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ARTICLE INFO ABSTRACT
Keywords: Large language models (LLMs) have demonstrated extraordinary performance in many artificial
Large language model intelligence (AI) tasks but are expensive to use, even after training, due to their requirement
Model parallelism

of high-end GPUs. Recently, a distributed system called PETALS was developed to lower the
barrier for deploying LLMs by splitting the model blocks across multiple servers with low-end
GPUs distributed over the Internet, which was much faster than swapping the model parameters
between the GPU memory and other cheaper but slower local storage media. However, the
performance of such a distributed system critically depends on the resource allocation, and
how to do so optimally remains unknown. In this work, we present the first systematic study
of the resource allocation problem in distributed LLM inference, with focus on two important
decisions: block placement and request routing. Our main results include: (i) experimentally
validated performance models that can predict the inference performance under given block
placement and request routing decisions, (ii) a formulation of the offline optimization of
block placement and request routing as a mixed integer linear programming (MILP) problem
together with the NP-hardness proof and a polynomial-complexity algorithm with guaranteed
performance, and (iii) an adaptation of the offline algorithm for the online setting with the same
performance guarantee under bounded load. Through both experiments and experimentally-
validated simulations, we have verified that the proposed solution can substantially reduce the
inference time compared to the state-of-the-art solution in diverse settings with geographically-
distributed servers. As a byproduct, we have also developed a light-weighted CPU-only simulator
capable of predicting the performance of distributed LLM inference on GPU servers, which
can evaluate large deployments and facilitate future research for researchers with limited GPU
access.

Block placement
Request routing

1. Introduction

Large language models (LLMs) have yielded exceptional performance in many artificial intelligence (AI) tasks. Modern LLMs
pre-trained on large datasets have demonstrated promising utility for diverse applications [1]. However, to achieve state-of-the-art
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Fig. 1. System architecture for pipeline-parallel LLM inference using client-centric communication.

accuracy, such models often need to contain over 50 billion (50B) parameters, which makes it expensive to work with these models
due to the requirement of expensive hardware such as high-end GPUs.

To broaden the accessibility to LLMs, several research groups have open-sourced their pre-trained LLMs [2-5]. However, the
sheer size of these models makes it challenging to adopt them, even if no training is needed. Prior studies have shown that the
bottleneck of running LLMs is not in the computation speed, as even a consumer-grade GPU like GeForce RTX 3070 has enough
processing power to run a complete inference step of a 176B-parameter model within a second [6]. Instead, the bottleneck is in
the GPU memory. A 100B-parameter model will require 200 GB of GPU memory to load the model parameters at the standard half
precision, and many LLMs are even larger (e.g., GPT-3 has 175B parameters and GPT-4 has over 1.7 trillion parameters). Providing
this much GPU memory is financially challenging for many users. Straightforward approaches to address this bottleneck such as
compressing the model or offloading the model parameters to cheaper storage media will introduce undesirable side effects. For
example, a compressed LLM can still be too large for consumer-grade GPUs and too much compression will lower the inference
accuracy [7], while offloading the model parameters to larger but slower storage media like RAM or SSD will be very slow due to
the limited bandwidth between such storage media and the GPU [8].

Recently, a model-parallel approach has been proposed to address the above challenge through resource pooling across
distributed devices. This approach distributes a model to multiple devices at the granularity of transformer blocks (a.k.a. pipeline
parallelism [9-11]) or neurons (a.k.a. tensor parallelism [12-14]) to run large models on devices with small GPUs. In particular, [8]
has shown that pipeline parallelism can be used to run LLM inference tasks over geographically-distributed servers, each with only a
few GB of GPU memory, at a much faster rate than local parameter offloading. This is achieved by letting each server host a subset
of consecutive blocks, and each inference request (for autoregressive sequence generation) routed through a chain of servers that
collectively host the entire model, as illustrated in Fig. 1. To reduce the communication cost, caching is used pervasively in such
systems. For example, in a state-of-the-art system called PETALS [8], the client of each request uses client-side caches to store the
input history for each invoked server, so that once a server fails, the client can use the cached input to bring up a backup server
without repeating the processing at other servers; meanwhile, each server uses server-side caches (a.k.a. attention caches) to store
the past computation results for each ongoing request (i.e., the key-value pairs for the past tokens [15]), so that at each inference
step (after the prefill phase), the client only needs to send the partially processed embedding of a single token to the next server
and receive the processed embedding back, which only exchanges a few KB of data [8]. The client-side caching implies a hub-spoke
communication pattern as shown in Fig. 1, where all the communications during an inference session are anchored at the client,
who will forward the partially processed embeddings between consecutive servers in order to update the input cache for each server.

In this work, we consider LLM inference over geographically-distributed servers using pipeline parallelism and client-centric
communication as illustrated in Fig. 1. Although the feasibility of such systems has been validated in [8], there is a lack of fundamental
understanding of how to optimally manage their performance. In particular, the current solution in [8] relies on heuristics for
resource allocation, e.g., selecting the blocks for each server based on a heuristic “throughput” metric and selecting the server
chain for each request based on a graph with heuristic “edge weights” [16]. It remains open how to optimize the performance of
such systems, while taking into account the unique characteristics of GPUs and LLM inference tasks. This work aims at filling this
gap by rigorously formulating and tackling the block placement and request routing problem for a distributed LLM inference system
with the architecture in Fig. 1, using PETALS [8] as a concrete example. While our system model and evaluations are based on
PETALS, our approach is applicable to any pipeline-parallel LLM inference systems as explained later.

1.1. Related work

Below we will briefly review existing approaches to overcome the GPU memory limitation in running large models and related
resource allocation problems.

Model parallelism: Model parallelism overcomes the GPU memory limitation by distributing the model parameters to multiple
devices. It is further divided into pipeline parallelism that assigns model parameters at the granularity of layers [9-11], and tensor
parallelism that assigns model parameters at the granularity of neurons [12-14]. Tensor parallelism provides more flexibility in
splitting the model at the cost of a higher communication overhead due to the all-to-all communication between devices hosting
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adjacent layers, which makes it more suitable for distributed inference within a single multi-GPU server or a cluster of highly
connected servers [17]. In contrast, pipeline parallelism only requires communication between pairs of devices at some loss of
flexibility, which makes it more suitable for distributed inference across nodes [8]. PETALS [8] uses pipeline parallelism. Other than
PETALS, there are a few more systems that support distributed LLM inference across nodes with different system characteristics. For
example, vLLM with Ray Serve [18] uses tensor parallelism within each node and pipeline parallelism across nodes by letting servers
processing adjacent blocks directly communicate partially processed tokens, Nvidia Dynamo [19] implements several LLM-specific
execution capabilities such as disaggregating prefill&decoding phases and offloading attention caches to memory hierarchies, and
Amazon EKS [20] simplifies the execution of multi-node inference workloads through integration with AWS services like Amazon
EFS and Elastic Fabric Adapter. These systems are mainly designed for datacenter environments with high-bandwidth low-latency
connections. In contrast, PETALS [8] is the leading system for LLM inference in geographically-distributed environments. In this
work, we focus on geographically-distributed LLM inference and thus build our system model after PETALS, but our solution is generally
applicable to any pipeline-parallel LLM inference systems, possibly with minor adaptations (e.g., see Remark after (1)). While the
extension of our solution to tensor parallelism is nontrivial, we note that tensor parallelism is generally considered impractical for
geographically-distributed settings.

