1 and 𝑇2 are infinity. The following simplified example shows that the proposed 𝜋(𝑑, 𝑇1, 𝑇2) policy need not always offer this

onotonicity property.

xample 2. Consider two single server systems with processes 𝑥1𝑤(𝑡) = 1{𝑊 1(𝑡)>𝑤} and �̂�1𝑤(𝑡) = 1{

�̂� 1(𝑡)>𝑤
} indicating the events

that the workloads 𝑊 1(𝑡) and �̂� 1(𝑡) at the respective servers in these two systems exceed the value 𝑤 time 𝑡. The arrivals to the
system follow Poisson distribution with rate 𝜆, and arrival is accepted at the server only if the current workload at the server is
ess than a threshold 𝑇 . We further suppose that the server services any job at a unit rate. Assume 𝑊 1(0) = 0 and �̂� 1(0) = 𝑇 + 𝑡′

here 𝑡′ is a positive constant. That is, 𝑥1𝑤(0) = 0 < �̂�1𝑤(0) = 1 for all 𝑤 < 𝑇 + 𝑡′. Suppose the first arrival happens at time 𝑡1 = 𝑡′ − ℎ
hich brings in a job of size 𝑐 > 𝑇 + 𝑡′. As the workload in the second system exceeds the threshold 𝑡, the new job is accepted
nly in the first system and the workloads in the coupled systems will be respectively 𝑊 1(𝑡1) = 𝑐 and �̂� 1(𝑡1) = 𝑇 + ℎ. That is,
1
𝑤(𝑡1) = 1 > �̂�1𝑤(𝑡1) = 0 for 𝑇1 + ℎ < 𝑤 ⩽ 𝑐. This shows that the monotonicity property need not hold under threshold-based policies.

We remark that the lack of monotonicity does not necessarily imply that the asymptotic independence of limiting marginal server
orkloads does not hold, and our simulation studies suggest that the assumption of asymptotic independence remains valid for our

elected choice of system parameters.

ppendix B. Model validation

In this section, we discuss the accuracy of our theoretical results and compare them with simulation experiments. We obtained
he conditional mean sojourn time 𝜏 for undiscarded jobs and the probability of discard 𝑃𝐿 under the proposed probabilistic
edundancy policy 𝜋(𝑑, 𝑇1, 𝑇2), based on the conjecture of the asymptotic independence of the queues. The workload distribution for
he cavity queue under policy 𝜋(𝑑, 𝑇1, 𝑇2) has a closed-form expression for exponentially distributed service time, and is provided in
orollary 10. The expression for the conditional mean sojourn time under policy 𝜋(𝑑, 𝑇1, 𝑇2) is complex, and hence we have omitted

t. Instead, we restrict our validation results to three special cases: (a) deterministic 𝑑 replicas with identical finite discard threshold
(𝑑, 𝑇 , 𝑇 ), (b) deterministic 𝑑 replicas with no discard 𝜋(𝑑,∞,∞), and (c) deterministic 𝑑 replicas with secondary replicas only at

dle servers 𝜋(𝑑,∞, 0).
Findings of the simulation experiments under the policy 𝜋(𝑑, 𝑇 , 𝑇 ) are reported in Fig. B.10. We note that this is a lossy system,

here some jobs can be discarded if none of the sampled servers have a workload smaller than the threshold 𝑇 . We plot the
onditional response time for 𝜋(𝑑, 𝑇 , 𝑇 ) as a function of normalized arrival rate 𝜆, when the jobs have i.i.d. exponential service

times with unit mean. The identical discard threshold for primary and secondary replicas is taken as 𝑇1 = 𝑇2 = 5 and the total
number of replicas is selected as 𝑑 = 3. Each experiment is run over 105 iterations and we repeat this experiment for an increasing
number of servers 𝑁 . We empirically compute the average response time of undiscarded jobs, as a function of normalized arrival
rate 𝜆. We observe that the empirical curve approaches our analytical computation under the asymptotic independence conjecture,
as the number of servers 𝑁 increases. This provides an empirical validation of the asymptotic independence conjecture, and hence
our theoretical results. In particular, it indicates that even for the most general of our policies, the asymptotic independence of
queues is indeed true.

When the primary discard threshold is infinite, then all jobs get served. We illustrate a similar validation for two special cases
where the primary replica is never discarded. The results for deterministic 𝑑 replicas with no discard (𝜋(𝑑,∞,∞) policy) is presented
in Fig. B.11, and for deterministic 𝑑 replicas with secondary on idle servers (𝜋(𝑑,∞, 0) policy) in Fig. B.12. The closed-form theoretical
expressions of the conditional mean response time of these policies are provided in Remark 12 and Lemma 17 respectively. As in
20
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Fig. B.10. For the policy 𝜋(𝑑, 𝑇 , 𝑇 ) with fixed thresholds 𝑇1 = 𝑇2 = 5, number of replicas 𝑑 = 3,service rate 𝜇 = 1, conditional mean response time 𝜏 as function
f arrival rate 𝜆 for different values of servers 𝑁 ∈ {3, 5, 8, 10}.

Fig. B.11. For the policy 𝜋(𝑑,∞,∞) with number of replicas 𝑑 = 3, service rate 𝜇 = 1, conditional mean response time 𝜏 as function of arrival rate 𝜆 for different
values of servers 𝑁 ∈ {3, 5, 8, 10}.

Fig. B.12. For the policy 𝜋(𝑑,∞, 0) with number of replicas 𝑑 = 3, service rate 𝜇 = 1, conditional mean response time 𝜏 as function of arrival rate 𝜆 for different
values of servers 𝑁 ∈ {3, 5, 8, 10}.

he case of 𝜋(𝑑, 𝑇 , 𝑇 ), we see that the empirically computed mean response time of undiscarded jobs converges to the corresponding
theoretical expression with an increase in the number of servers 𝑁 . This indicates that as the number of servers 𝑁 increases
the workload across queues tends to be independent, validating our conjecture on the asymptotic independence of queues. It is
remarkable to note that the theoretical values and those obtained empirically from the simulation, coincide even when the number
of servers 𝑁 is as low as 10.

