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Abstract— This paper investigates the (k, k) fork-join schedul-
ing scheme on a system of n parallel servers comprising both
slow and fast servers. Tasks arriving in the system are divided
into k sub-tasks and assigned to a random set of k servers, where
each task can be assigned independently to a distinct slow or fast
server with selection probability ps or 1� ps, respectively. Our
analysis demonstrates that the joint distribution of the stationary
workload across any set of k queues becomes asymptotically
independent as the number of servers n grows, with k scaling
as o(n

1
4 ). Under asymptotic independence, the limiting mean

task completion time can be expressed as an integral. However,
it is analytically challenging to compute the optimal selection
probability p⇤

s that minimizes this integral. To address this,
we provide an upper bound on the limiting mean task completion
time and identify the selection probability p̂s that minimizes this
bound. We validate that this selection probability p̂s yields a
near-optimal performance through numerical experiments.

Index Terms— Heterogeneous servers, fork-join scheduling,
asymptotic independence, completion time.

I. INTRODUCTION

IN RECENT years, there has been a significant shift towards
horizontal scaling of resources in distributed computing,

driven by the need for improved performance and scalability.
In distributed computing systems, tasks are typically divided
into smaller sub-tasks and distributed across multiple servers to
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leverage parallel processing capabilities. However, the overall
task completion time is inherently limited by the slowest
server in the system. This limitation becomes particularly
challenging in practical scenarios where servers exhibit
heterogeneity, with some servers being faster and others slower
in terms of processing power. Treating all servers equally in
such heterogeneous environments can lead to an imbalanced
utilization of resources, with some servers becoming congested
while others remain underutilized. Consequently, the mean
task completion time increases, resulting in potential revenue
loss for the service provider and a degradation of overall
system performance. Addressing this issue and optimizing task
completion time in heterogeneous distributed computing envi-
ronments is paramount to maximize efficiency and resource
utilization.

In this paper, we focus on optimizing task completion
time in distributed computing systems comprising two distinct
classes of servers: slow servers and fast servers. When a task
arrives, it is divided into k sub-tasks and assigned to a set of
k out of n servers. This choice of k servers is referred to as
scheduling. Completing all k sub-tasks signifies the departure
of the task from the system. Such a system, where a task is
divided (forked) into k sub-tasks and all k completed sub-tasks
are aggregated (joined) to complete the task, is called a (k, k)
fork-join system.

The (k, k) fork-join system is a critical building block
in the job processing workflow of many data center ser-
vices including web search [2] and big data analytics [3],
which constitutes a significant part of job processing time
and hardware cost, e.g., more than two-thirds of the total
processing time and 90 percent hardware cost for a Web
search engine [4], [5], [6], [7]. For example, in large-scale
data processing frameworks like MapReduce, jobs are split
into multiple tasks during the map phase and assigned to
different servers. The reduce phase follows when these tasks
are completed, imposing synchronization constraints on task
finishing times. Each arriving job is divided into k map tasks,
simultaneously sent to k servers. Each task requires a random
service time, reflecting varying execution times on different
servers during the map phase. A job exits the fork-join system
only when all its tasks are served, ensuring that the reduce
phase commences after all map tasks are completed. Further,
fork-join systems have applications in distributed erasure-
coded storage, where the content can be requested from k
of the servers [8], [9], [10], [11], [12], [13].

Our primary objective is to identify a scheduling policy
that minimizes the mean completion time of incoming tasks.
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However, due to the heterogeneous nature of the servers,
determining the optimal set of k servers for each incoming task
becomes challenging. Achieving optimal mean task comple-
tion time performance necessitates considering the following
key parameters: the arrival rate of tasks, the number of sub-
tasks k, the number of slow and fast servers, and the absolute
speeds of the servers. We introduce a novel probabilistic policy
for task scheduling, which involves assigning sub-tasks to
either slow or fast servers based on a selection probability ps.
Specifically, a sub-task is sent to a slow server with probability
ps and a fast server with probability 1�ps. Within each class,
the selection is made uniformly at random without replace-
ment. By utilizing this proposed policy, we aim to determine
the optimal selection probability ps that minimizes the mean
task completion time. In essence, finding the optimal policy
reduces to identifying the selection probability that yields the
most efficient distribution of sub-tasks among the servers,
ultimately minimizing the overall mean task completion time.

A. Related Work

Numerous load balancing strategies have been proposed to
minimize the mean task completion time in distributed com-
puting systems. The join shortest queue (JSQ) policy [14], join
smallest work (JSW) policy [15], [16], [17], and water filling
policy [18] are among the commonly studied approaches.

We note that classical load balancing policies such as
JSQ/JSW, for homogeneous parallel server systems, require
queue/workload information from all queues at all arrival
instants. The information overhead in JSQ/JSW can be reduced
by “power-of-d” variants [17], [19], [20], [21], [22], [23] of
these policies, where only d queues are queried.

These variants involve sampling a random subset of d
servers and assigning the job to a server based only on
the state of the queried servers, e.g., the server with the
shortest queue length or workload. Other efficient dispatching
policies for parallel server systems include the size interval
task assignment policy [24], Redundant-to-Idle queue [25],
and load balancing with timed replicas [26]. Power-of-d vari-
ants without subdivision of tasks are akin to (d, 1) fork-join
queue [17], [19], [20], and with subdivision of tasks they are
akin to (d, k) fork-join queues [9], [11], [13]. However, it is
important to note that these policies are primarily designed for
homogeneous server systems, and a direct adaptation of these
strategies to a heterogeneous system may not yield optimal
performance. Please see a detailed discussion in Appendix C
on the classical load balancing policies adapted to our setting.

In [27], a comprehensive comparison of various load balanc-
ing algorithms designed explicitly for heterogeneous systems
is presented. More recent studies have proposed load balancing
strategies tailored for heterogeneous parallel server environ-
ments where join the shortest queue type strategy is studied
in [28] and “power-of-d” type strategies are studied [29],
[30], both without task subdivision. Further, the load balancing
problem of selecting a single server has been studied in [31].
However, it is worth noting that all these studies focus on
load balancing in the context of heterogeneous servers without
explicitly considering the subdivision of tasks into multiple
sub-tasks, which is the primary focus of our research.

Analysis of power-of-d type strategies involves showing the
statistical independence of marginal stationary workload dis-
tribution of a finite set of queues in the limit of a large number
of queues. This is referred to as asymptotic independence, and
has been shown to hold under various conditions in [18], [19],
[20], [21], [22], and [23] in the homogeneous server settings.
We note that establishing asymptotic independence for the
setting of heterogeneous queues requires non-trivial adaptation
of the existing proof techniques.

B. Our Contributions

The key contributions of this paper can be summarized as
follows.

1) We demonstrate the asymptotic independence of the sta-
tionary workload distribution in a heterogeneous server
system with two classes of heterogeneity. This result
is achieved by implementing a probabilistic policy and
considering a general service distribution for the two
server classes, along with Poisson arrivals. Specifically,
we establish asymptotic independence for k out of n
queues, as long as k = o(n 1

4 ).
2) Leveraging the asymptotic independence of the station-

ary workload distribution, we analytically calculate the
limiting mean task completion time for systems with an
arbitrarily large number of servers.

3) The analytical determination of the optimal selection
probability p⇤s , which minimizes the limiting mean task
completion time, poses significant computational chal-
lenges. Consequently, we derive an upper bound on the
limiting mean task completion time and identify the selec-
tion probability p̂s that minimizes this bound. Although
this obtained selection probability approximates the opti-
mal selection probability, we empirically demonstrate its
accuracy through numerical studies.

4) We adapt classical load balancing policies such as
JSQ/JSW and their power-of-d variants to the setting
of heterogeneous servers with subdivision of tasks in
Appendix C, and compare their performance with the
proposed policy. We note that modified JSQ/JSW has
a large sampling overhead compared to their power-
of-d variants, whereas the proposed policy requires no
sampling of the queues. We observe that the modified
JSQ/JSW outperforms the proposed policy. However, the
proposed policy outperforms power-of-d variants, even
when the number of queried servers d is slightly larger
than the number of sub-tasks k.

Notation: We denote the set of first k positive integers
by [k] , {1, . . . , k}, the set of first k + 1 non-negative
integers by [k]0 , {0, . . . , k}, the set of all positive integers
by N, the set of all non-negative integers by Z+, the set
of all non-negative reals by R+, and the set of all vectors
of length k taking values in a set A by Ak. The set of
all probability measures on a countable set X is defined by
M(X ) ,

�
⌫ 2 [0, 1]X :

P
x2X ⌫x = 1

 
.

II. SYSTEM MODEL

We consider a system S of n heterogeneous servers with
two types of heterogeneity. The sets of slow and fast servers
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are denoted by Es ✓ [n] and Ef = [n] \ Es, respectively.
We denote the number of slow and fast servers by ns , |Es|
and nf , |Ef | = n � ns, respectively. The fraction of slow
and fast servers are denoted by fs , ns

n and f̄s , 1�fs = nf

n
respectively.

A. Task Arrival and Completion

Each arriving task is subdivided into k sub-tasks and dis-
patched to k distinct servers selected out of n. The task is
assumed to be completed when all k sub-tasks are completed,
and it leaves the system. We assume that each sub-task is
served in a first-come-first-served (FCFS) manner at each
server. For this system, we assume a Poisson arrival of tasks
with homogeneous rate ⇤ , n�

k . We assume that k < ns^nf

2 .

B. Sub-Task Service Time

The sub-task service time for task i at server j is denoted by
a random variable Xi,j . We assume that (Xi,j : i 2 N, j 2 [n])
is independent across servers [n] and across tasks i 2 N. The
sub-task service time distribution at server j is denoted by
GXj : R+ ! [0, 1]. We assume this distribution is identical
for servers within each class and has bounded first and second
moments.

Definition 1: The sub-task service time distribution at slow
and fast servers is denoted by Gs and Gf , respectively. That
is,

GXj = Gs {j2Es} + Gf {j2Ef}.

The service rates of slow and fast servers are denoted by µs

and µf , respectively, where µs < µf . That is,

EXi,j =
1
µs

{j2Es} +
1
µf

{j2Ef}.

The second moments of service distributions for slow and fast
servers are denoted by gs,2 and gf,2, respectively. That is,

EX2
i,j = gs,2 {j2Es} + gf,2 {j2Ef}.

C. Server Selection for Sub-Task Completion

We consider a probabilistic selection of k servers out of
n. Servers are selected sequentially to be either slow or fast
with probabilities (ps, 1� ps) respectively. Once the server is
selected to be slow or fast, it is chosen to be one of the slow
or fast servers uniformly at random without replacement from
the respective pool of servers.