Parameter offloading: Parameter offloading overcomes the GPU memory limitation by swapping model parameters between the
GPU memory and a slower but larger storage, typically RAM or SSD [21-23]. When using the model for inference, model parameters
are loaded into the GPU just before being used, which in theory allows a server with a small GPU to process any large models that
fit into its storage. The drawback of parameter offloading is the overhead in loading and unloading the model parameters, which
can take a substantial amount of time (e.g., at least 11 s per token for a 175B-parameter model [8]). For large models (with 50B+
parameters), parameter offloading was shown to be at least an order of magnitude slower than model parallelism [8].

Service function chaining: Under pipeline parallelism, each inference request is served by a chain of servers as illustrated in Fig.
1, which makes the corresponding resource allocation problem (e.g., how to place blocks and how to route requests) analogous to
the problem of service function (SF) placement and flow routing in the context of service function chaining (SFC) [24]. SFC provides
application-specific services for in-transit traffic through a chain of SFs. SFC placement and routing has been actively studied in
recent years, typically with an objective of minimizing operation cost, maximizing flow rate, optimizing Quality of Service (QoS),
or optimizing a combination of these metrics [25]. The problems are usually NP-hard and solved by polynomial-time heuristics
without guaranteed performance [25,26], except for a few special cases such as [27-29] with approximation guarantee. Despite the
conceptual similarity, our problem is fundamentally different from SFC placement and routing. First of all, the two domains have very
different properties, e.g., different SFs may have heterogeneous resource requirements [26,27,30] and some SFs may change the flow
rate [31] or branch an input flow into multiple output flows [30], while each LLM typically has identically structured transformer
blocks that require the same amount of resource and input data size. Moreover, the bottleneck resource in LLM inference is GPU
memory, which differs from the bottleneck resource in SFC (i.e., CPU cycles) in that: (i) the need of GPU memory is not elastic,
making congestion minimization approaches like [29] inapplicable, (ii) the GPU memory used to host a block is shared by all the
requests processed by the same block, differing from the additive resource consumption for CPU cycles [27,28], and (iii) nontrivial
amounts of GPU memory are needed for both hosting blocks and serving inference sessions (due to the need of holding attention
caches), causing resource contention between the placement decision and the routing decision that did not exist in service function
chaining or other traditional “placement and routing” problems. Additionally, the number of blocks in an LLM can be much larger
than the number of SFs in a typical SFC (e.g., BLOOM-176B has 70 blocks and GPT-3 has 96 blocks), making the formulations for
SFC that enumerate the processing units [26-29] highly inefficient. Some LLM inference systems also have unique characteristics
such as the hub-spoke communication pattern shown in Fig. 1. There is thus a need of studying resource allocation problems tailored to
distributed LLM inference systems.

1.2. Summary of contributions

We perform a systematic study of the resource allocation problem in distributed LLM inference, with the following contributions:

1. We formulate a joint optimization of the placement of model blocks at servers (called block placement) and the selection
of server chains for inference requests (called request routing) based on performance models experimentally validated on a
real distributed LLM inference system called PETALS [8]. Our formulation features a compact representation of the decision
variables that allows the problem to be formulated as a mixed integer linear programming (MILP) problem with a polynomial
number of variables/constraints.

2. We prove the NP-hardness of the formulated optimization problem, and develop a three-step algorithm (Alg. 1) by
decomposing the joint optimization into three subproblems, each optimizing one type of decision variables, which achieves
a polynomial complexity and a guaranteed average inference time per token.

3. We then consider the online setting with dynamically arriving requests, for which we show that the offline algorithm can
be adapted into a two-time-scale solution that solves the block placement problem via robust optimization and the (online)
request routing problem via a variation of shortest-path routing, with link costs designed to approximate the total inference
time (including waiting, communication, and computation) incurred at each server. The online algorithm inherits the same
performance guarantee as the offline algorithm as long as the number of concurrent requests is within a design limit, which
can be tuned to trade off the waiting time and the per-token inference time after waiting.
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4. We compare our algorithms against the state-of-the-art algorithms in [8] through both controlled experiments and experimen-
tally-validated simulations in a variety of settings with geographically distributed servers. The results not only show
substantial performance improvements by our algorithms (60-80% smaller inference times), but also provide insights on
the reasons for such improvements as well as the potential room for further improvements. A byproduct of our evaluation
is a CPU-only simulator that is validated to produce reasonable predictions of the actual performance of distributed LLM
inference on GPU servers, which can enable the evaluation of large deployments and facilitate future research for researchers
with limited GPU access.

Roadmap. Section 2 introduces the problem, Section 3 presents the optimization formulation and the proposed algorithms
together with their analysis, Section 4 presents the evaluation results, and Section 5 concludes the paper. The response to previous
reviews, proofs, and other supporting materials are provided in Appendix A.

2. Problem formulation
2.1. Target application scenario

We consider geographically-distributed inference by a pre-trained LLM with a decoder-only architecture [32], which is commonly
adopted by state-of-the-art LLMs (e.g., GPT and its variants [1,32,33]). The LLM is composed of thin input/output layers to map each
input token to an embedding and each output embedding to a probability distribution of the next token, as well as multiple layers of
identically structured transformer blocks (hereafter referred to as blocks), each containing a multi-headed self-attention sub-layer, a
fully connected feed-forward sub-layer, and corresponding layer normalizations [32]. The input/output layers only contain a small
percentage of the model parameters (e.g., < 3% for BLOOM-176B [8]) and can thus be hosted by the client. The blocks contain
most of the model parameters and are thus delegated to the servers [8]. Given a pre-trained LLM with L blocks, we consider a
distributed system with client-side and server-side caching like PETALS [8], which uses this LLM to serve autoregressive sequence
generation requests (hereafter referred to as requests) via a hub-spoke communication pattern as shown in Fig. 1. In this work,
we focus on supporting short-prompt long-response queries, where users ask concise questions to obtain detailed and comprehensive
answers. This is a common type of queries, particularly in educational and technical contexts, and adheres to the best practices in
using LLMs [34,35].

2.2. System model

Suppose that the system contains a set of servers V; and a set of clients V,, communicating through TCP connections according
to the architecture shown in Fig. 1. Each client represents an ingress point for inference requests, which can be a host owned by
end users or a proxy server submitting requests on behalf of end users. While it is possible for a server to directly forward its output
to the next server to continue processing, PETALS [8] lets the client perform such forwarding as in Fig. 1, in order to maintain
client-side caches of the input history for each invoked server to achieve fault tolerance.