Even though, we have performed extensive validations for different values of 𝑇1 and 𝑇2 (for which closed-form results are
available) and have observed similar behavior with an increase in the number of servers 𝑁 , we have presented only a select few of
21

the plots validating our models.



Performance Evaluation 162 (2023) 102381R. Jinan et al.

𝐻
s

T

i
a
t

S

T
m
a
t

S
d

A

s
A
c
n

L

P

L

I

p

Appendix C. Proof of Theorem 7

Proof. From (3), we recall that the conditional mean response time for undiscarded jobs at stationarity is given by ∫𝑥 �̄�(𝑥)𝑑𝑥
1−𝑃𝐿

, where
̄ is the tail distribution for the response time of an undiscarded job in the system at stationarity, and defined in Definition 4. It
uffices to show that for all 𝑥 ∈ R+

�̄�(𝑥) = (𝐹 (𝑇1) + 𝑘(𝑥, 𝑇1))(𝐹 (𝑇2) + 𝑘(𝑥, 𝑇2))𝑑−1 − 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1.

o this end, we recall that 𝐼𝑛,1, 𝐼𝑛,2 denote the disjoint random sets of servers where primary and secondary replicas for job 𝑛 are
dispatched. Further, the indicator that the 𝑛th job replica at server 𝑗 ∈ 𝐼𝑛,1 ∪ 𝐼𝑛,2 with workload 𝑊𝑛,𝑗 is not discarded is defined
n (1). The set of servers where the 𝑛th job replicas are not discarded is denoted by 𝐼𝑛 =

{

𝑗 ∈ 𝐼𝑛,1 ∶ 𝜉𝑛,𝑗 = 1
}

∪
{

𝑗 ∈ 𝐼𝑛,2 ∶ 𝜉𝑛,𝑗 = 1
}

,
nd the indicator that the job 𝑛 is not discarded is 𝜉𝑛 = 1{𝐼𝑛≠∅} = 1−

∏

𝑗∈𝐼𝑛,1∪𝐼𝑛,2 𝜉𝑛,𝑗 as defined in (2). If the 𝑛th job is not discarded,
hen the indicator of the response time is larger than a threshold 𝑥 ∈ 𝑅+ is written as

1{𝑅𝑛>𝑥} = 𝜉𝑛
∏

𝑗∈𝐼𝑛

1{

𝑊𝑛,𝑗+𝑋𝑛,𝑗>𝑥
} = 𝜉𝑛

∏

𝑗∈𝐼𝑛,1

(𝜉𝑛,𝑗1{

𝑊𝑛,𝑗+𝑋𝑛,𝑗>𝑥
} + 𝜉𝑛,𝑗 )

∏

𝑗∈𝐼𝑛,2

(𝜉𝑛,𝑗1{

𝑊𝑛,𝑗+𝑋𝑛,𝑗>𝑥
} + 𝜉𝑛,𝑗 ).

ubstituting (2) for the indicator 𝜉𝑛 in the above equation, using the fact that 𝜉𝑛,𝑗𝜉𝑛,𝑗 = 0, and re-arranging the terms, we can write

1{𝑅𝑛>𝑥} =
∏

𝑗∈𝐼𝑛,1∪𝐼𝑛,2

(𝜉𝑗1{

𝑊𝑛,𝑗+𝑋𝑛,𝑗>𝑥
} + 𝜉𝑛,𝑗 ) −

∏

𝑗∈𝐼𝑛,1∪𝐼𝑛,2

𝜉𝑛,𝑗 .

aking expectations on both sides of the above equations, using the independence of indicators (𝜉𝑛,𝑗 ∶ 𝑗 ∈ 𝐼𝑛,1∪𝐼𝑛,2) with the limiting
ean lim𝑛→∞ E[𝜉𝑛,𝑗1{𝑗∈𝐼𝑛,1∪𝐼𝑛,2}

|

|

|

𝐼𝑛,1, 𝐼𝑛,2] = lim𝑛→∞[𝐹 (𝑇1)𝛾1𝑛,𝑗+𝐹 (𝑇2)𝛾2𝑛,𝑗 ], the definition of 𝑘(𝑥, 𝑇 ) = lim𝑛→∞ E
[

1{

𝑊𝑛,𝑗⩽𝑇
}1{

𝑋𝑛,𝑗+𝑊𝑛,𝑗>𝑥
}

]

,
nd the fact that all servers have identical limiting workload distribution 𝐹 , we obtain the limiting tail distribution of the response
ime for an undiscarded job as

lim
𝑛→∞

E[1{𝑅𝑛>𝑥} ∣ 𝐼𝑛,1, 𝐼𝑛,2] = (𝑘(𝑥, 𝑇1) + 𝐹 (𝑇1))(𝑘(𝑥, 𝑇2) + 𝐹 (𝑇2))𝑑−1 − 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1.

ince the right-hand side of the preceding equation does not depend on 𝐼𝑛,1, 𝐼𝑛,2, we have �̄�(𝑥) = lim𝑛→∞ E[1{𝑅𝑛>𝑥} ∣ 𝐼𝑛,1, 𝐼𝑛,2] as
esired. □

ppendix D. Proof of Theorem 9

This section provides the moment-generating function-based approach for deriving the stationary workload distribution in a
ingle queue in an 𝑁 server system with i.i.d. service times and Poisson arrivals with threshold-based dispatching policy, 𝜋(𝑑, 𝑇1, 𝑇2).
lthough, the proof is provided only for the case where the service times are exponentially distributed with rate 𝜇, the same approach
an be used when the service times follow a shifted exponential distribution. We omit the details due to space constraints. Let us
ow begin the proof by providing two simple results.

emma 22. For the interarrival time sequence (𝑍𝑛 ∶ 𝑛 ∈ N), we have

E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛+𝑋𝑛>𝑍𝑛+1} ∣ 𝑊𝑛, 𝑋𝑛

]