Definition 2: For task i, let Ii be the k-set of probabilis-
tically selected servers, then we denote the random set of
selected slow and fast servers by Ii

s , Ii\Es and Ii
f , Ii\Ef

respectively and denote the random number of slow and fast
servers as Ki

s ,
��Ii

s

�� and Ki
f , k �Ki

s respectively.
Denoting pf , 1�ps, we can write the probability of selecting
ks slow servers for task i, as

q(ks) , P
�
Ki

s = ks

 
=
✓

k

ks

◆
pks

s pk�ks
f . (1)

D. Sub-Task Arrival Rate

We can compute the probability that a slow server j 2 Es

is selected by the dispatcher for an incoming task, as
kX

ks=1

q(ks)

�ns�1
ks�1

�
�ns

ks

� =
1
ns

kX

ks=1

ksq(ks) =
kps

nfs
.

This probability is independent of the incoming task, and
hence the arrival at each slow server is a thinned Poisson
process with an arrival rate

�s , �n

k

⇣kps

nfs

⌘
=

�ps

fs
. (2)

Analogously, we can compute the probability that a server j 2
Ef is selected by the dispatcher for an incoming task as kpf

nf̄s

independent of the task. Consequently, the arrival process at
each fast server is a thinned Poisson process with arrival rate

�f , �pf

f̄s
. (3)

III. PERFORMANCE METRICS

We denote the marginal workload at server j seen by ith
incoming task by Wi,j , and its limiting distribution by FWj :
R+ ! [0, 1] such that

FWj (x) , lim
i!1

P {Wi,j 6 x} . (4)

Due to symmetry in the system, the marginal workload distri-
bution is identical at all slow servers and all fast servers. The
limiting distribution of the marginal workload at a slow and a
fast server is denoted by Fs and Ff , respectively. That is,

FWj (x) = Fs(x) {j2Es} + Ff (x) {j2Ef}. (5)

If one of the k sub-tasks for the ith task is dispatched to a
server j 2 Ii, then the sub-task completion time at this server
is denoted by Ti,j , Wi,j + Xi,j . Since the sub-task service
times are i.i.d. at each server, Wi,j and Xi,j are independent
and for any x 2 R+

FTi,j (x) , P {Ti,j 6 x}

=
Z

y6x
P {Wi,j 6 x� y} dGXj (y).

We denote the limiting distribution of sub-task completion
time at any server j as LTj : R+ ! [0, 1], which can be
written for any x 2 R+, as

LTj (x) , lim
i!1

P {Ti,j 6 x} =
Z

y2R+

FWj (x� y)dGXj (y).

The above equality follows from the dominated convergence
theorem since the integrand is positive and bounded by unity.
It follows that the limiting distribution of sub-task completion
times are identical for slow and fast servers, and we denote
them by Ls and Lf , respectively. That is,

LTj (x) = Ls(x) {j2Es} + Lf (x) {j2Ef}. (6)

The completion time for task i is denoted by Ti, which is the
maximum of the sub-task completion times at the selected Ii

servers and written as

Ti , max
j2Ii

Ti,j .
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The equilibrium distribution of task completion times for n
server system is denoted by Hn : R+ ! [0, 1], and defined
for all x 2 R+ as

Hn(x) , lim
i!1

P {Ti 6 x} .

When the number of servers increases, the asymptotic equilib-
rium distribution of task completion times for n server system
is denoted by Hn : R+ ! [0, 1], and defined for all x 2 R+

as

H(x) , lim
n!1

Hn(x).

Remark 1: Consider a system of n homogeneous and inde-
pendent servers with i.i.d. service times having the following
identical bimodal distribution for each server j 2 [n]

FXi,j , Gs⌅i,j + Gf (1� ⌅i,j),

where ⌅i,j indicates slow service for the sub-task corre-
sponding to task i at server j, and ⌅ : ⌦ ! {0, 1}N⇥[[n]]

is an i.i.d. Bernoulli random sequence with E⌅i,j = ps.
The asymptotic independence for this system follows in a
straightforward manner from [18] and [23]. However, we note
that this is a different system than the one under consideration.
For example, we compare this system to the one we are
considering in our system model with the following coupling.
Arrival instants in both systems are identical, and the k sub-
tasks are sent to the same set of servers. We notice that the
slow servers remain slow for all sub-tasks in our system.
However, each server can be slow or fast in this system for
different sub-tasks. Consequently, the marginal distribution
at each server in this system is identical. Contrastingly, the
marginal distribution at each server is identical only within a
class for our system and is completely different between the
two classes. Even though the proposed system model is a bit
more difficult to analyze, it is a better fit for practical systems.

IV. ASYMPTOTIC INDEPENDENCE

We will consider the system of servers where the number
of sub-tasks k scales with n. However, for ease of exposition,
we will not explicitly mention dependence on the number of
servers n. Apart from the system under consideration S, we
consider two related systems S̃ and Ŝ. We assume all three
systems start empty at time 0 and focus on the joint distribution
of queues at the set of first k servers in all three systems. The
set of slow and fast servers in the first k servers are denoted
by Is , [k] \ Es and If , [k] \ Ef respectively, such that
Is [ If = [k]. The number of slow and fast servers in the
first k servers is denoted by is , |Is| and if , |If | = k � is
respectively.

Definition 3 (Independent system): System Ŝ consists of n
independent M/G/1 queues partitioned into two disjoint sets
of slow and fast servers denoted by Es and Ef , respectively.
Each server gets an independent Poisson arrival with rates
�s and �f for slow and fast servers respectively, where the
arrival rates �s and �f are defined in (2) and (3) respectively.
We denote the marginal workload at server j in the system Ŝ
at time t by Ŵj(t), and as seen by ith incoming task by Ŵi,j .

Definition 4 (Coupled system): Recall that Ii is the set of
servers where sub-tasks are dispatched for each arrival i in
the system S. We couple systems S̃ and S in the following
way for each arrival i. The sub-tasks are dispatched to the
set of servers Ii \ ([n] \ [k]) in S̃ with sub-task service times
identical to the corresponding sub-tasks in S. The sub-tasks are
dispatched to the set of servers Ii\ [k] in the first k servers of
S. If Ii\ [k] = ;, then there are no sub-tasks dispatched to the
first k servers in both S and S̃. If Ii\ [k] 6= ;, we pick exactly
one server for sub-task dispatch in the first k servers of S̃, and
the rest of the sub-tasks are dropped. We define the number
of selected slow and fast servers as J i

s ,
��Ii \ Es \ [k]

�� and
J i

f ,
��Ii \ Ef \ [k]

�� respectively, for sub-task dispatch to the
first k servers in S. In the following three cases, we describe
the selection criterion for single sub-task dispatch among the
first k servers of S̃.
Case 1: J i

s + J i
f = 1. The corresponding server is selected.

Case 2: J i
sJ

i
f = 0 and J i

s + J i
f > 2. If J i

f = 0, then a
slow server is selected uniformly at random from
Ii\Es\ [k]. If J i

s = 0, then a fast server is selected
uniformly at random from Ii \ Ef \ [k].

Case 3: J i
sJ

i
f > 1 and J i

s + J i
f > 2. A slow or a fast server

is randomly selected with probability ps and pf ,
respectively. If a slow server is chosen for selection,
then a server is selected uniformly at random from
Ii \Es \ [k]. If a fast server is chosen for selection,
then a server is selected uniformly at random from
Ii \ Ef \ [k].

We dispatch the corresponding sub-task to the selected server
in S̃, with sub-task service time identical to the corresponding
sub-task in S. We drop the remaining J i

s + J i
f � 1 sub-tasks

in S̃. We denote the marginal workload at server j in the
system S̃ at time t by W̃j(t), and as seen by ith incoming
task by W̃i,j .

Lemma 1: Consider the system S, where the first k servers

have is slow and if = k � is fast servers. Any arrival i
selects Ki

s out of ns slow servers and Ki
f = k �Ki

s out of

nf slow servers, for scheduling k sub-tasks on these servers.

Further, this arrival selects J i
s out of is slow and J i

f out of

if fast servers, among the first k servers. We can write this

joint probability as

P
�
(J i

s, J
i
f ) = (js, jf )

 
=

kX

ks=0

q(ks)rs(ks, js)rf (k � ks, jf ),

where we define the selection probability of js out of is slow

servers given ks out of ns slow servers were selected, as

rs(ks, js) , P (J i
s = js | Ki

s = ks) =

�is

js

��ns�is

ks�js

�
�ns

ks

� , (7)

and the selection probability of jf out of if fast servers given

kf out of nf slow servers were selected, as

rf (kf , jf ) , P (J i
f = jf | Ki

f = kf ) =

�if

jf

��nf�if

kf�jf

�
�nf

kf

� . (8)

Proof: Please refer to Appendix A-A.
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Remark 2: We will frequently use the following identity in
the subsequent results given by

✓
n

k

◆
=

i^kX

j=0

✓
i

j

◆✓
n� i

k � j

◆
. (9)

Recall that
�n

k

�
is the coefficient of xk in the polynomial (1+

x)n. Since (1 + x)n = (1 + x)i(1 + x)n�i for any i 6 n,
the coefficient of xk in the product would be the sum of the
products of the coefficients of xj and xk�j in the first and the
second polynomial, summed over all j 6 i ^ k. In particular,
this remark implies that

ks^isX

js=0

rs(ks, js) = 1,

kf^ifX

jf =0

rf (kf , jf ) = 1.

Lemma 2: The workload distribution at first k servers of the

coupled system S̃ defined in Definition 4 are mutually inde-

pendent. Each of them is an M/G/1 queue with independent

Poisson arrivals to slow and fast servers in the first k servers,

having homogeneous rates given by

�̃s , ⇤
kps

ns
(ps + pfrf (kf , 0)), (10)

�̃f , ⇤
kpf

nf
(pf + psrs(ks, 0)), (11)

where rate ⇤ = n�
k , probabilities rs, rf are defined in (7)

and (8) respectively, and ks + kf = is + if = k.

Proof: Please refer to Appendix A-B.
Lemma 3: Consider the arrival rates �̃s defined in (10) for

slow servers and �̃f defined in (11) for fast servers, in the

first k servers of the coupled system S̃. Then, we have

(a) �̃s 6 �s and �̃f 6 �f and

(b) �s � �̃s = O
⇣

k2

n

⌘
, and �f � �̃f = O

⇣
k2

n

⌘
.

Proof: Please refer to Appendix A-C.
Definition 5: For w 2 Rk

+, we define the joint distribution
of workload at first k servers in systems S, S̃, Ŝ at time t by

⇡k
t (w) , P

⇣
\k

j=1 {Wj(t) 6 wj}
⌘
,

⇡̃k
t (w) , P

⇣
\k

j=1

n
W̃j(t) 6 wj

o⌘
,

⇡̂k
t (w) , P

⇣
\k

j=1

n
Ŵj(t) 6 wj

o⌘
.