Request model: For each inference request, the client initiates an inference session. Due to the one-one correspondence between
inference requests and inference sessions, hereafter we will use “request” and “session” interchangeably. We will first consider the
offline case with a given set of requests to understand the structure of the problem, and then address the online case with sequentially
arriving requests. To formulate the offline case, we use R to denote the total set of inference requests and R, to denote the set of
requests from client ¢ € V,. Each request has up to /L input tokens and generates up to /;,,, output tokens," where /! and /.,
are system parameters with /I +1/_ . upper-bounded by the maximum sequence length supported by the LLM. For short-prompt
long-response queries, we have /L < [ ... To formulate the online case, we need to additionally model the state of each server
as detailed in Section 3.3.2.

Inference time model: Each server j € V; has a per-block processing time of up to rj’ (1L, during the prefill phase (i.e., phase for
processing the input to generate the first token) and a per-token-per-block processing time of z; during the decoding phase (i.e., phase
for autoregressively generating the remaining tokens). Our experiments have validated rjI (L. ) to be independent of the output
length /., and r; to be independent of both the input length /! and the output length /., (see Figs. B.11-B.12). Moreover,
the connection between each client ¢ and each server j has a per-input round trip time (RTT) of up to tgj(lélax), representing the
communication time (including serialization/deserialization, propagation, queueing, and transmission delays) for transmitting one
input sequence from the client to the server and the processed input sequence from the server back to the client. Similarly, the
connection also has a per-token RTT of t,;, representing the communication time for transmitting one token from the client to the
server and the processed token from the server back to the client. This means that if a request from client ¢ with input length /L__
and output length /., is processed by a chain of servers p with each server j € p processing k; blocks, it will incur a total inference
time (including all the client-server communication time and all the server processing time) of

3 (zi}.(l{nax) +kyr! (1{nax)> + (e = D) X1 + k;7)), o

Jj€p Jjep

1 The actual number of generated tokens may be smaller if the end-of-sequence token is detected, but the maximum number of output tokens specified in
the request is used in resource allocation.
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Fig. 2. Inference time vs. #processed blocks on A100 for: (a) first token; (b) each of remaining tokens (Ir’nax

=20, I, = 128).

where ¥, (tc’j(lrlnax) +k; rj’ (l[’nax)) is the time to query the servers for the first token, and ¥, (t.; + k;7;) is the time to query the
servers for each of the remaining tokens. In the case of exceptions (e.g., out-of-memory error), additional delays will apply; see
Section 3.3.2 for details. In addition, each session incurs some delays at the client due to local computations such as tokenizing the
input sequence and extracting the next token from each embedding processed by the servers, but since these delays are not affected
by the resource allocation at servers (see Section 2.3), they only contribute a constant shift which is ignored in our model.

Remark: The above model assumes client-centric communication as in Fig. 1. If adjacently traversed servers directly communicate
as in [18], the communication times will become ¥, /¢, t,.’j(ll’nax) for the first token and Y, ¢, #; for each of the subsequent tokens,
where ti’j(ll;ax)/t,- ; is the per-input/per-token one-way delay from node i to node j. Our optimization formulation and solution are
easily amendable to allow direct server-server communications by simply replacing the client-server RTT #,; with the server-server
one-way delay ;.

Memory consumption model: Each server j € V; has a GPU memory of M, which denotes the effective memory capacity for
storing model parameters and attention caches (see Remark after (2)). The size of each block is s,, (bytes), given by the number
of model parameters per block times the number of bytes per parameter. In addition, each server holds an attention cache of the
past key—value pairs for each ongoing request routed through the server and each block it processes for that request. For a total
sequence length of /L +1. .., each attention cache stores two tensors (one for the keys and one for the values), each containing
dmodel * (L. + Imax) Parameters, where dpo4e is the embedding dimension of the LLM. Thus, the size of each attention cache is
se i= 2dmodel - (L .y + Imax) - dtype_bytes (bytes), where ‘dtype_bytes’ is the number of bytes per parameter in the cache (usually
dtype bytes = 2). This means that a server j storing m; blocks and processing K’ blocks for each request r has a total memory

consumption of

Sy +5¢ Y K. )
rer

Remark: In addition to storing the model parameters for the hosted blocks and the attention caches, the GPU memory also needs
to hold the CUDA context (depending on the CUDA version and the device) as well as a small number of intermediate variables
generated during inference (assuming in-place updating), but this space is invariant to the number of placed blocks and the number
of hosted inference sessions, and can thus be modeled as a constant overhead in the memory consumption. In practice, there is also
some waste of GPU memory due to memory fragmentation. Thus, the memory capacity M; is the effective memory for resource
allocation and should be slightly smaller than the physical memory capacity to avoid the out-of-memory errors.

Experimental validation: We have validated the above models through various experiments based on PETALS [8] and BLOOM-
176B [3]. As an example, Fig. 2 compares the per-token inference time incurred at a given server according to our model in (1) with
the average time measured from 10 Monte Carlo runs of controlled experiments with various #processed blocks and #concurrent
requests, in a basic setting of co-located server and client (where the communication time is just the time for serializing and
deserializing tokens), and similar results hold under other settings with network delays. The results validate the accuracy of our
proposed model in capturing the linear dependency of the inference time on the number of processed blocks. The results also
indicate that the inference time for one request is largely independent of the number of concurrent requests at the same server
(as long as they all fit into the GPU memory), thanks to the massive parallel computing capability of GPU. Figs. B.11 and B.12 in
Appendix B.1 provide similar comparisons with respect to the input/output length, respectively, again validating the accuracy of
our inference time model. Fig. 3a compares the GPU memory consumption predicted by (2) with the actual allocated GPU memory,
which validates the accuracy of (2). A closer examination reveals that the first term in (2) (memory used to store blocks) is much
larger than the second term (memory used to store attention caches), and only the second term depends on the number of concurrent
requests as shown in Fig. 3b. Nevertheless, it is crucial to model the impact of concurrent requests on memory consumption, as the
GPU memory is typically the bottleneck resource in LLM inference (see Remark in Section 2.3).
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Table 1
Main notations (first two rows: free decision variables; rest: input parameters or dependent variables).
Notation Description
a;,m; Index of first block & #blocks placed on server j
1y Indicator for request r to be routed on link (i, j) or path p
L Total #blocks in the LLM under consideration
V.V, Set of clients/servers
(V,E) Logical topology for joint block placement and request routing
Ve, Eg ) Logical topology for request routing for client ¢ under block placement (a,m) (see Alg. 1)
R, R, Set of all the requests or requests from client ¢
1L o Imax Maximum #tokens in an input/output sequence
Ss Se Size per block and size per attention cache
M j,7j Total memory and maximum #parallel sessions at server j
r]’ (U7 Per-block processing time at server j during prefill or decoding phase
’f,(lrlnax)-’c/ Per-input/per-token RTT between client ¢ and server j
tfj" (GWR 15 Per-token inference time of a first/later token at server j for a request from client ¢ routed through (i, j)
T,,r* j Amortized inference time and maximum per-token RTT for server j (see (14))
C,, T, Total capacity (in terms of #sessions) and total amortized inference time for block b (see Alg. 1)
(T!(t), M} (t))f;(l” State of server j at time 7 (see Section 3.3.2)
zn’(t) Waiting time for link (i, j) at time 7 (see (20))

2.3. Resource allocation problem

We study the joint optimization of how to place the blocks at the servers, referred to as “block placement”, and how to select
the chain of servers for each request, referred to as “request routing”. Our objective is to minimize the average time in serving each
request within the resource constraints, with focus on the GPU memory constraint. Table 1 lists the main notations used in our
presentation.