= 𝑁𝜆
𝑁𝜆 − 𝜃

(1 − 𝑒−(𝑁𝜆−𝜃)(𝑊𝑛+𝑋𝑛)). (D.1)

roof. Recall that interarrival times (𝑍𝑛 ∶ 𝑛 ∈ N) are i.i.d. exponential with rate 𝑁𝜆, and duration 𝑍𝑛+1 is independent of past
workloads (𝑊1,… ,𝑊𝑛) and past and present service times (𝑋1,… , 𝑋𝑛) for all 𝑛 ∈ Z+. Hence, the result follows. □

emma 23. For i.i.d. exponential service time sequence (𝑋𝑛 ∶ 𝑛 ∈ N) with rate 𝜇, we have

E
[

𝑒−𝜃𝑋𝑛1{𝑋𝑛<𝑇−𝑊𝑛} ∣ 𝑊𝑛

]

= 𝛷𝑋 (𝜃)(1 − 𝑒−(𝜇+𝜃)(𝑇−𝑊𝑛)+ ). (D.2)

n addition, we have the following identity
𝛷𝑋 (𝜃) − 1

𝜃
= − 1

𝜇
𝛷𝑋 (𝜃). (D.3)

Proof. The 𝑛th service time 𝑋𝑛 is independent of workloads (𝑊1,… ,𝑊𝑛) seen by first 𝑛 incoming arrivals. The first equality follows
from this observation. The second equality follows from the fact that 𝛷𝑋 (𝜃) =

𝜇
𝜇+𝜃 . □

Proposition 24. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇, Poisson arrivals of rate 𝑁𝜆 under 𝜋(𝑑, 𝑇1, 𝑇2)
olicy and the moment generating functions of the limiting workload 𝑊 in a single queue defined in Definition 8,

𝛷𝑊 (𝜃) = 𝐹 (0)(1 + �̄�
𝜃 + 𝜇 − �̄�

) +
(

(𝜇 − 𝜆)𝐹 (𝑇2) + 𝜆𝐹 (𝑇1)
)

𝑒−𝜃𝑇2
[ 1
𝜃 + 𝜇 − 𝜆

− 1
𝜃 + 𝜇 − �̄�

]

(D.4)

− 𝐹 (𝑇1)𝜇𝑒−𝜃𝑇1
[ 1 − 1 ]

.
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Proof. For each 𝑛 ∈ N, we denote the restricted moment generating function for 𝑊𝑛 as

𝛷𝑊𝑛
(𝜃) = E

[

𝑒−𝜃𝑊𝑛
]

, 𝛷1,𝑛(𝜃) = E
[

𝑒−𝜃𝑊𝑛1{𝑊𝑛>𝑇1}
]

, 𝛷2,𝑛(𝜃) = E
[

𝑒−𝜃𝑊𝑛1{𝑊𝑛>𝑇2}
]

. (D.5)

he moment generating function for the workload at (𝑛 + 1)th arrival is given by

𝛷𝑊𝑛+1
(𝜃) = E

[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇1}
]

+ E
[

𝑒−𝜃𝑊𝑛+11{𝑇2<𝑊𝑛⩽𝑇1}
]

+ E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛⩽𝑇2}
]

.

e can explicitly re-write (5), in the following three regions

𝑊𝑛+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑊𝑛 −𝑍𝑛+1)+, 𝑊𝑛 ∈ (𝑇1,∞),

(1 − 𝛾1𝑛 )(𝑊𝑛 −𝑍𝑛+1)+ + 𝛾1𝑛 (𝑊𝑛 +𝑋𝑛 −𝑍𝑛+1)+, 𝑊𝑛 ∈ (𝑇2, 𝑇1],

(1 − 𝛾1𝑛 − 𝛾2𝑛 )(𝑊𝑛 −𝑍𝑛+1)+ + (𝛾1𝑛 + 𝛾2𝑛 )(𝑊𝑛 +𝑋𝑛 −𝑍𝑛+1)+, 𝑊𝑛 ∈ [0, 𝑇2].

(D.6)

his relation allows us to find the moment generating function for 𝑊𝑛+1 in terms of restricted moment generating functions for 𝑊𝑛.
Step 1: We first observe that in the region 𝑊𝑛 > 𝑇1, we have 𝑊𝑛+1 = (𝑊𝑛−𝑍𝑛+1)1{𝑊𝑛>𝑍𝑛+1} from (D.6). From the tower property

of conditional expectation, we can write

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇1}
]

= E
[

1{𝑊𝑛>𝑇1}E
[

1{𝑊𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛

]]

+ E
[

𝑒−𝜃𝑊𝑛1{𝑊𝑛>𝑇1}E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛>𝑍𝑛+1} ∣ 𝑊𝑛

]]

.

ince 𝑍𝑛+1 is exponential with rate 𝑁𝜆 and independent of 𝑊𝑛, we get E
[

1{𝑊𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛

]

= 𝑒−N𝜆𝑊𝑛 , and from the identity in (D.1)

or 𝑋𝑛 = 0, we get E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛>𝑍𝑛+1} ∣ 𝑊𝑛

]

= 𝑁𝜆
𝑁𝜆−𝜃 (1 − 𝑒−(𝑁𝜆−𝜃)(𝑊𝑛)). Substituting these in the above equation and from the

efinition of 𝛷1, we obtain

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇1}
]

= E
[

1{𝑊𝑛>𝑇1}𝑒
−𝑁𝜆𝑊𝑛

]

+ 𝑁𝜆
𝑁𝜆 − 𝜃

E
[

1{𝑊𝑛>𝑇1}(𝑒
−𝜃𝑊𝑛 − 𝑒−𝑁𝜆𝑊𝑛 )

]

=
𝑁𝜆𝛷1,𝑛(𝜃) − 𝜃𝛷1,𝑛(𝑁𝜆)

𝑁𝜆 − 𝜃
. (D.7)