The corresponding equilibrium distributions are denoted by
⇡k, ⇡̃k, ⇡̂k respectively.

Definition 6: Consider two distributions ⇡, ⌫ : B(X ) !
[0, 1]. Then, the total variation distance is defined as

dTV(⇡, ⌫) , sup
A2B(X )

|⇡(A)� ⌫(A)| .

Remark 3: If ⇡, ⌫ are distributions for random variables
W,V : ⌦ ! X , then dTV(⇡, ⌫) 6 P {W 6= V } . To see this,
we observe that for all events A 2 B(X ), we have

⇡(A)� ⌫(A) = P {W 2 A, W 6= V }� P {V 2 A, W 6= V }
6 P {W 6= V } .

Lemma 4: If ⌧ = O
⇣p

n
k

⌘
, then dTV(⇡k

⌧ , ⇡̃k
⌧ ) = O

⇣
k2
p

n

⌘
.

Proof: Please refer to Appendix A-D.

Lemma 5: If time ⌧ = O(
p

n
k ), then we have

dTV(⇡k
⌧ , ⇡k) = O

⇣ k2

p
n

⌘
, dTV(⇡̃k

⌧ , ⇡̃k) = O
⇣ k2

p
n

⌘
,

dTV(⇡̂k
⌧ , ⇡̂k) = O

⇣ k2

p
n

⌘
.

Proof: Please refer to Appendix A-E.
Lemma 6: The total variation distance between the equilib-

rium distribution of workloads in the first k servers of systems

S̃ and Ŝ is dTV(⇡̃k, ⇡̂k) = O( k2
p

n
).

Proof: Please refer to Appendix A-F.
Theorem 1 (Asymptotic independence): Consider the equi-

librium distributions ⇡k, ⇡̂k
for workloads in the first k servers

of systems S and Ŝ, respectively. Then, the total variance

distance dTV(⇡k, ⇡̂k) = O
⇣

k2
p

n

⌘
. In particular, if k = o(n 1

4 ),
then

lim
n!1

dTV(⇡k, ⇡̂k) = 0.

Proof: Let ⌧ = O(
p

n
k ). Using triangular inequality for

the total variation distance, we can write

dTV(⇡k, ⇡̂k) 6dTV(⇡k, ⇡k
⌧ ) + dTV(⇡k

⌧ , ⇡̃k
⌧ ) + dTV(⇡̃k

⌧ , ⇡̃k)
+ dTV(⇡̃k, ⇡̂k).

The result follows from Lemma 4, Lemma 5, and Lemma 6.

Remark 4: We have shown asymptotic independence for the
first k out of n queues, so long as k = o(n 1

4 ). Without any
loss of generality, the asymptotic independence holds for any
set A ✓ [n] of size |A| = o(n 1

4 ) out of n queues.
Remark 5: Denoting the equilibrium distribution for the

workload at servers in a subset A ✓ [n] as ⇡A : B(RA
+) !

[0, 1], defined for all x 2 RA
+ as

⇡A(x) , lim
t!1

P
⇣
\j2A {Wj(t) 6 xj}

⌘
.

Since the system S has Poisson arrivals, it follows from
PASTA property [32] that for all x 2 RA

+

⇡A(x) = lim
i!1

P
⇣
\j2A {Wi,j 6 xj}

⌘
.

From the definition of limiting marginal workload distribution
in (4), the asymptotic independence of the workload distribu-
tion for any finite set of servers in Theorem 1, the definition of
total variation distance, and the fact that the limiting marginal
workload distribution is identical within a class as shown
in (5), we get for all x 2 RA

+

⇡A(x) =
Y

j2A\Es

Fs(xj)
Y

j2A\Ef

Ff (xj) + O
⇣ |A|2p

n

⌘
. (12)

V. MEAN TASK COMPLETION TIME

Recall that task completion time is the maximum of all k
sub-task completion times. From the asymptotic independence
of limiting sub-task completion times in Theorem 1, we can
compute the limiting mean task completion time as the number
of servers grows larger. This allows us to analytically compute
the limiting mean task completion time as an integral. This
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is shown in Section V-A for a general sub-task service time
distribution and specifically computed for the exponential
distribution. One can numerically evaluate this integral to find
the optimal selection probability p⇤s that minimizes the limiting
mean task completion time. We next propose an upper bound
on the limiting mean task completion time in Section V-B for
a general sub-task service time distribution. We analytically
compute the selection probability p̂s that minimizes this upper
bound for exponential distribution in Section V-B.1 and for
shifted exponential in Section V-B.2. The shifted exponential
distribution is a generalization of the exponential distribution
and is shown to be a better model for service in realistic cloud
computing systems such as Amazon S3 and Tahoe [8], [33],
[34]. The probability p̂s serves as an approximation for the
optimal selection probability p⇤s .

A. Exact Computation

Theorem 2: Consider the system S with k = o(n 1
4 ) with

the slow server selection probability ps, and the limiting

distribution of sub-task completion times Ls, Lf : R+ !
[0, 1] at slow and fast servers respectively. The asymptotic

equilibrium distribution H : R+ ! [0, 1] of task completion

time is

H(x) = (psLs(x) + pfLf (x))k, x 2 R+. (13)

Proof: Recall that for ith arriving task, the sub-task
completion time at server j is Ti,j = Wi,j +Xi,j , and the task
completion time Ti = maxj2Ii Ti,j . Using the tower property
of conditional expectation, we can write the probability of task
completion time being less than equal to a threshold x, as

P {Ti 6 x} = E[E[
Y

j2Ii

{Wi,j6x�Xi,j} | (Xi,j , j 2 Ii), Ii]].

Since Ii takes finitely many values, we can write the condi-
tional expectation

E[
Y

j2Ii

{Wi,j6x�Xi,j} | (Xi,j , j 2 Ii), Ii]

=
X

A✓[n]:|A|=k

{Ii=A}E[
Y

j2A

{Wi,j6x�Xi,j} | (Xi,j , j 2 A)].

Taking time equilibrium limit i ! 1, exchanging limit
and expectation using the monotone convergence theorem for
non-negative random variables, exchanging finite sum and
limits, and independence of selection set Ii and service-time
Xi,j for each task-arrival i 2 N, we get

Hn(x) = lim
i!1

E[
Y

j2Ii

{Wi,j6x�Xi,j}]

=
X

A✓[n]:|A|=k

P {I1 = A}E⇡A(x�X1,j : j 2 A).

From (12) for joint equilibrium workload distribution on
servers A, the fact that LTj (x) = EFWj (x � X1,j) for all
x 2 R+, the definition of distribution q 2 M([k]0) in (1),
and (6) for marginal sub-task completion distribution being
identical within a class, we get

Hn(x) =
kX

ks=0

q(ks)Ls(x)ksLf (x)k�ks + O
⇣ k2

p
n

⌘
.

Result follows from taking limit n ! 1 on both sides for
k = o(n 1

4 ), the binomial form of q(ks) =
� k
ks

�
pks

s (1�ps)k�ks ,
and the binomial expansion of (a + b)k.

Corollary 1: The mean task completion time for the hetero-

geneous system under consideration is given by

lim
i!1

E[Ti] =
Z

x2R+

[1� (psLs(x) + pfLf (x))k]dx.

If the sub-task completion times are exponentially distributed,
each queue observed in isolation is an M/M/1 queue, and we
get the following proposition.

Proposition 1: Consider the case when sub-task service

times at slow and fast servers are distributed exponentially

with rates µs and µf respectively, such that slow server loads

⇢s , �s
µs

< 1 and fast server loads ⇢f , �f

µf
< 1. Then,

the limiting marginal workload distribution at slow and fast

servers for w 2 R+ are

Fs(w) = 1� ⇢se
�(µs��s)w, Ff (w) = 1� ⇢fe�(µf��f )w.

Further, the limiting sub-task completion times for slow and

fast servers are

Ls(x) = 1� e�(µs��s)x, Lf (x) = 1� e�(µf��f )x.

Remark 6: We observe that the slow and fast server queues
are unstable for ⇢s > 1 and ⇢f > 1, respectively. It follows
that the stability conditions for all queues in the system are

�ps 6 µsfs, �pf 6 µf f̄s, � < µsfs + µf f̄s. (14)

We have normalized the arrival rates to be independent of the
system size n and the number of forked sub-tasks k, such that
the stability region only depends on service rates µs, µf and
the fraction of slow servers fs. In particular, we observe that
the stability region for normalized arrival rate � is a convex
sum of the fast and slow service rates and reduces linearly
with increased fraction fs of slow servers.

Corollary 2: For stable M/M/1 queues in Proposition 1,

the limiting mean task completion time is

Z

x2R+

[1� (1� pse
�(µs��s)x � pfe�(µf��f )x)k]dx.

Remark 7: For stable M/M/1 queues in Proposition 1, the
limiting mean task completion time as

kX

i=1

iX

ks=0

(�1)i�1

✓
k

i

◆✓
i

ks

◆

⇥ pks
s (1� ps)i�ks

ks(µs � �s) + (i� ks)(µf � �f )
.

Even for exponentially distributed sub-task completion times,
analytical computation of the optimal selection probability p⇤s
that minimizes the limiting mean task completion time seems
intractable for k > 1. However, one can numerically evaluate
the optimal selection probability.
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B. Upper and Lower Bound

For an M/G/1 queue with Poisson arrivals of rate � and
i.i.d. service time sequence X , the system load is ⇢ , �EX1.
Using Pollaczek-Khintchine formula [35], we can write the
limiting mean sojourn time as EX1 + �EX2

1
2(1�⇢) , for load ⇢ < 1.

In this section, we will provide an upper and lower bound on
the mean task completion time for the heterogeneous system
S with Poisson arrivals and general i.i.d. service times.

Theorem 3: The mean task completion time for the het-

erogeneous system S with Poisson arrivals and general i.i.d.
service times is upper and lower bounded as

h(ps) 6 lim
i!1

ETi 6 kh(ps),

where the mapping h : [0, 1] ! R+ is defined for p 2 (1 �
f̄s

�EXf
, fs

�EXs
) as

h(p) , p
⇣
EXs +

EX2
s

2( fs

�p � EXs)

⌘

+ p̄
⇣
EXf +

EX2
f

2( f̄s

�p̄ � EXf )

⌘
.

Proof: The maximum of k random variables is upper
bounded by their sum and lower bounded by their average.
Therefore, we can upper bound the completion time of task i
by the sum of sub-task completion times at k selected servers
Ii and lower bound it by their average. That is,

1
k

X

j2Ii

Ti,j 6 Ti = max
j2Ii

Ti,j 6
X

j2Ii

Ti,j .