Remark 1: The objective of this work is to optimize the inference performance in terms of inference time for a given set of
available GPU resources. Other performance measures, e.g., cost of renting GPUs or robustness in the face of unreliable nodes, are
left for future work.

Remark 2: In theory, there are other resource constraints besides GPU memory that can limit how the inference requests can
be served. For example, each server has a limited processing capacity, and each client-server connection has a limited throughput.
In practice, however, GPU memory is usually the bottleneck resource that will be saturated before other resources. For example,
for BLOOM-176B [3], a server with an A100 (80 GB) GPU and 100 Mbits/s bandwidth can process over 700 tokens/second when
hosting the maximum number of blocks according to [8] (53 blocks) and transfer over 400 tokens/second, which should be enough
for over 80 concurrent sessions without causing notable queueing delays, but the available GPU memory only allows 21 concurrent

sessions for /I =20 and I,,, = 128, and even fewer for longer sequences. We will thus focus on the GPU memory constraint.

3. Joint Block Placement and Request Routing (BPRR)

Based on the experimentally validated model (Section 2.2), we will first study BPRR in an offline setting to understand the
properties of the problem (Section 3.2), and then use the understanding to develop a solution for the online setting (Section 3.3).
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Fig. 4. Logical topology G for request routing and route feasibility condition.

3.1. Preliminaries

Logical topology for routing: To facilitate the optimization formulation, we construct a logical topology G = (V, E) as a directed
graph illustrated in Fig. 4, where the node set V := VS UV, UV.? contains the servers V;, the copies of clients V5 viewed as sources
of requests (called S-clients), and the copies of clients VCD viewed as destinations of requests (called D-clients). We will use ¢ € VCS
and ¢’ € VP to denote the S-client and the D-client corresponding to a real client ¢ € V,. Define #,., := 0 and 7., := 0. The link set £
includes the links connecting each S-client with the servers allowed to host the first block, the links between servers allowed to be
adjacent on a chain, and the links connecting the servers allowed to host the last block to each D-client. Typically, this leads to full
connectivity within ¥, and complete bipartite connectivity between V; and V5 /V.P. The split of clients into S-clients and D-clients
will facilitate the formulation for request routing.

Route feasibility condition: It is easy to see that an optimal block placement should only place consecutive blocks at each server,
as non-consecutive blocks will increase the number of communications between the client and the server that introduces unnecessary
delay. This type of block placement implies that each server can be traversed at most once by each inference session, implying a
simple routing path. A path p in G is feasible for routing the requests from client c if it leads from the corresponding S-client to the
corresponding D-client and traverses a chain of servers that collectively host all the blocks of the LLM in order, as illustrated in Fig.
4.

Since each server should host consecutive blocks, we can represent the block placement at each server j € V; by the first block
a; and the number of blocks m;, i.e., server j stores the blocks in {a;,...,a; +m; — 1}, where? a;,m; €[L]land a; +m; —1 < L. It is
possible for the same block to be placed at multiple servers traversed by an inference session. In this case, we assume that the first
server hosting the block will process it according to [36]. That is, if a session traverses server i immediately before server j, the
blocks processed at server j will be {max(a;,a; +m;),...,a; +m; — 1}. A chain of servers is feasible for request routing if and only if
the block placement satisfies the following condition.

Lemma 3.1. Assume that each node j € V stores all the blocks in {a;, ..., a; +m; — 1}, where each S-client c € VCS stores a dummy block
0 (ie, a, :=0, m, := 1), and each D-client ¢’ € VBD stores another dummy block L + 1 (i.e, as := L+ 1, my :=1). Then a c-to-c’ path
p in G is a feasible routing path for client ¢ if and only if

a;<a+m <a;+m;—1, Vi) €p. ®

Remark: Intuitively, the condition (3) states that a path is feasible for request routing if and only if after processing all the blocks
at the previous servers, the next block can always be found at the next server on the path.

Performance models: Lemma 3.1 allows us to explicitly model how the inference performance depends on block placement
and request routing. Specifically, according to Section 2.2, Lemma 3.1 implies that a request from client ¢ routed through a feasible
path p traversing link (i, j) will incur a per-token inference time of

Ifj =t +ra;+m;—a; —m) “4)
at server j after the first token generation (including both computation and communication), where a; + m; — a; — m; is the
number of blocks that are processed for this request at server j. The first token will incur a larger per-token inference time of

Ny . .
1 ) 1= 15U ) + 7] ()@ + my — a; — m;) at server .

Meanwhile, by Lemma 3.1, each request routed through link (i, j) € E will require s.(a; + m; — a; — m;) of dedicated memory at

server j for the attention caches. This together with the memory for storing m; blocks leads to a total memory consumption of

Suiy s Y, Sijlaymy—a = m) &
(. EE

at server j, where f;; is the number of requests routed (concurrently) over link (i, j).

2 Throughout this work, we use [k] for a positive integer k to denote the set {1,...,k}.
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3.2. Offline setting
We first consider the offline setting with a given set of requests to understand the properties of the problem.

3.2.1. Vanilla formulation

As explained in Section 3.1, the block placement can be concisely encoded by a := (a;);ey, and m := (m;);ey,, which jointly
determine which paths are feasible for request routing according to Lemma 3.1. Let P.(a, m) denote the set of feasible routing paths
for client ¢ under the block placement (a, m). Due to the server-side attention caches, the chain of servers should remain the same for
all the tokens of the same sequence. We ensure this by controlling routing at the granularity of requests, represented by f € {0,1}
that indicates the selection of path p € P.(a, m) for request r € R.. Then we formulate the joint block placement and request routing
problem (BPRR) as

m $F Y A% )

fam . 1ER, pePoam)  (hep
st s,m;+ s, Z Z Zf;(aj +mj—a;—m)<M;, VjEV, (6b)

c€V, reR, preP(am):

(i,j)ep.di
Y =1 YeeV.reRr, (6c)

PEP,.(a,m)

aj+m;—1<L, VjeV, (6d)
[, €101}, a;,m; € [L], (6e)

where the objective (6a) is to minimize the total (and hence the average) per-token inference time over all the requests when
ignoring the first token, constraint (6b) ensures that the requests can be served within the GPU memory at each server (where
Zeev, 2rer, Zpep,am):jep /p 1S the number of requests routed to server j), constraint (6¢) ensures that each request is routed to a
feasible path, and constraints (6d)—(6e) ensure the feasibility of the block placement.