Step 2: We next observe that in the region 𝑊𝑛 ∈ (𝑇2, 𝑇1], we have 𝑊𝑛+1 = (𝑊𝑛 − 𝑍𝑛+1)1{𝑊𝑛>𝑍𝑛+1} with probability 1 − 1
𝑁 , and

𝑊𝑛+1 = (𝑊𝑛 +𝑋𝑛 −𝑍𝑛+1)1{𝑊𝑛+𝑋𝑛>𝑍𝑛+1} with probability 1
𝑁 . We can write

E
[

𝑒−𝜃𝑊𝑛+11(𝑇2 ,𝑇1](𝑊𝑛)
]

=
(

1 − 1
𝑁

)(

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}E
[

1{𝑊𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛

]]

+ E
[

𝑒−𝜃𝑊𝑛1{𝑊𝑛∈(𝑇2 ,𝑇1]}E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛>𝑍𝑛+1} ∣ 𝑊𝑛

]])

+ 1
𝑁

(

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}E
[

1{𝑊𝑛+𝑋𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛, 𝑋𝑛

]]

+ E
[

𝑒−𝜃(𝑊𝑛+𝑋𝑛)1{𝑊𝑛∈(𝑇2 ,𝑇1]}E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛+𝑋𝑛>𝑍𝑛+1} ∣ 𝑊𝑛, 𝑋𝑛

]])

.

sing the fact that 𝑍𝑛+1 is exponential with rate 𝑁𝜆 and independent of 𝑊𝑛, the identity in (D.1), we get

E
[

𝑒−𝜃𝑊𝑛+11(𝑇2 ,𝑇1](𝑊𝑛)
]

=
(𝑁 − 1)

𝑁

(

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}𝑒
−𝑁𝜆𝑊𝑛

]

+ 𝑁𝜆
𝑁𝜆 − 𝜃

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}(𝑒
−𝜃𝑊𝑛 − 𝑒−𝑁𝜆𝑊𝑛 )

])

+ 1
𝑁

(

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}𝑒
−𝑁𝜆(𝑊𝑛+𝑋𝑛)

]

+ 𝑁𝜆
𝑁𝜆 − 𝜃

E
[

1{𝑊𝑛∈(𝑇2 ,𝑇1]}(𝑒
−𝜃(𝑊𝑛+𝑋𝑛) − 𝑒−𝑁𝜆(𝑊𝑛+𝑋𝑛))

])

.

ubstituting the definition of restricted moment generating functions for 𝑊𝑛 and moment generating functions for 𝑋𝑛 in the above
quation, we get

E
[

𝑒−𝜃𝑊𝑛+11(𝑇2 ,𝑇1](𝑊𝑛)
]

=
(𝑁 − 1)

𝑁(𝑁𝜆 − 𝜃)

(

−𝜃(𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆)) +𝑁𝜆(𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))
)

+ 1
𝑁(𝑁𝜆 − 𝜃)

(

−𝜃𝛷𝑋 (𝑁𝜆)(𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆)) +𝑁𝜆𝛷𝑋 (𝜃)(𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))
)

. (D.8)

Since E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇2}
]

= E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇1}
]

+ E
[

𝑒−𝜃𝑊𝑛+11{𝑇1⩾𝑊𝑛>𝑇2}
]

, summing (D.7) and (D.8), we obtain

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇2}
]

=
[

− 𝜃
𝑁𝜆 − 𝜃

𝛷2,𝑛(𝑁𝜆) + 𝑁𝜆
𝑁𝜆 − 𝜃

𝛷2,𝑛(𝜃)
]

+ 𝜆𝜃
𝑁𝜆 − 𝜃

[

−(𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆))
(𝛷𝑋 (𝑁𝜆) − 1)

𝑁𝜆
+ (𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))

(𝛷𝑋 (𝜃) − 1)
𝜃

]

. (D.9)

Step 3: We next observe that in the region 𝑊𝑛 ⩽ 𝑇2, we have 𝑊𝑛+1 = (𝑊𝑛 − 𝑍𝑛+1)1{𝑊𝑛>𝑍𝑛+1} with probability 1 − �̄�
𝑁𝜆 , and

𝑊𝑛+1 = (𝑊𝑛 +𝑋𝑛 −𝑍𝑛+1)1{𝑊𝑛+𝑋𝑛>𝑍𝑛+1} with probability �̄�
𝑁𝜆 . We can write

E
[

𝑒−𝜃𝑊𝑛+11[0,𝑇2](𝑊𝑛)
]

=
(

1 − �̄�
𝑁𝜆

)(

E
[

1{𝑊𝑛∈[0,𝑇2]}E
[

1{𝑊𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛

]]

+ E
[

𝑒−𝜃𝑊𝑛1{𝑊𝑛∈[0,𝑇2]}E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛>𝑍𝑛+1} ∣ 𝑊𝑛

]])

+ �̄�
𝑁𝜆

(

E
[

1{𝑊𝑛∈[0,𝑇2]}E
[

1{𝑊𝑛+𝑋𝑛⩽𝑍𝑛+1} ∣ 𝑊𝑛, 𝑋𝑛

]]

+ E
[

𝑒−𝜃(𝑊𝑛+𝑋𝑛)1{𝑊𝑛∈[0,𝑇2]}E
[

𝑒𝜃𝑍𝑛+11{𝑊𝑛+𝑋𝑛>𝑍𝑛+1} ∣ 𝑊𝑛, 𝑋𝑛

]])

.

sing the fact that 𝑍𝑛+1 is exponential with rate 𝑁𝜆 and independent of 𝑊𝑛, the identity in (D.1), we get

E
[

𝑒−𝜃𝑊𝑛+11[0,𝑇2](𝑊𝑛)
]

=
(𝑁𝜆 − �̄�)

𝑁𝜆

(

E
[

1{𝑊𝑛∈[0,𝑇2]}𝑒
−𝑁𝜆𝑊𝑛

]

+ 𝑁𝜆
𝑁𝜆 − 𝜃

E
[

1{𝑊𝑛∈[0,𝑇2]}(𝑒
−𝜃𝑊𝑛 − 𝑒−𝑁𝜆𝑊𝑛 )

])

+ �̄� (

E
[

1 𝑒−𝑁𝜆(𝑊𝑛+𝑋𝑛)
]

+ 𝑁𝜆 E
[

1
(

𝑒−𝜃(𝑊𝑛+𝑋𝑛) − 𝑒−𝑁𝜆(𝑊𝑛+𝑋𝑛)
)])

.