Since the marginal sub-task completion times at all slow and
fast servers are identical, we get

E
X

j2Ii

Ti,j =
kX

ks=0

q(ks)
⇣
ksE[Ti,j ] {j2Es}

+ (k � ks)E[Ti,j ] {j2Ef}

⌘
.

The result follows by taking limit i ! 1 on both
sides, applying the Pollaczek-Khintchine formula for stable
M/G/1 queues, the definition of �s in (2) and �f in (3), and
the fact that

Pk
ks=0 ksq(ks) = kps.

Remark 8: Recall that the optimal slow server selection
probability p⇤s = arg minps limi!1 ETi and we can define
p̂s , arg minp h(p). Since the function h is independent of
k, we observe that the p̂s minimizes both the lower and the
upper bound on the limiting mean task completion time. Even
though the lower and the upper bound differ by a factor of
k, they have the same minimizer p̂s. We take this minimizing
probability as an approximation for the optimal slow server
selection probability p⇤s .

1) Exponential Sub-Task Service:

Corollary 3: Consider the stable heterogeneous system S
with exponentially distributed sub-task service times having

rates (µs, µf ) for slow and fast servers. The limiting mean

task completion time is upper and lower bounded as

g(ps) 6 lim
i!1

ETi 6 kg(ps),

where g : [0, 1] ! R+ is defined for p 2 (1� µf f̄s

� , µsfs

� ), as

g(p) , � 1
�

+
fs

�(1� �p
µsfs

)
+

f̄s

�(1� �(1�p)
µf f̄s

)
. (15)

Proof: For exponentially distributed service time with
rates µs and µf for slow and fast servers, we have EX2

s = 2
µ2

s

and EX2
f = 2

µ2
f

.
Remark 9: We observe that the upper bound on the mean

task completion time has three terms. The second term is
increasing and the third term is decreasing, both in slow
server selection probability ps. We can verify that g(ps) is
convex in ps and hence has a unique minimum. Accordingly,
we define p̂s 2 [0, 1] as the minimizing probability for the
upper bound on the limiting mean task completion time for
a stable system. We define ↵ , f̄s

fs

q
µf

µs
, and two thresholds

⌧1, ⌧2 on normalized arrival rates as

⌧1 , f̄s(µf �
p

µsµf ), ⌧2 , f̄s(µf +pµsµf ). (16)

We observe that ⌧1 < ⌧2, and verify that ↵ 6 1 iff ⌧2 6
µsfs + µf f̄s.

Corollary 4: The upper bound on the limiting mean task

completion time for exponentially distributed sub-task service

times is minimized by the selection probability

p̂s =

8
<

:

0, � 6 ⌧1,
1� ⌧1

�

1 + ↵
, ⌧1 6 � < µsfs + µf f̄s,

(17)

for ↵ and ⌧1 defined in Remark 9.

Proof: We take the derivative of the upper bound on the
mean task completion time for memoryless sub-task comple-
tion times in Corollary 3 with respect to ps and write it in
terms of thresholds ⌧1, ⌧2 defined in (16) and constant ↵, as

g0(ps) =
(⌧1 � � + �ps(1 + ↵))(⌧2 � � + �ps(1� ↵))

µsµ2
f f̄2

s (1� �ps

µsfs
)2(1� �pf

µf f̄s
)2

.

We observe that the denominator is always positive, and the
numerator is a product of two linear functions f1, f2 : R ! R,
defined as f1(p) , ⌧1 � � + �p(1 + ↵) and f2(p) , ⌧2 �
� + �p(1 � ↵). The roots of the two linear maps f1, f2 are
respectively

p⇤1 , �� ⌧1

�(1 + ↵)
, p⇤2 , �� ⌧2

�(1� ↵)
. (18)

From the definition, it follows that p⇤1 > 0 for � > ⌧1 and
p⇤1 6 1. In addition, the condition p⇤1 < µsfs

� stabilizes the
slow server queues, and the condition 1�p⇤1 < µf f̄s

� stabilizes
the fast server queues. Therefore, the condition on normalized
arrival rate � < µsfs +µf f̄s stabilizes all queues. We observe
that f1 6 0 iff p 6 p⇤1. We next observe that for stable queues,
p⇤2 < p⇤1 iff ↵ < 1. This is because the condition p⇤2 < p⇤1 for
↵ < 1, is equivalent to the condition p⇤1 < p⇤2 for ↵ > 1,
which is equivalent to

� <
⌧2

2

⇣ 1
↵

+ 1
⌘
� ⌧1

2

⇣ 1
↵
� 1

⌘
= fsµs + f̄sµf .

For normalized arrival rate � < ⌧1, the upper bound g
is always increasing and hence is minimized by p̂s = 0.
We consider the following three cases for � > ⌧1.
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Case ↵ > 1. In this case, f2 > 0 iff p 6 p⇤2. Thus
g0(ps) 6 0 iff ps 2 [0, p⇤1] [ [p⇤2, 1]. Hence, the upper bound
g decreases in [0, p⇤1], increases in [p⇤1, p⇤2], and decreases
thereafter. Therefore, g is minimized for ps 2 {p⇤1, 1} for
� > ⌧1. We observe that p⇤1 satisfies the stability conditions
for slow server in the region � 2 µsfs + [0, µf f̄s) and for
the fast server in the region � 2 µf f̄s +[0, µsfs). In addition,
we observe that g(p⇤1) < g(1) for � 2 [⌧1, µsfs). It follows
that p̂s = p⇤1 for all � 2 [⌧1, µsfs + µf f̄s).

Case ↵ < 1. In this case, f2 6 0 iff p 6 p⇤2. Thus
g0(ps) > 0 iff ps 2 [0, p⇤2] [ [p⇤1, 1]. Hence, the upper bound
g increases in [0, p⇤2], decreases in [p⇤2, p⇤1], and increases
thereafter. Therefore, g is minimized for ps 2 {0, p⇤1} for
� > ⌧1. In addition, we observe that g(p⇤1) < g(0) for all � 2
[⌧1, µf f̄s). It follows that p̂s = p⇤1 for all � 2 [⌧1, µsfs+µf f̄s).

Case ↵ = 1. In this case, f2 = ⌧2�� = µsfs +µf f̄s�� >
0 in the stability region. Further, the upper bound g decreases
in [0, p⇤1] and increases in [p⇤1, 1]. Therefore, g is minimized
for ps = p⇤1 for � > ⌧1.

Remark 10: From Corollary 4, we observe that the approx-
imately optimal slow server selection probability p̂s is a
concave increasing function of normalized arrival rate �. The
probability p̂s = 0 until a threshold ⌧1 and saturates to
probability µsfs

µsfs+µf f̄s
at the boundary of the stability region.

In other words, it is best to schedule incoming jobs on fast
servers for sufficiently low normalized arrival rates � < ⌧1.
As the load increases, incoming jobs need to be scheduled on
slow servers, and the probability of selection of slow servers is
a concave increasing function of the normalized arrival rate �.
We also observe that the threshold ⌧1 is an affine decreasing
function of the fraction of slow servers fs. If there is a larger
fraction of slow servers, then p̂s quickly becomes non-zero.

2) Shifted Exponential Sub-Task Service:

Corollary 5: Consider the heterogeneous system S for

shifted exponentially distributed sub-task service times with

parameters (cs, µs) and (cf , µf ) for slow and fast servers,

respectively, such that

�ps <
fs

EXs
, �pf <

f̄s

EXf
, � <

fs

EXs
+

f̄s

EXf
. (19)

Then, the mean task completion time is upper and lower

bounded as

h(ps) 6 lim
i!1

ETi 6 kh(ps),

where h : [0, 1] ! R+ is defined for ps 2 (1� f̄s

�EXf
, fs

�EXs
),

as

h(ps) , ps

⇣ (1� �scs)EXs + 1
2c2

s�s

(1� �sEXs)

⌘

+ pf

⇣ (1� �fcf )EXf + 1
2c2

f�f

(1� �fEXf )

⌘
.

Proof: For shifted exponentially distributed service time
with parameters (cs, µs) and (cf , µf ) for slow and fast servers
respectively, we have means EXs = cs + 1

µs
and EXf =

cf + 1
µf

, and the second moments EX2
s = (EXs)2 + 1

µ2
s

and
EX2

f = (EXf )2 + 1
µ2

f
.

Corollary 6: Consider a shifted exponential distribution for

sub-task completion times with parameters (cs, µs) for slow

servers and parameters (cf , µf ) for fast servers, such that

� < fsEXs ^ f̄sEXf . The upper bound on the limiting mean

task completion time is minimized by the selection probability

p̂s that solves

cs +
1
2c2

s�s

(1� �sEXs)
+

1
µs

+ 1
2c2

s�s

(1� �sEXs)2

= cf +
1
2c2

f�f

(1� �fEXf )
+

1
µf

+ 1
2c2

f�f

(1� �fEXf )2
. (20)

VI. COMPARISON TO DETERMINISTIC SELECTION

We compare the performance of the probabilistic selection
of slow and fast servers to a deterministic selection. Consider
the system S of n servers, partitioned by a set Es ✓ [n] of
slow servers, and remaining set Ef ✓ [n] of fast servers such
that ns = |Es| , nf = |Ef |, and a Poisson arrival of tasks with
homogeneous rate ⇤ = n�

k where n = ns + nf . Service time
at all slow servers is i.i.d. with distribution Gs, independent
of the service time at all fast servers, which is i.i.d. with
distribution Gf . Each incoming task i is scheduled on a set
of slow servers Ii

s ✓ Es and Ii
f ✓ Ef , chosen uniformly at

random within the class, where
��Ii

s

�� = ks and
���Ii

f

��� = kf are
fixed. The task i is assumed to be completed when sub-tasks
scheduled at all servers Ii

s [ Ii
f get completed.

Each server in this system is an M/G/1 queue, where
one can verify that the arrivals to all servers are Poisson
with homogeneous rates �s , n�ks

kns
for slow servers and

�f , n�kf

knf
for fast servers. We denote the limiting marginal

workload distribution at slow and fast servers by Ls and Lf ,
respectively. We observe that these arrival rates are identical
to the ones defined in (2) and (3) for ps = ks

k and fs = ns
n .