Remark: Strictly speaking, to minimize the average time in serving each request, we should minimize

IDIES) f,§< D 1 ) + U= 1) Y, r;;.), -
ceV, reR, peP.(a,m) @i.j))ep (i.))ep

which is the total time to complete all the requests. Minimizing (7) is equivalent to minimizing an objective function of the form
(6a), except that tfj needs to be redefined as follows:

| lmax_l | lmax_l
(e 2 ) o (el + 2 ) =, ®
which denotes the average per-token inference time incurred by a request from client ¢ at link (i, j) over all the tokens. In the case
of lrlnax < I nax> (8) reduces to (4). Even in the general case, all our results remain applicable when redefining tfj as in (8). We will
thus focus on solving (6). While we have used the maximum input/output length to simplify our formulation, it is easily extensible
to the case of heterogeneous input/output lengths as explained in Appendix B.2.

3.2.2. MILP formulation

The vanilla formulation (6) is not computationally tractable because of the implicit and nonlinear dependency of the routing
variable f on the block placement variables a and m. Moreover, given a block placement (a,m), the number of feasible paths
in P.(a,m) can be exponential. These limitations motivate us to seek a more tractable formulation. Below we will show that by
introducing appropriate auxiliary variables, we can convert the nonlinear exponential-sized optimization (6) into a MILP with
polynomial numbers of variables and constraints.

To avoid an exponential number of routing variables, we replace the path-level routing variable /; by a link-level routing variable
fi; €101, which indicates if request r is routed over link (i, /) € E (meaning that the request will be processed by server i and
server j consecutively). This simplifies the objective function (6a) into

22X X f[j(rc,-+r,(aj+m,—a,-—m,-)>. ®
ceV, reR, (i,j))eEE
We can guarantee all the requests to be properly routed by imposing a flow conservation constraint
D fh= Y [l +ds, VeeV,reR,jEV, (10)
iev iev
where d¢ is a constant, defined as 1 if j = ¢ (S-client for client ¢), —1 if j = ¢/ (D-client for client ¢), and 0 otherwise. This ensures
that each request will be routed from its S-client to its D-client in the logical topology G (Fig. 4).

To model the dependency between request routing and block placement, we leverage Lemma 3.1, which states that it is feasible
to route a request from node i to node j if and only if a; < a; + m; < a; + m; — 1. Thus, we can ensure route feasibility by requiring

a/-fl.’jSa,+m,-, VreR,(i,j) EE, an
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(a; + m;) i’/.Saj +m; —1, Vre R,(i,j) € E, 12)
where R :=J o, R, denotes the total set of requests. This ensures that a request is routed over (i, j) only if the condition in Lemma

3.1 is satisfied.

However, using the above objective and constraints directly will lead to a nonlinear optimization due to the bilinear terms
a; i’j, a; f,.’j, m;f ,.’j, and m; fl.’j in the objective function (9) and constraints like (11)-(12). Fortunately, because fi’j is binary, we can
convert them into linear forms by introducing auxiliary variables a,.’j, ﬁl’j yl’J 61.’j and the corresponding linear constraints (B.4)—(B.7)
as detailed in Appendix B.3.

Combining all the above allows us to rewrite the BPRR problem in (6) as follows:

min Y N (tcjfi; Ty 5;)) (13a)

a.py.s CEVe r€ER . (i.))EE

St s,m;+s, Z Z Z @ +v],— B, —8) < M;, VjeV, (13b)

c€V, reR i:(i,j)€E

D f= D S +d Ve eV, reRJEV, (130)
eV eV
aj+m;—1<L, VeV, (13d)
al.’j <a+m, VreR,(i,j)€E, (13e)
ﬁ[.'j+5l.'j§aj+mj—1, VreR,(i,j) €EE, (13f)
(B.4)-(B.7), (13g)
[l €10,1}, a;om; € L1, o, B, 7], 8] 2 0, (13h)

where (13a) is the linearized expression of the total inference time, (13b) models the GPU memory capacity, (13c) ensures flow
conservation, (13d) ensures block placement feasibility, (13e)—(13f) ensure route feasibility, and (13g) defines the auxiliary variables
used to linearize the objective function and the constraints. As explained in Appendix B.3, ai’j =a;f l.’j, ﬂi’j =afl, y,.”j =m; fl.’j, and
61.’1, =m fl.’j. Plugging these into (13a) and (13b) recovers the original objective (6a) and memory constraint (6b), except that the
path-level routing variable f7 is replaced by the link-level routing variable f/.. The flow conservation constraint (13c) together with
the route feasibility constraints (13e)—(13f) and the integer constraint on fL (13h) ensures that each request is routed on a single
feasible path as in (6¢). The overall optimization is a MILP, where a, m (block placement) and f (request routing) are free variables,
and the others are dependent variables.

Remark: The MILP (13) has O(|R| - | E|) variables, dominated by the routing variable f and the auxiliary variables «, g, y, and
6. As the number of links |E| is bounded by O(|V,|(|V,| + |V;|)), the number of variables is in O(|R| - |V,|(|V,| + |V;])). Similarly,
the number of constraints is also in O(|R| - |E|) = O(|R| - |V,|(|V,| + |V;])), dominated by (13e)-(13g). Thus, even if BPRR can be
formulated as a MILP, the size of the MILP will grow linearly in the number of requests/clients and quadratically in the number of
servers, making it challenging to solve.

Formally, we have shown via a reduction from the optimization version of the partition problem [37] that the BPRR problem is
hard to solve to optimality as stated below.

Theorem 3.2. The BPRR problem as formulated in (6) or (13) is NP-hard.

Remark: In fact, the reduction in the proof of Theorem 3.2 leads to a special case of BPRR with a single client (|V,| = 1). This case
represents a common deployment scenario where end users query the system through a proxy (e.g., a Flask web server as in [36]).
We have proved that the BPRR problem remains NP-hard even in this special case.

3.2.3. Algorithm design

The NP-hardness of BPRR implies the need of efficient suboptimal algorithms. Although the MILP formulation in (13) allows us
to apply existing heuristics for MILP, e.g., LP relaxation plus rounding, such a heuristic still has limited scalability due to the large
size of the LP, and more importantly, it does not even guarantee a feasible solution.® To efficiently solve large instances of the BPRR
problem, we propose a three-step algorithm called Conservative Greedy BPRR (CG-BPRR) as shown in Alg. 1, by decomposing the
BPRR problem into the three subproblems of optimizing m, a, and f sequentially, as explained below.

Step 1: First, we set the number of blocks per server conservatively (line 1) to make sure that each server will have enough
remaining GPU memory to hold the attention caches even if all the requests are routed through it. This is because according to the
memory consumption model in (5), the memory consumption at server j is upper-bounded by s,,m; + s.|R|m; (achieved if all the
requests are routed to it and all the hosted blocks are processed), and thus storing min(| M; /(s,, +s.|R|)], L) blocks on server j will
guarantee the maximum memory consumption to be feasible.