23
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Substituting the definition of restricted moment generating functions for 𝑊𝑛 and moment generating function for 𝑋𝑛 in the above
quation, we get

E
[

𝑒−𝜃𝑊𝑛+11[0,𝑇2](𝑊𝑛)
]

=
(𝑁𝜆 − �̄�)

𝑁𝜆(𝑁𝜆 − 𝜃)

(

−𝜃(𝛷𝑊𝑛
(𝑁𝜆) −𝛷2,𝑛(𝑁𝜆)) +𝑁𝜆(𝛷𝑊𝑛

(𝜃) −𝛷2,𝑛(𝜃))
)

+ �̄�
𝑁𝜆(𝑁𝜆 − 𝜃)

(

−𝜃𝛷𝑋 (𝑁𝜆)(𝛷𝑊𝑛
(𝑁𝜆) −𝛷2,𝑛(𝑁𝜆)) +𝑁𝜆𝛷𝑋 (𝜃)(𝛷𝑊𝑛

(𝜃) −𝛷2,𝑛(𝜃))
)

. (D.10)

Since 𝛷𝑊𝑛+1
(𝜃) = E

[

𝑒−𝜃𝑊𝑛+1
]

= E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛>𝑇2}
]

+ E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛⩽𝑇2}
]

, summing (D.9) and (D.10), we obtain

𝛷𝑊𝑛+1
(𝜃) =

[

− 𝜃
𝑁𝜆 − 𝜃

𝛷𝑊𝑛
(𝑁𝜆) + 𝑁𝜆

𝑁𝜆 − 𝜃
𝛷𝑊𝑛

(𝜃)
]

+ 𝜆𝜃
𝑁𝜆 − 𝜃

[

−(𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆))
(𝛷𝑋 (𝑁𝜆) − 1)

𝑁𝜆
+ (𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))

(𝛷𝑋 (𝜃) − 1)
𝜃

]

+ �̄�𝜃
𝑁𝜆 − 𝜃

[

−(𝛷𝑊𝑛
(𝑁𝜆) −𝛷2,𝑛(𝑁𝜆))

(𝛷𝑋 (𝑁𝜆) − 1)
𝑁𝜆

+ (𝛷𝑊𝑛
(𝜃) −𝛷2,𝑛(𝜃))

(𝛷𝑋 (𝜃) − 1)
𝜃

]

. (D.11)

Step 4: As 𝑛 → ∞, the limiting distribution of 𝑊𝑛 is given by 𝐹 , and therefore, we have

𝛷𝑊 (𝜃) = lim
𝑛→∞

𝛷𝑊𝑛
(𝜃), 𝛷2(𝜃) = lim

𝑛→∞
𝛷2,𝑛(𝜃), 𝛷1(𝜃) = lim

𝑛→∞
𝛷1,𝑛(𝜃).

Rearranging terms in (D.11), we get

𝛷𝑊 (𝑁𝜆) +
[

𝜆(𝛷2(𝑁𝜆) −𝛷1(𝑁𝜆)) + �̄�(𝛷𝑊 (𝑁𝜆) −𝛷2(𝑁𝜆))
] (𝛷𝑋 (𝑁𝜆) − 1)

𝑁𝜆

= 𝛷𝑊 (𝜃) +
[

𝜆(𝛷2(𝜃) −𝛷1(𝜃)) + �̄�(𝛷𝑊 (𝜃) −𝛷2(𝜃))
] (𝛷𝑋 (𝜃) − 1)

𝜃
.

We observe that LHS and RHS have the form 𝑓 (𝜃) = 𝑓 (𝑁𝜆) for an arbitrary function 𝑓 and variables 𝜃 and 𝜆. Therefore, we
conclude that 𝑓 (𝜃) = 𝑓 (0). Further, note that 𝛷𝑖(0) = 𝐹𝑇𝑖 for 𝑖 ∈ [2]. Then, using Eq. (D.3), we can write for exponential service
imes,

𝛷𝑊 (𝜃)
(

1 − �̄�
𝜇
𝛷𝑋 (𝜃)

)

+
[ �̄� − 𝜆

𝜇
𝛷2(𝜃) +

𝜆
𝜇
𝛷1(𝜃)

]

𝛷𝑋 (𝜃) = 1 − �̄�
𝜇
+
[ �̄� − 𝜆

𝜇
𝐹 (𝑇2) +

𝜆
𝜇
𝐹 (𝑇1)

]

.

ow, we substitute 𝛷1(𝜃) and 𝛷2(𝜃) from Eqs. (D.12) and (D.15) respectively in the above equation. Further incorporating Eqs. (D.13)
nd (D.16) and rearranging the terms will yield Eq. (D.4). □

emark 16. Upon inverting the moment generating function in Eq. (D.4), we see that the complementary workload distribution
unction for 𝑤 ⩾ 0 is given by

𝐹 (𝑤) =1 − 𝐹 (0)
(

1 +
�̄�(1 − 𝑒−(𝜇−�̄�)𝑤)

𝜇 − �̄�

)

+ 𝜇𝐹 (𝑇1)
( (1 − 𝑒−(𝜇−𝜆)(𝑤−𝑇1)+ )

𝜇 − 𝜆
−

(1 − 𝑒−𝜇(𝑤−𝑇1)+ )
𝜇

)

− ((𝜇 − 𝜆)𝐹 (𝑇2) + 𝜆𝐹 (𝑇1))
( (1 − 𝑒−(𝜇−𝜆)(𝑤−𝑇2)+ )

𝜇 − 𝜆
−

(1 − 𝑒−(𝜇−�̄�)(𝑤−𝑇2)+ )
𝜇 − �̄�

)

.