Hence the limiting marginal workload distribution at slow and
fast servers is identical to that of the system S. Applying the
techniques developed in [18] and [23], we can show that for
any fixed server subset A ✓ [n], the joint stationary workload
distribution at servers in A grows asymptotically independent
as n ! 1. Accordingly, the limiting distribution for task
completion time for this deterministic setup when the number
of servers n grows large can be written for all x 2 R+ as

Hd
ks

(x) = Ls(x)ksLf (x)k�ks . (21)

The limiting mean task completion time can be written as
an integral of limiting complementary distribution of task
completion time. Hence, we define the optimal deterministic
selection of the number of slow servers as

k⇤s , min
ks2[k]0

Z

x2R+

(1�Hd
ks

(x))dx. (22)

Proposition 2: Consider the heterogeneous system S with

n servers, with constant fractions fs and f̄s of slow and fast

servers, respectively, and (k, k) fork-join of tasks. Let k⇤s be

the optimal deterministic selection of slow servers as defined
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in (22). Then, the optimal selection probability of slow servers

converges to

lim
k!1

p⇤s =
k⇤s
k

.

Further, the binomial probability q⇤(`) of choosing ` slow and

k�` fast servers with the optimal probability p⇤s of slow server

selection, converges to

lim
k!1

q⇤(`) = {`=kp⇤s}.

Proof: The proof is provided in Appendix B.

VII. NUMERICAL RESULTS

We have computed the mean task completion time under
the regime of an asymptotically large number of servers n,
which yields an asymptotic independence of marginal work-
load distribution at any arbitrary set of k servers. We observe
in Section VII-A that this asymptotic independence seems
to hold for k = o(n 2

3 ), even though theoretical guarantees
only exist for k = o(n 1

4 ). We compare the numerically
obtained optimal slow server selection probability p⇤s with its
analytically obtained approximation p̂s in Section VII-B as
a function of normalized arrival rate in the stability region,
varying the service rates (µs, µf ), the number of sub-tasks
k, and the fraction of slow servers fs. We compare the
performance of probabilistic and deterministic server selection
in Section VII-C.

A. Asymptotic Independence

We have shown in Theorem 1 that the independence of
marginal workload distribution at individual queues holds
when the number of sub-tasks k(n) = o(n 1

4 ), for a large
number of servers n. To verify the robustness of this condition,
we conducted numerical and empirical studies to determine
the limiting mean task completion time in n heterogeneous
server systems under the proposed policy as a function of
selection probability ps for different scaling of the number
of sub-tasks k(n). We considered a finite number of servers
n 2

�
10, 102, 103

 
, the fraction of slow servers fs = 0.5, the

number of sub-tasks k(n) = o(n↵), the normalized Poisson
arrival rate of tasks to the system � = 0.9, and exponen-
tially distributed sub-task service times with rates (µs, µf ) =
(2, 2.5), for the slow and the fast servers respectively. We have
plotted the empirically obtained mean task completion time
against the theoretically computed values from Corollary 2,
as a function of increasing selection probability ps 2 [0, 1]
for exponent ↵ 2

�
1
4 , 1

3 , 1
2 , 2

3

 
in Fig. 1a, Fig. 1b, Fig. 1c,

and Fig. 1d respectively. Interestingly, we observe that the
assumption of independence of marginal workloads remains
robust even for small values of n. As expected, the accuracy
of this independence assumption improves as n grows larger.
Furthermore, we found that the mean task completion time is
a convex function of the selection probability ps, indicating
that it possesses a unique minimum. Even though Theorem 1
demonstrated the asymptotic independence of marginal work-
loads for k(n) = o(n 1

4 ), the empirical observations suggest
that this assumption continues to hold for a larger scaling.

Fig. 1. Comparison of mean task completion time obtained theoretically
and empirically as a function of slow server selection probability ps for
the fraction of slow servers fs = 0.5, normalized Poisson task arrival rate
� = 0.9, exponential sub-task service times with rate (µs, µf ) = (2, 2.5) for
the slow and the fast servers respectively, and the number of sub-tasks k(n).

B. Optimal Selection Probability p⇤s and Its

Approximation p̂s

We observed that the limiting mean task completion time
can be uniquely minimized by the optimal selection probability
p⇤s . However, this optimal probability is difficult to compute
analytically, even for the simplest case of exponential service.
As such, we proposed an approximately optimal selection
probability p̂s that minimizes an upper and lower bound on
the limiting mean task completion time. This approximately
optimal selection probability p̂s is analytically computable
for many sub-task service time distributions. This subsection
empirically evaluates the approximation error for (1) different
service rate pairs (µs, µf ), (2) different number of sub-tasks
k, and (3) different fraction fs of slow servers.

1) Varying Service Rate Pairs: We evaluate a heterogeneous
system with the number of servers n = 103 and the fraction
of slow servers fs = 0.5. For the exponential distribution
of sub-task service times with rates (µs, µf ) for the slow
and the fast servers, we numerically obtained the optimal
selection probability p⇤s from Remark 7 and theoretically
obtained the approximately optimal selection probability p̂s

from Corollary 4. We plotted the comparison of probability p⇤s
and its approximation p̂s as a function of normalized arrival
rate � for different service rate pairs in Fig. 2.

We repeated this comparison for the shifted exponential
distribution for sub-task service times with rates (µs, µf ) and
shifts (cs, cf ) for the slow and the fast servers. We empirically
obtained the optimal selection probability p⇤s and numerically
obtained the approximately optimal selection probability p̂s

from Corollary 6. We plotted the comparison of optimal
selection probability p⇤s and its approximation p̂s as a function
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Fig. 2. Impact of difference in service rates on optimal selection probability
p⇤s and its approximation p̂s for exponential service. We plot p⇤s and p̂s as
a function of normalized Poisson arrival rate �, for a heterogeneous system
with the number of servers n = 103, the fraction of slow servers fs = 0.5,
the number of sub-tasks k = 10, and exponential sub-task service times with
rates (µs, µf ) for the slow and the fast servers respectively.

Fig. 3. Impact of difference in service rates on optimal selection probability
p⇤s and its approximation p̂s for shifted-exponential service. We plot p⇤s and
p̂s as a function of normalized Poisson arrival rate �, for a heterogeneous
system with the number of servers n = 103, the fraction of slow servers
fs = 0.5, the number of sub-tasks k = 10, and shifted exponential sub-task
service times with rates (µs, µf ) and shifts (cs, cf ) = (0.1, 0.1) for the
slow and the fast servers respectively.

of normalized arrival rate � for a fixed shift pair and different
service rate pairs in Fig. 3.

We observe that the approximately optimal selection proba-
bility p̂s is close to the optimal selection probability p⇤s for all
normalized arrival rates. In addition, we note that the optimal
selection probability of slow servers is concave and increasing

Fig. 4. Impact of changing the number of sub-tasks on optimal selection
probability p⇤s and its approximation p̂s for exponential service. We plot p⇤s
and p̂s as a function of normalized Poisson arrival rate �, for a heterogeneous
system with the number of servers n, the fraction of slow servers fs = 0.5,
the number of sub-tasks k, and exponential sub-task service times with rates
(µs, µf ) = (2, 2.5) for the slow and the fast servers respectively.

Fig. 5. Impact of changing the number of sub-tasks on optimal selection
probability p⇤s and its approximation p̂s for shifted-exponential service.
We plot p⇤s and p̂s as a function of normalized Poisson arrival rate �, for
a heterogeneous system with the number of servers n, the fraction of slow
servers fs = 0.5, the number of sub-tasks k, and shifted exponential sub-task
service times with rates (µs, µf ) = (2, 2.5) and shifts (cs, cf ) = (0.1, 0.1)
for the slow and the fast servers respectively.

in the normalized arrival rate �. This suggests that the system
tries to reduce the use of slow servers at low loads to minimize
the limiting mean task completion time. However, when the
load increases, the system is forced to increase the usage of
slow servers.

2) Varying the Number of Sub-Tasks: We plotted the opti-
mal selection probability p⇤s and its approximation p̂s as
a function of normalized arrival rate � for the number of
servers n 2

�
102, 103

 
, different number of sub-tasks k, for

exponentially and shifted exponentially distributed sub-task
service times in Fig. 4 and Fig. 5 respectively. From Theorem 3
and Remark 8, we observe that the approximately optimal
selection probability p̂s is independent of the number of sub-
tasks k. We observe that the optimal selection probability p⇤s
weakly depends on k. However, the approximately optimal
selection probability p̂s remains close to the optimal selection
probability p⇤s for all normalized arrival rates � and the number
of sub-tasks k.

3) Varying the Fraction of Slow Servers: We plotted the
optimal selection probability p⇤s and its approximation p̂s as a
function of the fraction of slow servers fs for a fixed number
of servers and sub-tasks, different normalized task arrival rates,
and exponentially distributed sub-task service times with two
different service rate pairs in Fig. 6. We observe that the
optimal slow server selection probability remains close to
its approximation in both cases. The approximation is better
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Fig. 6. Impact of changing the slow server fraction fs on optimal selection
probability p⇤s and its approximation p̂s. We plot p⇤s and p̂s as a function of
the fraction of slow servers fs for a heterogeneous system with the number
of servers n = 103, the number of sub-tasks k = 10, different values of
normalized Poisson task arrival rates �, and exponential sub-task service times
with rates (µs, µf ) for the slow and the fast servers respectively.

Fig. 7. Comparison of mean number of slow servers and mean task
completion time for optimal deterministic choice of slow servers k⇤s , optimal
probabilistic choice of slow servers, and approximately optimal probabilistic
choice of slow servers as a function of normalized Poisson task arrival rate �
for a heterogeneous system with the number of servers n = 103, the fraction
of slow servers fs = 0.5, the number of sub-tasks k = 102, and exponential
sub-task service times with rates (µs, µf ) = (2, 2.5) for the slow and the
fast servers respectively.

when the service rates are closer, and arrival rates are higher.
From (17), we know that the approximately optimal slow
server selection probability p̂s is an increasing function of
the slow server fraction fs, for a fixed load. This property
is empirically observed to hold for the optimal slow server
selection probability p⇤s . This is due to the need for the
utilization of slow servers to reduce the mean task completion
time. We also observe that when the service rates are close,
the optimal server selection probability depends weakly on the
normalized arrival rate �.

C. Deterministic Versus Probabilistic Selection

Finally, we compare deterministic and probabilistic selec-
tion of slow servers for scheduling k sub-tasks for each
incoming task. To this end, we evaluated a heterogeneous
system with n = 103 servers, the fraction of slow servers
fs = 0.5, the number of sub-tasks k = 102, and expo-
nential distribution for the sub-task service times with rates
(µs, µf ) = (2, 2.5) for the slow and the fast servers respec-
tively. In Fig. 7a, we compare the optimal deterministic choice
of the number of slow servers k⇤s , the mean number of
optimally selected slow servers kp⇤s and its approximation kp̂s,
as a function of normalized task arrival rate �. In Fig. 7b,
we compare the mean task completion time for the optimal
deterministic choice of the number of slow servers k⇤s , with

the mean task completion time for probabilistic selection
with optimal slow server selection probability p⇤s and its
approximation p̂s, all as a function of normalized task arrival
rate �. As expected from Proposition 2, we observe that
k⇤s ⇡ kp⇤s ⇡ kp̂s and the corresponding mean task completion
times remain close for all arrival rates in the stability region.