3 Specifically, the fractional solution (f,&,#) to the LP relaxation of (13) may not lead to a feasible integer solution after rounding, as the rounded block
placement (a, m) may not place each block on at least one server. This is because the auxiliary variables a, 8,7, 6 used to linearize the problem can only enforce
feasibility when f is binary.
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Algorithm 1: Conservative Greedy BPRR (CG-BPRR)

input : set of clients V,, set of requests |J ., R, #blocks L, size per block s,, size per cache s,, set of servers V,, parameters for each
Jj €V including GPU memory M, pfocessing time 7;, and per-token RTTs (#,))cy,
output: Block placement (a,m) and request routing f
// conservative assignment of #blocks per server:
1 m; < min(|M;/(s,, + s.|R])], L), Vj € V;, where |R| = ZcEV( IR.I;
// greedy block placement:
2 C, <0, T, <« 1,|R|, Vb€ [L];
3 for each server j € V, in increasing order of th do

s

4 if 3b € [L] with C, < |R| then

at+m;—1

5 ‘ aj < ArgMAX e[y +1): C,<|R|, 3b€la,....a+m;~1} Zb/—a Ty;
6 else
7 | ) < argmingg; 1) (Cor v s Comy—1);

s | T,«T,—G~T)min (max(|R| - cb,O)j,), Vb€ {a),....a, +m, - 1};

9 C,,<—Cb+?,,Vbe{a/-,...,aj+m,—1];

// shortest-path request routing:

10 for each client c € V, do

1 G, < the feasible routing topology for client ¢ under block placement (a,m), with a node/link set (V, E ) and a cost of tfj for
each (i, j) € E¢

p, < shortest path from the S-client to the D-client in G,

13 VTS ()RS )t VreR,, (i,j) € E;

am’

Step 2: Next, we greedily place a set of continuous blocks {a;, ...,a; +m; —1} at each server j in the descending order of “server
speeds” so that each placement improves the performance for the worst-performing blocks (lines 2-9). Specifically, we measure the
speed of server j by the amortized inference time defined as

- 1y
1 ::imax(t +m;) =1 +— 14
m; m;
J J
where 1,; := max,gy, 1.; is the maximum per-token RTT between any client and server j. Since max,gy, (f.;+7;m;) is an upper bound on

the per- token 1r1ference time incurred at server j, t denotes the amortized maximum inference time per block at server j, amortized
over the blocks hosted by this server. The amortlzatlon allows us to compare the speeds of servers with different memory capacities.
Under such amortization, we consider a relaxed request routing problem, where each request is routed among servers on a block-
by-block basis and incurs a per-block inference time tNJ at server j. It is clear that the relaxed request routing must use up the capacity
of a faster server (with a smaller amortized inference time) before going to a slower server for each block. Meanwhile, under m ;

computed in Step 1, each server j can guarantee to process up to
?j - [Mj — Sy

J > |R| (15)
Som;

requests concurrently without running out of memory,” which defines a capacity of the server. It means that under the relaxed
request routing, only the fastest server hosting block » will be used to process the block for all the requests.

Thus, to make the best use of fast servers, we place blocks on servers in the increasing order of 7, ;> where each server j receives
the set of continuous blocks that “need service the most”. To measure this, we use a variable C, to track the total capacity of servers
hosting block b, and another variable T}, to track the total amortized inference time all the requests spend on block b under the optimal
relaxed routing. That is, C, is the sum of ?j’s over all the servers satisfying a; <b < a; +m; — 1 (line 9), and T}, = T] |R| if server j
is the fastest server hosting block . To ensure that T} is well-defined before block 5 is placed on any server, we introduce a dummy
server 0 (assuming 0 ¢ V,) with a large capacity f,, := |R| and a large amortized inference time 7o > t~j (Vj € V,), which initially
hosts all the blocks. Introducing this dummy server allows us to meaningfully initialize 7, before any real block placement (line
2), and its large inference time ensures that T, (as updated in line 8) will be equal to the actual total amortized inference time for
block » when C, > |R|. Our idea is to measure the “need of service” by the total amortized inference time, i.e., the next fastest
server will receive the set of continuous blocks with the maximum ZZ S »- One subtle point in applying this idea is that since
the relaxed request routing always uses the fastest server for each block T, will stop changing after block b is placed, which can
cause subsequent servers to be assigned the same blocks over and over again. To avoid such waste of servers, we will only select
the blocks according to ZZ; :mj " T, if this set contains at least one unserved block (line 5); otherwise, we will select the set of
continuous blocks with the minimum capacities (line 7), where “argmin” selects the first value of a in the lexicographical order of
sorted (C,,...,Cpppm._1)-

The rationale ofl Step 2 is that it minimizes the average inference time under the relaxed request routing.

4 We use 1(-) to denote the indicator function.
5 The actual number of requests server j runs concurrently may be larger when not all the m; blocks are processed at this server for some requests.

10
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Fig. 5. Example for suboptimality of CG-BPRR (Alg. 1).

Lemma 3.3. The block placement in lines 2-9 of Alg. 1 minimizes the average per-token inference time over all the requests under the
relaxed request routing, assuming that “argmax” in line 5 breaks ties in favor of the smallest index.

Remark: As shown in the proof of Lemma 3.3, Step 2 of CG-BPRR generates an intuitive block placement that uses the “fastest
servers” to cover all the blocks sequentially. That is, if j € ¥, denotes the jth fastest server in terms of 7;, then q; = Zj:ll m; + 1 for
allk=1,...,K—1and ag = L — mg + 1, where K :=min{k : zj;l m; > L}.

Step 3: Finally, we compute the request routing under the block placement (a,m) given by the previous steps, assuming the
block placement to be feasible (i.e., every block is hosted by at least one server).

Given a feasible block placement (a, m), the (conditionally) optimal request routing that minimizes the average inference time
is given by a subproblem of (13) as follows

min 22 Xl (162)

ceV, reR, (i,j)eE

s.t. s, 2 2 2 fia;+m;—a,—m)<M; —s,m;, Vj€V, (16b)
ceV, reR, i.(i,j)EE

(130), 11)-(12), (16¢)

/5 E0.1), VreR.G.)) € E. (16d)

where we have plugged in 1, as defined in (4) as a constant. Generally, this is an integer linear programming (ILP) problem with
O(|R|-|E|) variables and O(|R|-| E|) constraints, which is no easier to solve than (13). However, under the block placement computed
by CG-BPRR, we can convert the problem into a simple shortest-path routing problem as stated below.

Lemma 3.4. Suppose that the block placement computed by lines 1-9 of Alg. 1 is feasible. Then under this block placement, the shortest-path
request routing in lines 10—13 is optimal for (16).

Remark: As explained in Section 3.3, when applying CG-BPRR, the number of requests |R| is actually a design parameter that
can be tuned to ensure the feasibility of the block placement.

3.2.4. Performance analysis

We now analyze the overall performance of CG-BPRR (Alg. 1) in terms of both the complexity and the average inference time.

Complexity: The complexity can be dominated by either greedy block placement (lines 2-9) or shortest-path request routing (lines
10-13). Each for loop in lines 4-9 takes time O(Lm) if line 5 is executed (where m := max ey, M ;) or O(Lmlogm) if line 7 is executed,
both in O(L? log L). Each for loop in lines 11-13 takes time O(|R,| - | E|), dominated by line 13. The overall complexity of Alg. 1 is
thus O(|V,|L*log L + |R| - |E|) = O (|V,| (L*log L + |R|(|V,| + |V;]))) (recall that |E| = O(|V,|(|V,| + |V;]))), which is polynomial in
the problem size.