In addition, we can find the constant,

𝐹 (0) = 1 − �̄�
𝜇
+
[ �̄� − 𝜆

𝜇
𝐹 (𝑇2) +

𝜆
𝜇
𝐹 (𝑇1)

]

.

Proposition 25. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇, Poisson arrivals of rate 𝑁𝜆 under 𝜋(𝑑, 𝑇1, 𝑇2) policy
and the moment generating functions of the limiting workload 𝑊 in a single queue defined in Definition 8,

𝛷1(𝜃) = 𝑒−𝜇𝑇1
[ 𝜆
𝜇
(𝛷2(−𝜇) −𝛷1(−𝜇)) +

�̄�
𝜇
(𝛷(−𝜇) −𝛷2(−𝜇))

]

𝑒−𝜃𝑇1𝛷𝑋 (𝜃). (D.12)

This implies that for 𝑤 > 𝑇1, 𝐹 (𝑤) = 𝐹 (𝑇1)𝑒−𝜇(𝑤−𝑇1)+ , where

𝐹 (𝑇1) = 𝑒−𝜇𝑇1
[ 𝜆
𝜇
(𝛷2(−𝜇) −𝛷1(−𝜇)) +

�̄�
𝜇
(𝛷(−𝜇) −𝛷2(−𝜇))

]

. (D.13)

Proof. The computation remains similar to the previous step, with an additional restriction of 𝑊𝑛+1 > 𝑇1. Therefore, we can write

𝛷1,𝑛+1(𝜃) = E

[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇1}
(

1{𝑊𝑛>𝑇1} + 1{𝑇2<𝑊𝑛⩽𝑇1} + 1{𝑊𝑛⩽𝑇2}
)

]

. (D.14)

We sequentially compute the first term, the summation of the first two terms, and the summation of all three terms as before. In
the region 𝑊𝑛 > 𝑇1, we have 𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇1}1{𝑊𝑛>𝑇1} = 𝑒−𝜃(𝑊𝑛−𝑍𝑛+1)1{𝑍𝑛+1<𝑊𝑛−𝑇1}1{𝑊𝑛>𝑇1}. Then, it follows that

E
[

𝑒−𝜃𝑊𝑛+11 1
]

= 𝑁𝜆 E
[

𝑒−𝜃𝑊𝑛1 (1 − 𝑒−(𝑁𝜆−𝜃)(𝑊𝑛−𝑇1))
]

= 𝑁𝜆 (

𝛷 (𝜃) − 𝑒(𝑁𝜆−𝜃)𝑇1𝛷 (𝑁𝜆)
)

.

24

{𝑊𝑛+1>𝑇1} {𝑊𝑛>𝑇1} 𝑁𝜆 − 𝜃 {𝑊𝑛>𝑇1} 𝑁𝜆 − 𝜃 1,𝑛 1,𝑛
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Note that, in the region 𝑊𝑛 ⩽ 𝑇1, it is not possible for 𝑊𝑛+1 > 𝑇1, unless the 𝑛th arrival with service time 𝑋𝑛 is admitted at the
avity queue. This occurs with probability 1

𝑁 in region 𝑇2 < 𝑊𝑛 ⩽ 𝑇1, and with probability �̄�
𝑁𝜆 in region 𝑊𝑛 ⩽ 𝑇2. Therefore, for

the region 𝑇2 < 𝑊𝑛 ⩽ 𝑇1, we can write

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇1}1{𝑇2<𝑊𝑛⩽𝑇1}
]

= 𝜆𝑒−(𝜇+𝜃)𝑇1
𝑁𝜆 − 𝜃

(𝛷2,𝑛(−𝜇) −𝛷1,𝑛(−𝜇))(𝛷𝑋 (𝜃) −𝛷𝑋 (𝑁𝜆)).

Similarly, for the region 𝑊𝑛 ⩽ 𝑇2, we can write

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇1}1{𝑊𝑛⩽𝑇2}
]

= �̄�𝑒−(𝜇+𝜃)𝑇1
𝑁𝜆 − 𝜃

(𝛷𝑊𝑛
(−𝜇) −𝛷2,𝑛(−𝜇))(𝛷𝑋 (𝜃) −𝛷𝑋 (𝑁𝜆)).

Substituting the above three equations in Eq. (D.14), taking the limit of moment generating functions, and rearranging the terms
as in the previous proof, we get

𝛷1(𝜃) =
[

𝜆(𝛷2(−𝜇) −𝛷1(−𝜇)) + �̄�(𝛷𝑊 (−𝜇) −𝛷2(−𝜇))
] 𝑒−(𝜇+𝜃)𝑇1

𝜇
𝛷𝑋 (𝜃).

he result follows by inverting the moment generating function and noting that 𝛷1(0) = 𝐹 (𝑇1). □

roposition 26. For an 𝑁 server system with i.i.d. exponential service times of rate 𝜇, Poisson arrivals of rate 𝑁𝜆 under 𝜋(𝑑, 𝑇1, 𝑇2) policy
nd the moment generating functions of the limiting workload 𝑊 in a single queue defined in Definition 8,

𝛷2(𝜃) =
𝜆
𝜇
(𝛷2(𝜃) −𝛷1(𝜃))𝛷𝑋 (𝜃) +

�̄�
𝜇
𝑒−𝜇𝑇2

(

𝛷(−𝜇) −𝛷2(−𝜇)
)

𝑒−𝜃𝑇2𝛷𝑋 (𝜃). (D.15)

This implies that for 𝑤 > 𝑇2, 𝐹 (𝑤) = 𝐹 (𝑇1)
(

𝑒−𝜇(𝑤−𝑇1)+ − 𝜇
𝜇−𝜆 𝑒

−(𝜇−𝜆)(𝑤−𝑇1)+
)

+
[

𝑒−𝜇𝑇2 (𝛷(−𝜇) −𝛷2(−𝜇))
]

�̄�
𝜇−𝜆 𝑒

−(𝜇−𝜆)(𝑤−𝑇2)+ . In addition,

𝐹 (𝑇2) =
�̄�

𝜇 − 𝜆
𝑒−𝜇𝑇2 (𝛷(−𝜇) −𝛷2(−𝜇)) −

𝜆
𝜇 − 𝜆

𝐹 (𝑇1). (D.16)

Proof. The computation remains similar to the previous case but here we have the restriction of 𝑊𝑛+1 > 𝑇2. Then, we can write

𝛷2,𝑛+1(𝜃) = E[𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇2}
(

1{𝑊𝑛>𝑇2} + 1{𝑇2<𝑊𝑛⩽𝑇1} + 1{𝑊𝑛⩽𝑇2}
)

].