VIII. CONCLUSION

In conclusion, this study investigates the (k, k) fork-join
scheduling scheme in a system of parallel servers with two sets
of heterogeneous servers, i.e., slow and fast servers. We show
that the joint distribution of the stationary workload across
k queues becomes asymptotically independent as the number
of servers, n, grows and k = o(n 1

4 ). The limiting mean task
completion time is analytically challenging to compute due
to its integral expression. To address this, an upper bound
on the limiting mean task completion time is derived, and the
selection probability p̂s that minimizes this bound is identified.
Numerical experiments confirm that the selected probabil-
ity provides near-optimal performance. These results offer
valuable insights into workload distribution and performance
optimization in heterogeneous server environments. Further
research can explore additional system complexities and refine
the proposed approach for enhanced performance.
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APPENDIX A
PROOFS FROM SECTION IV

A. Proof of Lemma 1

By construction, the server type selection for each sub-task
of an arriving task is i.i.d. Bernoulli, with the slow server
selection probability ps. Therefore, for any incoming arrival,
the number of selected slow servers for k sub-tasks is a
Binomial random variable with parameters (k, ps). As defined
in (1), we have

P
�
Ki

s = ks
 
= P

�
(Ki

s,K
i
f ) = (ks, k � ks)

 
= q(ks).

Conditioned on the selected server type for scheduling each
sub-task, the selection of servers is random, independent, and
uniform without replacement among all remaining servers of
the selected type. It follows that, given that a task arrival i
selects ks slow servers, the selection of js out of is slow and jf
out of if fast servers from the first k servers are independent.
That is,

P ((J i
s, J

i
f ) = (js, jf ) | Ki

s = ks)

= P (J i
s = js | Ki

s = ks)P (J i
f = jf | Ki

f = k � ks).

From the definition of conditional probability, it suffices to
show that (7) and (8) hold. To see (7), we observe that there
are

�ns

ks

�
subsets of size ks of all ns slow servers. Further,

we count the number of such subsets where the first is slow
servers have js, and the remaining ns � is have ks � js of
them. This is given by

�is
js

��ns�is
ks�js

�
. Since each selection is

equally likely, the result follows. Similarly, we can show (8)
holds.

B. Proof of Lemma 2

Recall that we have is slow and if fast servers in the first
k servers. A task arrival i in system S , selects Ki

s out of ns

slow and Ki
f = k�Ki

s out of nf fast servers, for scheduling
k sub-tasks. Out of these selected servers, we have J i

s out of
is slow and J i

f out of if fast servers in the first k servers.
Each task arrival leads to a maximum of one sub-task

arrival to system S̃ . Further, the selection of arrival to the
first k servers in the coupled system S̃ is random and i.i.d.

for each arrival instant. It follows that arrival to each of the
first k servers is an independent thinned homogeneous Poisson
process. From the symmetry of selection within a class, it
follows that homogeneous arrival rate is identical within a
class, with rate �̃s , n�

k p̃s for all slow servers and �̃f , n�
k p̃f

for all fast servers. Since the service times at each of the k
servers are independent and identical within a class, it follows
that first k servers in the coupled system S̃ have independent
M/G/1 queues, distributed identically within a class.

Given Ki
s = ks, we consider the arrival probability to one

out of is slow servers in the first k servers. From construction
of the coupled system, there is an arrival to one out of is
slow servers if no servers are selected from the first if fast
servers, or with probability ps if more than one out of if fast
servers are selected. If js out of is slow servers are selected
by the incoming task, then the uniform probability of arrival
to any slow server is js

is
. Together with these two facts and the

definition of conditional probability, we can write the arrival
probability p̃s to a slow server as

kX

ks=0

q(ks)
is^ksX

js=0

js
is
rs(ks, js)(rf (kf , 0) + ps

if^kfX

jf=1

rf (kf , jf )).

(23)
From (7) and (9), we obtain that

is^ksX

js=0

js
is
rs(ks, js) =

is^ksX

js=1

�is�1
js�1

��ns�is
ks�js

�
�ns

ks

� =
ks
ns

. (24)

Substituting (24), �̃s = ⇤p̃s,
Pif^kf

jf=1 rf (kf , jf ) = 1 �
rf (kf , 0), and

Pk
ks=0 ksq(ks) = kps in (23), we obtain the

desired result in (10). We can show (11) holds similarly.

C. Proof of Lemma 3

We can write the difference of arrival rates as

�s � �̃s = n�
⇣ ps
ns

� p̃s
k

⌘
, �f � �̃f = n�

⇣ pf
nf

� p̃f
k

⌘
.

For the slow servers, it suffices to show that

ps
ns

� p̃s
k

> 0,
ps
ns

� p̃s
k

= O
⇣k2

n2

⌘
.

One can show the result for fast servers analogously.
(a) Since probability rf (kf , 0) 6 1, we obtain

ps + pfrf (kf , 0) 6 1. (25)

Substituting (25) in (10), we obtain the desired result p̃s 6
kps

ns
. Similarly, we can show p̃f 6 kpf

nf
.

(b) From (10), we obtain ps

ns
� p̃s

k = pspf

ns
(1 � rf (kf , 0)).

From (8), we obtain that

rf (kf , 0) =

kf�1Y

j=0

⇣
1� if

nf � j

⌘
>
⇣
1� if

nf � kf + 1

⌘kf

.

We observe that 1 � (1 � ↵)k 6 ↵k for all ↵ 2 [0, 1]
and k 2 Z+. This inequality holds for k = 0, and hence
it suffices to show for k 2 N. To this end, we observe
that f(↵) , 1 � (1 � ↵)k � ↵k is zero at ↵ = 0 and
f 0(↵) = k(1 � ↵)k�1 � k 6 0 for all ↵ 2 [0, 1] and
k 2 N. Hence, f(↵) 6 0 for all ↵ 2 [0, 1] and k 2 Z+.
Since if

nf�kf+1 < 1 and kf > 0, we get

1� rf (kf , 0) 6
ifkf

nf � kf + 1
. (26)

Since if , kf 6 k and ns, nf�kf are of order n, we obtain

ps
ns

� p̃s
k

6 pspf ifkf
ns(nf � kf + 1)

= O
⇣k2

n2

⌘
.

Similarly, we can show that pf

nf
� p̃f

k = O
⇣

k2

n2

⌘
.
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D. Proof of Lemma 4

We fix a time ⌧ , and apply Remark 3 to random vectors
(W1(⌧), . . . ,Wk(⌧)) and (W̃1(⌧), . . . , W̃k(⌧)) to bound the
total variation distance between their corresponding distribu-
tions, as

dTV(⇡
k
⌧ , ⇡̃

k
⌧ ) 6 P

⇣
[k
j=1

n
Wj(⌧) 6= W̃j(⌧)

o⌘
.

We observe that if the workload at any of the first k servers
in the coupled and the original system differs at time ⌧ , then
they must start differing at some point t 6 ⌧ . That is, for any
server j 2 [k]
n
Wj(⌧) 6= W̃j(⌧)

o
✓
n
Wj(t) 6= W̃j(t) for some t 6 ⌧

o
.

The workloads at first k queues in the original system S and
the coupled system S̃ differ at any time in the duration [0, ⌧ ],
only if at least one task arrives in this duration [0, ⌧ ] and that
arrival selects more than one queue in the first k queues of
system S̃ for scheduling sub-tasks. We denote this error event
by E⌧ , and dTV(⇡k

⌧ , ⇡̃
k
⌧ ) 6 P (E⌧ ).

Let p be the probability of a job arrival selecting at most
one queue from [k]. Since the job arrivals is a Poisson process
with rate ⇤ = n�

k and each arrival is an error event with
probability 1 � p, the error event arrival process is a thinned
Poisson process with a homogeneous rate ⇤(1� p). Thus, the
probability of an error event in time [0, ⌧ ] is

P (E⌧ ) = 1� e�⇤⌧(1�p) 6 n�

k
⌧(1� p). (27)

Therefore, it suffices to show that 1� p = O( k
4

n2 ).
Recall that we denote the number of slow and fast servers

in the first k servers of the system by is and if = k � is,
respectively. Further, the random number of slow and fast
servers selected by ith arrival for scheduling k sub-tasks
among the first k servers is denoted by J i

s and J i
f , respectively.

From Lemma 1, it follows that

p =
X

js+jf61

P
�
(J i

s, J
i
f ) = (js, jf )

 

=
kX

ks=0

q(ks)
X

js+jf61

rs(ks, js)rf (kf , jf ). (28)

From (7) and (8), we get the following ratios

rs(ks, 1)

rs(ks, 0)
=

isks
ns � is � ks + 1

> isks
ns

,

rf (kf , 1)

rf (kf , 0)
=

ifkf
nf � if � kf + 1

> ifkf
nf

.
(29)

Further, using (26) and its equivalent lower bound for slow
servers, we obtain that

1� rf (kf , 0) 6
ifkf

nf � kf + 1
6 ifkf

nf ^ ns � k + 1
,

1� rs(ks, 0) 6
isks

ns � ks + 1
6 isks

nf ^ ns � k + 1
.

(30)

By upper bounding the negative terms by zero, we observe
that for all ↵,�, � > 0,

(1� ↵)(1� �)(1 + �) > 1� ↵� � � ↵� � ��. (31)

Substituting (30) and (29) in (28), recognizing thatPk
ks=0 q(ks) = 1, and using (31), we obtain

p > 1�
kX

ks=0

q(ks)
isks + ifkf

ns ^ nf � k + 1

h
1 +

isks
ns

+
ifkf
nf

i
.

Since isif 6 k2, kskf < k2, and ns, nf = O(n), we observe
that 1� p = O( k

4

n2 ), and the result follows.

E. Proof of Lemma 5

Recall that system S starts with an empty workload at time
0. That is, Wj(t) is the workload of server j at time t in the
system S , starting with Wj(0) = 0 for all j 2 [n]. We define
a system S̄ coupled with system S , such that
(a) both systems have identical arrival processes,
(b) sub-tasks of each arriving task are sent to the identical set

of servers in both the systems, and
(c) each server has an identical service time for each sub-task

in both systems.
However, we assume that the initial workload in the system
S̄ is random and distributed with the stationary distribution
of workloads in S . We denote W̄j(t) to be the workload of
server j at time t in the system S̄ , where for all w 2 Rn

+

P
⇣
\n
j=1

�
W̄j(0) 6 wj

 ⌘
= lim

t!1
P
⇣
\n
j=1 {Wj(t) 6 wj}

⌘
.