Suboptimality: First of all, due to its conservative assignment of blocks, CG-BPRR may not give a feasible solution when a feasible
solution exists. For example, we may have a large number of servers (|V| > L|R|) but also a large number of requests, such that
Sw+ SRl > M; and s,, +s. < M; (Vj € V;). Then CG-BPRR will be unable to place any block, but it is still feasible to satisfy all
the requests by placing one block per server and routing each request to a disjoint set of L servers.

Moreover, CG-BPRR can be suboptimal in comparison to the optimal solution even when it is feasible. Consider an example with
[V.| = 1 client and |V,| = L? servers, where each j € V, has a per-token RTT of 7, ; = t to the client, a per-block processing time
of 7; = 7, and a GPU memory of M; = (L + 1)s,,. Suppose that s,, = Ls,, and the number of requests is |R| = Ls,, /s, = L?. Then
CG-BPRR will place only one block per server and route each request through a chain of L servers as illustrated in Fig. 5b, incurring
an average per-token inference time of 7¢ := L(r + r). However, the optimal solution is to place all the blocks on each server and
route only one request to each server as illustrated in Fig. 5a, incurring an average per-token inference time of T° :=¢+ L < T%.

Performance guarantee: Nevertheless, CG-BPRR provides a guaranteed average inference time as long as its block placement is
feasible.

11
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Theorem 3.5. Without loss of generality, assume that the servers have been sorted into an increasing order of amortized inference times
Gie, T < < t~|VX| ). Let K := min{k : Zj; ym; > L} be the number of iterations of lines 3-9 until all the blocks are placed on at least
one server. If CG-BPRR gives a feasible solution (i.e., K < o), then its average per-token inference time T¢ is bounded by

K K
TgSZij/-—TK<Zm/-—L>, a7)
j=1 j=1

where 7/ is defined as in (14) and m; is computed as in line 1 of Alg. 1.

Remark: The upper bound in (17) has an intuitive meaning that it is the per-token inference time under the worst-case demand,
where all the requests come from a client ¢ that simultaneously achieves t,; = t,; for all j € V (i.e., farthest away from all the
servers), and are routed through the chain of servers 1, ..., K. This worst-case guarantee will facilitate the adaptation of CG-BPRR
for the online setting as explained below.

In addition to the upper bound in (17), we also provide a lower bound on the minimum average per-token inference time in
Appendix B.4, which together with the upper bound yields a bounded approximation ratio for CG-BPRR.

3.3. Online setting

In practice, requests usually arrive dynamically, and block placement and request routing are usually performed at different time
scales: block placement should be at a large time scale to avoid excessive overhead due to frequently loading/unloading blocks, and
request routing should be at a small time scale to provide timely service to dynamically arriving requests. Nevertheless, the key ideas
in CG-BPRR can be applied in the online setting through a two-time-scale solution as follows.

3.3.1. Block placement via robust optimization

Due to its large overhead, one block placement solution should be able to serve a variety of request scenarios with reasonable
performance. We address this requirement by treating the block placement problem as a robust optimization problem, with the goal
of minimizing the worst-case average per-token inference time for a target range of scenarios. To this end, we note that the block
placement steps in CG-BPRR (i.e., lines 1-9), referred to as Conservative Greedy Block Placement (CG-BP), are already solving a robust
optimization. Specifically, given a maximum number of concurrent requests |R| that the system aims to support, CG-BP places blocks
according to the worst case that all the requests are from a client that is farthest away from all the servers (i.e., with a per-token
RTT of t,;, Vj € V). Thus, the performance bound in Theorem 3.5 still applies as stated below.

Corollary 3.6. If CG-BP (i.e., lines 1-9 of Alg. 1) gives a feasible block placement for |R| requests, then during online inference, the
average per-token inference time under the optimal request routing will always be bounded by (17) as long as the number of concurrent
requests® is no more than |R|.

Remark: The parameter |R| here is a design parameter that denotes the number of requests the system guarantees to serve
concurrently and can be tuned to ensure the feasibility of CG-BP. Specifically, given the set of servers and their memory capacities,
it is easy to see that the block placement given by lines 1-9 of Alg. 1 is feasible if and only if

D min(|M, /(s,, + s IRD], L) > L. (18)
j€v;
To satisfy the condition (18), it suffices for |R| to satisfy

Tier, M; = su(L+ V)

so(L+ V)

IRI < ) (19)
which provides an upper bound on the number of requests that the system can guarantee to serve concurrently under CG-BP.
Meanwhile, increasing |R| has a negative effect of decreasing m; (Vvj € V), which can increase the path length and hence the
inference time. Thus, the parameter |R| effectively controls the “throughput-delay tradeoff” of the system. When the number of
concurrent requests exceeds |R|, the new request may have to wait for some of the existing requests to finish (as detailed in
Section 3.3.2). Therefore, |R| could be tuned to optimize the tradeoff between the waiting time and the inference time after waiting.
A configuration method that empirically works well is as follows: (i) estimate the mean and the standard deviation (std) of the
number of new requests during the processing of a given request, and (ii) set |R| to the minimum of the mean plus the std and
the upper bound in (19). Such estimation can be further adjusted, on a time scale suitable for block placement, to accommodate
time-varying demands.

6 In the online setting, “concurrent requests” refer to requests that are simultaneously active (i.e., submitted but unfinished) but do not necessarily arrive
simultaneously.

12
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3.3.2. Request routing via individually optimal scheduling

Given the block placement by CG-BP, online request routing strives to schedule each incoming request to a feasible path to
complete the request as soon as possible. If the number of concurrent requests is within |R| (the number of concurrent requests
CG-BP plans for), then there will be no memory contention, and the new request can be routed optimally as in lines 10-13 of Alg.
1. If the number of concurrent requests exceeds |R|, however, then the new request may have to wait for some existing requests to
finish, in which case it is necessary to know the system state in handling the existing requests.

To this end, we track the state of each server as follows. Let (T,f ), M,f (t))i’ ft) denote the state of server j at time t, where R () is
the number of existing (and unfinished) requests routed through server j, T,/ (¢) is the remaining time’ for a request r € R (0, and
M (1) is the number of attention caches hosted on server j for request r (i.e., #blocks j processes for r). Without loss of generality,
suppose that the existing requests have been sorted into increasing order of 77 (¢). Then for a new request arriving at time 7, the
waiting time for link (i, j) € E to be available for routing the request (i.e., the time until server j has enough cache space for a new
request routed through (i, j)) is given by

; M;—s,m; R
(1) :=min{ T} (@) : [%J - D M) >a;+m;—a,—mz, (20)
¢ r=k+1

where T ({(t) :=0. That is, t + t}’j‘.’(t) is the earliest time for server j to have enough memory for the new request if it is routed from
server i. The earliest time a path p is available for the request is then given by 7 + max; ¢, tfj‘.’(t).