We sequentially compute the first term, the summation of the first two terms, and the summation of all three terms as before.
The indicator 𝑊𝑛+1 > 𝑇2 implies that 𝑊𝑛+1 cannot be zero. In the region 𝑊𝑛 > 𝑇1, we have 𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇2}1{𝑊𝑛>𝑇1} =
𝑒−𝜃(𝑊𝑛−𝑍𝑛+1)1{𝑍𝑛+1<𝑊𝑛−𝑇2}1{𝑊𝑛>𝑇1}. Therefore, it follows that

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇2}1{𝑊𝑛>𝑇1}
]

=
𝑁𝜆

(

𝛷1,𝑛(𝜃) − 𝑒(𝑁𝜆−𝜃)𝑇2𝛷1,𝑛(𝑁𝜆)
)

𝑁𝜆 − 𝜃
.

imilarly, for the region 𝑇2 < 𝑊𝑛 ⩽ 𝑇1, an external arrival is admitted with probability 1
𝑁 . When there is no arrival 𝑊𝑛+1 = 𝑊𝑛−𝑍𝑛+1,

and we have

E
[

𝑒−𝜃(𝑊𝑛−𝑍𝑛+1)1{𝑊𝑛−𝑋𝑛+1>𝑇2}1{𝑇2<𝑊𝑛⩽𝑇1}
]

=
𝑁𝜆

(

𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃) − 𝑒(𝑁𝜆−𝜃)𝑇2 (𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆))
)

𝑁𝜆 − 𝜃
.

In the region 𝑇2 < 𝑊𝑛 ⩽ 𝑇1, the 𝑛th arrival with service time 𝑋𝑛 is admitted at the cavity queue with probability 1
𝑁 . In this case,

𝑊𝑛+1 = 𝑊𝑛 +𝑋𝑛 −𝑍𝑛+1, and we can write

E
[

𝑒−𝜃(𝑊𝑛+𝑋𝑛−𝑍𝑛+1)1{𝑊𝑛+𝑋𝑛−𝑍𝑛+1>𝑇2}1{𝑇2<𝑊𝑛⩽𝑇1}
]

= 𝑁𝜆
𝑁𝜆 − 𝜃

[

(𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))𝛷𝑋 (𝜃) − 𝑒(𝑁𝜆−𝜃)𝑇2 (𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆))𝛷𝑋 (𝑁𝜆)
]

.

ombining these results in the region 𝑊𝑛 > 𝑇2, we can write

E
[

𝑒−𝜃(𝑊𝑛+1)1{𝑊𝑛+1>𝑇2}1{𝑊𝑛>𝑇2}
]

=
𝑁𝜆

[

𝛷2,𝑛(𝜃) − 𝑒(𝑁𝜆−𝜃)𝑇2𝛷2,𝑛(𝑁𝜆)
]

𝑁𝜆 − 𝜃

+ 𝜆
𝑁𝜆 − 𝜃

[

(𝛷2,𝑛(𝜃) −𝛷1,𝑛(𝜃))(𝛷𝑋 (𝜃) − 1) − 𝑒(𝑁𝜆−𝜃)𝑇2 (𝛷2,𝑛(𝑁𝜆) −𝛷1,𝑛(𝑁𝜆))(𝛷𝑋 (𝑁𝜆) − 1)
]

.

In the region 𝑊𝑛 ⩽ 𝑇2, it is not possible for 𝑊𝑛+1 > 𝑇2, unless the 𝑛 arrival with service time 𝑋𝑛 is admitted at the cavity queue.
This occurs with probability �̄�

𝑁𝜆 , and we can write

E
[

𝑒−𝜃𝑊𝑛+11{𝑊𝑛+1>𝑇1}1{𝑊𝑛⩽𝑇2}
]

= �̄�𝑒−(𝜇+𝜃)𝑇2
𝑁𝜆 − 𝜃

(𝛷𝑊𝑛
(−𝜇) −𝛷2,𝑛(−𝜇))(𝛷𝑋 (𝜃) −𝛷𝑋 (𝑁𝜆)).

Combining the above equations, taking the limit of moment generating functions, and rearranging the terms as in previous proofs,
we obtain

𝛷2(𝜃) =
𝜆 (𝛷2(𝜃) −𝛷1(𝜃))𝛷𝑋 (𝜃) +

�̄� 𝑒−𝜇𝑇2 (𝛷(−𝜇) −𝛷2(−𝜇))𝑒−𝜃𝑇2𝛷𝑋 (𝜃). (D.17)
25

𝜇 𝜇
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Fig. E.13. For the deterministic slowdown with slowdown factor 𝑠 = 1 and i.i.d. service times under 𝜋(𝑑,∞, 0) policy with number of replicas 𝑑 = 4, service rate
𝜇 = 1 and number of servers 𝑁 = 20, conditional mean response time 𝜏 as function of arrival rate 𝜆.