It follows that the distribution of workload W̄ (t) in the coupled
system S̄ is identical to the initial stationary distribution at all
times t 2 R+. In particular, we obtain

P
⇣
\k
j=1

�
W̄j(t) 6 wj

 ⌘
= ⇡k(w), w 2 Rk

+, t 2 R+.

We further observe that Wj(0) 6 W̄j(0) for all servers j 2
[n]. From the coupling of S and S̄ , we obtain Wj(t) 6 W̄j(t)
for any time t 2 R+ and any server j 2 [n]. For each server
j 2 [n], we define

⌧j , inf
�
t 2 R+ : W̄j(t) = 0

 
.

It follows that Wj(⌧j) = 0 as well, and hence Wj(t) = W̄j(t)
for all t > ⌧j . In addition, we observe that ⌧j is upper bounded
by the busy period of server j. Each server j 2 [n] has an
M/G/1 queue with Poisson arrivals and a general service
time distribution with finite first and second moments. Since
the Poisson arrival rates and service distributions are identical
within a class, it follows that busy period distribution is also
identical within a class. Accordingly, we denote ⌧s and ⌧f as
random variables identically distributed to the busy periods
for the queues at the slow and the fast servers, respectively.
Slow and fast servers have arrival rates �s,�f , service rates
µs, µf , loads ⇢s , �s

µs
, ⇢f , �f

µf
, and the second moment

of service distributions gs,2, gf,2 respectively. Then, the mean
busy periods [35] for slow and fast servers are given by

E⌧s =
�sgs,2

2(1� ⇢s)2
, E⌧f =

�fgf,2
2(1� ⇢f )2

. (32)
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Applying Remark 3 to random vectors (W1(⌧), . . . ,Wk(⌧))
and (W̄1(⌧), . . . , W̄k(⌧)), union bound, and definition of ⌧j ,
we obtain

dTV(⇡
k
⌧ ,⇡

k) 6
kX

j=1

P
�
Wj(⌧) 6= W̄j(⌧)

 
6

kX

j=1

P {⌧ < ⌧j} .

(33)
Recall that first k servers consist of is = |Is| slow and
if = |If | fast servers, where [k] = Is [ If . Applying Markov
inequality to each probability in the summand, and using the
fact that E⌧j {j2[k]} 6 E⌧s {j2Is} + E⌧f {j2If}, we obtain

kX

j=1

P {⌧ < ⌧j} 6 1

⌧

kX

j=1

E⌧j 6
k

⌧

⇣ is
k
E⌧s +

if
k
E⌧f

⌘
. (34)

Substituting Markov inequality (34) and expression for mean
of busy periods from (32) in the upper bound (33) for total
variation distance, we obtain

dTV(⇡
k
⌧ ,⇡

k) 6 k

⌧
max

⇢
�sgs,2

2(1� ⇢s)2
,

�fgf,2
2(1� ⇢f )2

�
.

Similar results can be obtained for dTV(⇡̃k
⌧ , ⇡̃

k) by observing
that slow and fast servers in the coupled system S̃ are M/G/1
queues with arrival rates �̃s, �̃f and service rates µs, µf

respectively. From Lemma 3, we have �̃s 6 �s and �̃f 6 �f ,
and it follows that

dTV(⇡̃
k
⌧ , ⇡̃

k) 6 k

⌧
max

⇢
�sgs,2

2(1� ⇢s)2
,

�fgf,2
2(1� ⇢f )2

�
.

Similar results can be obtained for dTV(⇡̂k
⌧ , ⇡̂

k) by observing
that slow and fast servers in the independent system Ŝ are
independent M/G/1 queues with arrival rates �s,�f and
service rates µs, µf respectively. Therefore, it follows that

dTV(⇡̂
k
⌧ , ⇡̂

k) 6 k

⌧
max

⇢
�sgs,2

2(1� ⇢s)2
,

�fgf,2
2(1� ⇢f )2

�
.

F. Proof of Lemma 6

Let ⌧ = O(
p
n
k ). Using triangular inequality, we can bound

the total variation distance as

dTV(⇡̃
k, ⇡̂k) 6 dTV(⇡̃

k
⌧ , ⇡̂

k
⌧ ) + dTV(⇡̃

k
⌧ , ⇡̃

k) + dTV(⇡̂
k
⌧ , ⇡̂

k),

where dTV(⇡̃k
⌧ , ⇡̃

k) = O( k2
p
n
) and dTV(⇡̂k

⌧ , ⇡̂
k) = O( k2

p
n
)

from Lemma 5. It suffices to show that the distance
dTV(⇡̃k

⌧ , ⇡̂
k
⌧ ) = O( k2

p
n
).

From Lemma 2, it follows that first k queues in S̃ are
independent M/G/1 queues with is of them being served by
slow servers with arrival rate �̃s and if of them being served
by fast servers with arrival rate �̃f . The jth server workload
at time t 2 R+ in this coupled system S̃ is given by W̃j(t).
On the other hand, Ŵj(t) is the jth server workload at time
t for system Ŝ , where all n queues evolve independently as
M/G/1 queues. There are is slow servers and if fast servers
in the first k servers, where the arrival rate at the slow and fast
servers is defined in (2) and (3) as �s =

nps

ns
� and �f = npf

nf
�

respectively.
Recall that both systems start empty, i.e. W̃j(0) = Ŵj(0) =

0 for all servers j 2 [n]. We couple the systems S̃ and Ŝ in

the following way. If there is an arrival to a slow server in
Is ✓ [k] in the system Ŝ , then we have an arrival to the same
slow server in the S̃ with probability �̃s/�s. If there is an
arrival to the fast server in If in the system Ŝ , then we have
an arrival to the same fast server in the S̃ with probability
�̃f/�f . We assume identical service times at all the servers in
both systems.

Applying Remark 3 to random vectors (W̃1(⌧), . . . , W̃k(⌧))
and (Ŵ1(⌧), . . . , Ŵk(⌧)), and union bound, we get

dTV(⇡̃
k
⌧ , ⇡̂

k
⌧ ) 6

kX

j=1

P
n
W̃j(⌧) 6= Ŵj(⌧)

o
.

By coupling arguments, the workloads W̃j(⌧) and Ŵj are only
different if there is an arrival to server j in S̃ but not in Ŝ
during the interval [0, ⌧ ]. We denote this event by Ej(⌧), and
hence dTV(⇡̃k

⌧ , ⇡̂
k
⌧ ) 6

Pk
j=1 P (Ej(⌧)).

Recall that the sub-task arrival process to server j in system
Ŝ is an independent Poisson process with a homogeneous rate

�j , �s {j2Es} + �f {j2Ef}.

The probability that an incoming arrival to server j in system
Ŝ doesn’t join the server j in system S̃ is

qj ,
⇣
1� �̃s

�s

⌘
{j2Es} +

⇣
1� �̃f

�f

⌘
{j2Ef}.

Consequently, the arrival instant sequence of sub-tasks joining
server j in Ŝ and not in S̃ is a thinned Poisson process with
a homogeneous rate

�jqj = (�s � �̃s) {j2Es} + (�f � �̃f ) {j2Ef}.

Therefore, the probability of zero arrival instants in [0, ⌧ ] such
that a sub-task joins Ŝ but doesn’t join S̃ for server j, is
the probability of one or more arrival for the thinned Poisson
process in duration [0, ⌧ ], and given by

P (Ej(⌧)) = 1� e��jqj⌧ .

Since 1�e�x 6 x for x 2 R+, we can bound the probability of
error event Ej(⌧) as P (Ej(⌧)) 6 �jqj⌧ . Since Is = Es \ [k]
and If = Ef \ [k], we can upper bound the total variation
distance as

dTV(⇡̃
k
⌧ , ⇡̂

k
⌧ ) 6

kX

j=1

�jqj⌧ = k⌧
⇣ is
k
(�s � �̃s) +

if
k
(�f � �̃f )

⌘

6 k⌧ max

⇢
is
k
(�s � �̃s),

if
k
(�f � �̃f )

�
.

From Lemma 3, we have �s � �̃s = O(k
2

n ) and �f � �̃f =

O(k
2

n ) and ⌧ = O(
p
n
k ), and hence the result follows.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Recall that the probabilistic selection of slow
servers leads to a random number of slow servers being
selected denoted by `. Clearly ` 2 [k]0 and the probability
mass function of ` is denoted by q 2 M([k]0), where q is
binomial distribution with parameters (k, ps). The distribution
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of task completion time for the probabilistic selection of
slow servers is defined by H in (13) and for deterministic
selection of ks slow server is defined by Hd

ks
in (21). We

observe the following relation between the two complementary
distributions H̄ = 1�H and H̄d

` = 1�Hd
` ,

H̄(x) =
kX

`=0

q(`)H̄d
` (x).

We can compute the mean task completion in the proba-
bilistic and deterministic selection systems by integrating the
respective complementary distributions. Exchanging integral
and finite sums, we can write
Z

H̄(x)dx =
kX

`=0

q(`)

Z
H̄d

` (x)dx > min
`2[k]0

Z
H̄d

` (x)dx.

(35)
The inequality follows from the fact that a convex sum is
minimized at the smallest term in the sum. That is, the limiting
mean task completion time is smaller for the deterministic
selection of slow servers. We further observe that the mean
task completion time for the probabilistic selection of slow
servers is minimized when q⇤(`) = {`=k⇤

s} for all ` 2 [k]0.
Using the Stirling’s approximation [36], we can write the
probability of selecting ` slow servers for large k, as

q(`) =

✓
k

`

◆
p`s(1� ps)

k�` ⇡ 2�kD( `
k kps),

in terms of the Kullback-Leibler divergence

D(pkq) , p log2
p

q
+ (1� p) log2

1� p

1� q
.

We observe that D(pkq) > 0 and equality holds for p = q.
It follows that q(`) ⇡ {`=kps} for all ` 2 [k]0 in the large
k limit. Since k⇤s is the minimizer of the RHS of (35), it
follows in the large k limit that for the choice of p⇤s = k⇤

s
k ,

the LHS of (35) is approximately minimum. In this case, we
have q⇤(`) ⇡ {`=kp⇤

s} for all ` 2 [k]0.