To prove the second statement, note that 𝛷1(𝜃) = 𝐹 (𝑇1)𝑒−𝜃𝑇1𝛷𝑋 (𝜃) from Eq. (D.12). Substitution and simplification tell us that
𝛷2(𝜃) =

(

1
𝜇+𝜃 −

1
𝜇−𝜆+𝜃

)

𝜇𝐹 (𝑇1)𝑒−𝜃𝑇1 +
�̄�𝑒−𝜃𝑇2
(𝜇−𝜆+𝜃) 𝑒

−𝜇𝑇2 (𝛷(−𝜇)−𝛷2(−𝜇)) when service times are exponentially distributed with rate 𝜇. The
esult follows by inverting this moment generating function and the fact that 𝛷2(0) = 𝐹 (𝑇2). □

Appendix E. Mean response time under identical replicas

In this appendix, we analyze the performance of our proposed policy when the service time distribution follows a special case of
the S&X model. We assume that the slowdown factor takes a deterministic value 𝑆𝑖 = 𝑠 for all servers 𝑖 ∈ [𝑁] and some finite 𝑠 ⩾ 1
and the job service time 𝑋𝑛 is i.i.d. exponential with rate 𝜇. Therefore, the service time of the 𝑛th job at all the servers at which
it gets accepted for processing will be identical and is a realization of the scaled exponential random variable 𝑠𝑋𝑛. For this service
model, we will derive the mean response time of a job for the 𝜋(𝑑, 𝑇1, 𝑇2) policy under the assumption of asymptotic independence
among the workloads at different queues.

Remark 17. We observe that the mean workload at the cavity queue under this model remains identical to the case when the job
sizes are i.i.d. exponential. Therefore, the loss probability for this model will remain identical to the case when the job sizes are
i.i.d. exponential and is given by Lemma 6.

Lemma 27. The conditional mean response time of a job under the 𝜋(𝑑, 𝑇1, 𝑇2) policy and identical job replica size of mean 𝑠∕𝜇 is given by

𝜏 = 1
1−𝑃𝐿

[

∫ 𝑇2
0 𝐹 (𝑤)𝑑 −𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1𝑑𝑤+ ∫ 𝑇1

𝑇2
(𝐹 (𝑤) −𝐹 (𝑇1))𝐹 (𝑇2)𝑑−1𝑑𝑤

]

+ 𝑠
𝜇 where 𝑃𝐿 is the loss probability and 𝐹 (𝑤) is the marginal

complementary workload distribution at equilibrium.

Proof. Consider a job arriving at the set of 𝑑 randomly selected set of primary and secondary servers, 𝐼1 and 𝐼2. Note that the job
ets admitted only at a set of servers 𝐼 ⊆ 𝐼1∪𝐼2. Suppose that the current workload at server 𝑗 is denoted by 𝑊𝑗 and the indicator of
job being undiscarded by 𝜉 = 1{𝐼≠∅} as defined previously. Then, the response time of an undiscarded job is given by 𝑅 = 𝑍+𝜉𝑠𝑋,

where we define 𝑍 ≜ 𝜉
(

min
{

𝑊𝑗 ∶ 𝑗 ∈ 𝐼
}

)

and the mean response time is

E[𝑅] = E[𝑍] +
𝑠(1 − 𝑃𝐿)

𝜇
. (E.1)

Next, we observe that 1{𝑍>𝑧} = 𝜉1{

min{𝑊𝑗∶𝑗∈𝐼}>𝑧
} = 𝜉

(

∏

𝐼1∪𝐼2 (𝜉𝑗1
{

𝑊𝑗>𝑧
} + 𝜉𝑗 )

)

. From the independence of the workloads and
herefore of the indicators 𝜉𝑗 across queues and by substituting for 𝜉 from Eq. (2), we get

E[1{𝑍>𝑧}] = E[
∏

𝐼1∪𝐼2

(𝜉𝑗1{

𝑊𝑗>𝑧
} + 𝜉𝑗 )] − E[

∏

𝐼1∪𝐼2

𝜉𝑗 ] =
∏

𝐼1∪𝐼2

E[(𝜉𝑗1{

𝑊𝑗>𝑧
} + 𝜉𝑗 )] −

∏

𝐼1∪𝐼2

E[𝜉𝑗 ]

= (𝐹 (𝑧)𝑑 − 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1)1{𝑧⩽𝑇2} + (𝐹 (𝑧) − 𝐹 (𝑇1))𝐹 (𝑇2)𝑑−11{𝑇2<𝑧⩽𝑇1}.

Since E[𝑍] = ∫ ∞
0 𝑃 {𝑍 > 𝑧} 𝑑𝑧, we obtain E[𝑍] = ∫ 𝑇2

0 𝐹 (𝑧)𝑑 − 𝐹 (𝑇1)𝐹 (𝑇2)𝑑−1𝑑𝑧 + ∫ 𝑇1
𝑇2

(𝐹 (𝑧) − 𝐹 (𝑇1))𝐹 (𝑇2)𝑑−1𝑑𝑧. The result follows
from Eqs. (E.1) and (3). □

Corollary 28. For the special case of replication on idle secondary servers in 𝑁 server system with Poisson arrivals of rate 𝜆𝑁 ,
the conditional mean response time under deterministic slowdown and exponential job sizes with rate 𝜇 is given by 𝜏 = 𝐹 (0)𝑑 +

∫ ∞
0+ 𝐹 (𝑧)𝐹 (0)𝑑−1𝑑𝑧 + 𝑠

𝜇 where 𝐹 (0) =
(1− 𝜆

𝜇 )(1−
�̄�
𝜇 )

𝜆 �̄� 𝜆 �̄� and 𝐹 (𝑧) = 1 − 𝐹 (0)
[

1 − �̄�
𝜇−𝜆 (1 − 𝑒−(𝜇−𝜆)𝑧)

]

, 𝑧 > 0.
26

(1− 𝜇 )+ 𝜇 ( 𝜇 − 𝜇 )
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We provide a comparison of the mean response time for the 𝜋(𝑑,∞, 0) policy under deterministic slowdown and i.i.d. exponential
service times in Fig. E.13. We observe that for low arrival rates, the performance is comparatively worse when the service times
are identical but not independent. However, the performance of both models converges for higher arrival rates as the chances of
secondary replicas getting admitted at the servers diminish with an increase in arrival rate.
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