APPENDIX C
COMPARISON WITH OTHER LOAD BALANCING POLICIES

In this section, we discuss heterogeneous and sub-task
variants of existing load balancing policies for homogeneous
and single-task settings. In particular, we focus on the variants
of join-the-shortest-queue (JSQ), join-the-shortest-workload
(JSW), and power-of-d variants of them for a task divided
into k sub-tasks on n heterogeneous servers. Recall that for
a single task over parallel queues, JSW is the optimal load
balancing algorithm for minimizing the mean task completion
time [15] with i.i.d. service times and is equivalent to JSQ [14]
for exponential service times. However, both these policies
require queue or workload information at all the servers and
all arrival instants, which can be prohibitive in many settings.
Thus, a low overhead power-of-d variant of these policies was
proposed in [19], [20], where the task can randomly sample
a set of d queues out of n and select one with the smallest
workload or queue-length. This is equivalent to a task forked
into d replicas, each joining one of the randomly sampled

d queues. Once one of the replicas starts receiving service,
(d�1) replicas can be canceled. Another option is for (d�1)
replicas to be canceled after the service is completed for a
single replica. The two options are referred to as (d, 1) fork-
join with cancel-on-start and (d, 1) fork-join with cancel-on-
complete, respectively. We note that when d = n, JSW, join-
the-idle-queue (JIQ), and (d, 1) fork-join with cancel-on-start
are identical policies for a single task without any forking. For
k sub-tasks, one can define JSW(k) and JSQ(k) where k sub-
tasks are sent to queues with k smallest workloads and queue
lengths respectively, and their power-of-d variants, which are
equivalent to (d, k) fork-join with cancel-on-start. We observe
that these policies won’t perform well for heterogeneous server
settings since a slow server may take longer to serve a
smaller workload than a fast server with a larger workload.
One simple policy is to estimate the mean time to finish the
existing workload at all the queues by dividing the workload
by mean service time and selecting the k smallest queues
in terms of mean time to finish. This will be referred to as
modified JSW(k). Similarly, we can define modified JSQ(k)
where queue lengths are scaled appropriately. Modifications of
(d, k) fork-join queues are unclear as they would require an
appropriate random selection of d servers. We note that there
are many possible variants for these load balancing policies
for heterogeneous settings and k sub-tasks, and we define one
possible variant for JSW(k), JSQ(k), and (d, k) fork-join.

1) Modified JSW(k): When a task arrives, the k forked
sub-tasks are sent to k servers with the smallest total
workload. In the event of equal workloads, the faster
servers are selected uniformly at random, and the slow
servers are selected uniformly at random.

2) Modified JSQ(k): Each queue is scaled by mean service
time, and k sub-tasks of an arriving task are dispatched
to the smallest scaled k queues. In the event of ties, the
faster servers are prioritized, as in the modified JSW.

3) (d, k) fork-join with cancel-on-start: An arriving task is
forked to k sub-tasks and encoded to d coded sub-tasks
such that the completion of any k out of d coded sub-tasks
leads to the task completion. The coded sub-tasks are
dispatched to d servers selected uniformly at random. As
soon as k coded sub-tasks begin service, the rest of d�k
sub-tasks are canceled. The task is considered completed
when the remaining k coded sub-tasks are completed.

4) (d, k) fork-join with cancel-on-complete: An arriving task
is forked to k sub-tasks and encoded to d coded sub-tasks
such that the completion of any k out of d coded sub-
tasks leads to the task completion. The coded sub-tasks
are dispatched to d servers selected uniformly at random.
The task is considered completed when any k coded sub-
tasks are completed, and the rest of d�k coded sub-tasks
are canceled.

We have empirically obtained the mean task completion time
for these proposed variants of existing load balancing policies
for different normalized arrival rates �. We compared them to
the mean task completion time for the proposed probabilistic
server selection policy by plotting the mean task completion
time as a function of normalized arrival rate � in Fig. 8 for
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exponentially distributed sub-task service time, and in Fig. 9
for shifted exponential distribution for sub-task service times.

We note that modified JSW(k) and modified JSQ(k) require
workload and queue-length information from each of the n
queues at all arrival instants. Accordingly, modified JSW(k)
and modified JSQ(k) outperform the proposed policy since
they are aware of all queue states. We note that (d, k) fork-join
queues with cancel-on-start/complete are also queue-aware
policies, as they require instant cancellation at remaining d�k
servers after starting/completion of service at k servers, which
is equivalent to knowing the workload at the selected d servers.
The overhead for both policies is smaller than the modified
JSW/JSQ for d < n. A fair comparison for the proposed
(k, k) fork-join policy would be (k, k) fork-join policies with
k servers selected uniformly at random. Interestingly, the pro-
posed policy outperforms (d, k) fork-join queues with cancel-
on-start and cancel-on-complete for d even slightly larger
than k. This suggests that for power-of-d variants of the load
balancing algorithms for heterogeneous servers and multiple
sub-tasks, the selection of d servers has to be heterogeneity-
aware for better performance. Our proposed policy is one such
heterogeneity-aware random selection where d = k, and we
choose a random combination of slow and fast servers that
minimizes the mean task completion time.
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Fig. 8: Comparison of mean task completion time obtained empirically from
different load balancing schemes, as a function of Poisson arrival rate �,
for a heterogeneous system with the number of servers n, the fraction of
slow servers fs = 0.5, the number of sub-tasks k, and exponential sub-task
service times with rates (µs, µf ) = (0.5, 2.5) for the slow and the fast
servers respectively.
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Fig. 9: Comparison of mean task completion time obtained empirically from
different load balancing schemes, as a function of Poisson arrival rate �, for
a heterogeneous system with the number of servers n, the fraction of slow
servers fs = 0.5, the number of sub-tasks k, and shifted exponential sub-
task service times with rates (µs, µf ) = (0.5, 2.5) and shifts (cs, cf ) =
(0.1, 0.1) for the slow and the fast servers respectively.

APPENDIX D
ADDITIONAL NUMERICAL STUDIES

We performed additional numerical studies to verify that our
insights remain true for different parameters, such as disparate
service rate pairs, a lower number of servers, and different
arrival rates. We repeated the experiment in Section VII-A
for a more disparate service rate pair (µs, µf ) = (0.5, 2.5)
in Fig. 10 for a normalized arrival rate � = 1.2 which
corresponds to moderate to high load for this system with the
stability region of � < 1.5. We observe that the asymptotic
independence still holds true for k = o(n↵) where exponent
↵ 2

�
1
4 ,

1
3 ,

1
2 ,

2
3
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Fig. 10: Comparison of mean completion time obtained theoretically and
empirically as a function of slow server selection probability ps for the
fraction of slow servers fs = 0.5, normalized Poisson task arrival rate
� = 1.2, exponential sub-task service times with rates (µs, µf ) = (0.5, 2.5)
for the slow and the fast servers respectively, and the number of sub-tasks
k(n).

We repeated the experiments in Section VII-B1 and Sec-
tion VII-B3 for fewer servers n = 102. We plotted the optimal
slow server selection probability p⇤s and its approximation p̂s
as a function of normalized arrival rate � for sub-task service
times being exponential and shifted exponential distributions
in Fig. 11 and Fig. 12 respectively. We verify that the approx-
imation p̂s for optimal probability p⇤s remains close, even for
a smaller number of servers.

We considered a fixed number of servers n = 102 and
exponential distribution for sub-task service time with rate pair
(µs, µf ) for the slow and fast servers. For different slow server
fractions fs, we plotted the optimal slow server selection prob-
ability p⇤s and its approximation p̂s as a function of normalized
arrival rate � for different rate pairs (µs, µf ) = (0.5, 2.5) in
Fig. 13a and (µs, µf ) = (2, 2.5)in Fig. 13b. We verify that
p⇤s ⇡ p̂s for all arrival rates � for different slow server fractions
fs.
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Fig. 11: Impact of difference in service rates on optimal selection probability
p⇤s and its approximation p̂s for exponential service. We plot p⇤s and p̂s as
a function of normalized Poisson arrival rate �, for a heterogeneous system
with the number of servers n = 102, the fraction of slow servers fs = 0.5,
the number of sub-tasks k = 10, and exponential sub-task service times with
rates (µs, µf ) for the slow and the fast servers respectively.

Recall that we have plotted the optimal slow server selection
probability p⇤s and its approximation p̂s in Fig. 2 for an
exponential distribution of sub-task service times and different
rate pairs for slow and fast servers. Corresponding plots for
the shifted-exponential distribution of sub-task service times
were plotted in Fig. 3. We observed that as the rate pairs
differ, the optimal slow server selection probability p⇤s and its
approximation p̂s deviate for large loads. A natural question to
ask is the impact of this deviation on the mean-task completion
time under the optimal slow server selection probability p⇤s
and its approximation p̂s. To answer this question, we have
compared the difference in the mean-task completion time as a
function of normalized arrival rate � under p⇤s and p̂s in Fig. 14
and Fig. 15, when the distribution of sub-task service times is
exponential and shifted-exponential, respectively. Even though
the approximation may appear to deviate from the optimal
slow server selection probability, the mean task completion
time under two probabilities remains fairly close for all loads.
This justifies the goodness of the approximation.
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Fig. 12: Impact of difference in service rates on optimal selection probability
p⇤s and its approximation p̂s for shifted-exponential service. We plot p⇤s and
p̂s as a function of normalized Poisson arrival rate �, for a heterogeneous
system with the number of servers n = 102, the fraction of slow servers
fs = 0.5, the number of sub-tasks k = 10, and shifted exponential sub-task
service times with rates (µs, µf ) and shifts (cs, cf ) = (0.1, 0.1) for the
slow and the fast servers respectively.
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Fig. 13: Impact of change in fraction of slow servers fs on optimal selection
probability p⇤s and its approximation p̂s for exponential service. We plot p⇤s
and p̂s as a function of fraction of slow servers fs for a heterogeneous system
with the number of servers n = 102, the number of sub-tasks k = 10,
different values of normalized Poisson task arrival rates �, and exponential
sub-task service times with rates (µs, µf ) for the slow and the fast servers
respectively.
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Fig. 14: Impact of difference in service rates on mean task completion time
for exponential service. We plot mean ask completion time under slow server
selection probabilities p⇤s and p̂s as a function of normalized Poisson arrival
rate �, for a heterogeneous system with the number of servers n = 103, the
fraction of slow servers fs = 0.5, the number of sub-tasks k = 10, and
exponential sub-task service times with rates (µs, µf ) for the slow and the
fast servers respectively.
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Fig. 15: Impact of difference in service rates on mean task completion time
for shifted-exponential service. We plot mean ask completion time under slow
server selection probabilities p⇤s and p̂s as a function of normalized Poisson
arrival rate �, for a heterogeneous system with the number of servers n = 103,
the fraction of slow servers fs = 0.5, the number of sub-tasks k = 10,
and shifted exponential sub-task service times with rates (µs, µf ) and shifts
(cs, cf ) = (0.1, 0.1) for the slow and the fast servers respectively.