Given the current system state at time ¢, we formulate the individually optimal (i.e., myopic) scheduling of a new request arriving
from client ¢ at time 7 as

. w
}n’w "+l pax Z tfjf,»j (21a)
’ (. )EEG m
st. 1/ 0f; <1V, VG, )) € E,, (21b)
Y L= X fy=di. VeV (210)
iEN*(j:a,m) iEN = (j;a,m)
fi; €0, 1}, VG, j) € Eg . (21d)

where the main variable is f; ; € {0,1} that indicates whether to route the request through link (i, j). The objective (21a) is to
minimize the total waiting plus inference time for this request,® (21b) ensures that all the invoked servers have enough memory when
the session starts, and (21c) is the flow conservation constraint, with N'*(j; a,m) and N ~(j; a, m) denoting the outgoing/incoming
neighbors of j in the feasible routing topology G, for client ¢ under the given block placement (a, m), and d¢ denoting the constant
defined in (10). While the second term of (21a) has approximated the total inference time by #output tokens multiplied by the time
between tokens, it can be refined to model the actual total inference time by redefining tfj as in (8).

While (21) is a MILP that is hard to solve directly, we can simplify it by relaxing " into its upper bound Yije 5, 15’(1) fijs
which reduces (21) into a shortest-path routing problem with waiting-penalized link cost t}’j‘.’(t) + lmxticj for each (i, j) € E;m We refer
to this solution as Waiting-penalized Shortest-path Request Routing (WS-RR).

Corollary 3.7. Let p.(r) denote the path selected by WS-RR for client c at time 1. Then the cost of this path et (tiv;’(t) + lmaxtfj)
is an upper bound on the completion time of a request r* arriving from client ¢ at time t. Moreover, if the number of concurrent requests at
time t is within |R| (the number of requests used by CG-BP in computing the block placement), then p.(t) is optimal under the given block
placement.

3.3.3. Summary of online BPRR
Alg. 2 in Appendix B.5 summarizes our proposed two-time-scale solution for the online setting that combines CG-BP and WS-RR.
Together, Corollaries 3.6 and 3.7 imply that this combined solution can guarantee a request completion time that is bounded by

Imax (Z:;ijj - TK <Zf=1 m; — L)) if #concurrent requests < |R]|,

w 22)

Zi.hen,0) (t,.j O + It o.w.,
where the first bound is independent of the system state while the second bound is dependent. We note that while individually
optimal scheduling may not be globally optimal, in our solution it is just used to provide a feasible solution in the exceptional case
when #concurrent requests > |R| and thus suffices under properly set |R|.

7 We can estimate the remaining time for an existing request r using its completion time by (21a) when scheduling » minus the elapsed time.

8 In PETALS implementation [16], there is another delay due to retrying inference at each server according to binary exponential backoff with a maximum
backoff time (by default 60 s), causing the actual time from the request arrival to the start of inference to be nonlinear and mildly larger than . We have
ignored the retry delay to linearize the formulation (21) but considered such delay in our simulation (see Section 4.1).
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Table 2

System configuration for experimentation (entries denote RTT and bandwidth).

Performance Evaluation 170 (2025) 102527

Cluster0 (CPU)

Clusterl (2 A100s)

Cluster2 (7 MIGs)

Cluster0 (CPU)
Clusterl (2 A100s)

5 ms, 1 Gbit/s
100 ms, 100 Mbit/s

100 ms, 100 Mbit/s
5 ms, 1 Gbit/s

100 ms, 100 Mbit/s
100 ms, 100 Mbit/s

Cluster2 (7 MIGs) 100 ms, 100 Mbit/s 100 ms, 100 Mbit/s 5 ms, 1 Gbit/s
Table 3
Topologies used in simulation.
AboveNet BellCanada GTS-CE
#nodes 23 48 149
#links 62 130 386
Link capacities (Gbps) 1 1 1

Link delays (ms) [0.100, 13.800] [0.078,6.160] [0.005, 1.081]

4. Performance evaluation

We evaluate the performance of the proposed algorithms against the state of the art through both controlled experiments based
on the PETALS system [8] and data-driven simulations based on a simulator we have developed that has been cross-validated with
the experiment results.

4.1. Evaluation setup

Evaluation environment: We employ two cross-validated evaluation environments:

(1) PETALS-based distributed system: This environment runs real LLM inference workloads on a modified version of PETALS [8]
that can take any block placement and request routing decisions as inputs. We deploy two copies of this system: (i) a smaller
deployment on a server with 3 A100 (80 GB) GPUs, where we leverage the multi-instance GPU technology [38] to partition one of
the A100 GPUs into 7 smaller virtual GPUs (referred to as MIGs) that together with the remaining A100s provide 9 servers with
one GPU each, and (ii) a larger deployment on a server with 8 A100 (80 GB) GPUs, where we partition three of the A100s into 21
MIGs that together with the remaining A100s provide 26 servers with one GPU each. We use the CPUs to emulate the clients. We
use the namespace and the traffic control features of Linux [39] to simulate network latency and bandwidth between the nodes as
specified in “System configuration” below.

(2) MATLAB-based simulator: To overcome the limited scale of the experiments due to limited GPU resources, we develop a
customized simulator in MATLAB that implements the block placement and request routing logic of both the original algorithm in
PETALS [8] and the proposed algorithm. The simulator has been engineered to replicate the decision of the real system under the
same system state, and validated to approximate the overall experiment results over multiple requests (see Section 4.2). We have
open-sourced our simulator code’ to facilitate future research on distributed LLM inference for researchers with limited GPU access.

System configuration: We employ BLOOM-176B [3] as the LLM, which is one of the largest open-source LLMs, and configure our
evaluation environment to mimic a clustered or scattered deployment scenario as follows.
For the clustered scenario, we configure the smaller-scale deployment into three clusters with heterogeneous hardware capabilities:

+ ClusterO: a cluster containing clients remote to all the servers;

* Clusterl: a cluster containing two high-performance servers represented by the A100 GPUs as well as clients local to these
servers;

» Cluster2: a cluster containing seven low-performance servers represented by the MIGs as well as clients local to these servers.

We add the servers to the system in a random order, and follow the prior work [8] in configuring the networking parameters for
intra/inter-cluster communications as presented in Table 2.

For the scattered scenario, we simulate three topologies of different sizes from the Internet Topology Zoo [40] with link capacities
and delays from [41], as presented in Table 3. We compute the RTTs between nodes according to the cumulative delays along the
delay-based shortest paths. In each simulated network, we randomly select C nodes as the locations of servers, # fraction of which
(randomly selected) are equipped with high-performance servers represented by A100s and the rest are equipped with MIGs. In the
experiments, we use AboveNet for the smaller-scale deployment and BellCanada/GTS-CE for the larger-scale deployment, where C
and 7 are set based on #GPUs of each type in each deployment; in the simulations, we vary C and 5 to evaluate their impacts.

We generate N requests according to a Poisson process with rate A from one of the clusters (in clustered scenario) or a randomly
selected node not hosting any server (in scattered scenario), which represents a proxy that queries the system on behalf of end users

9 Our simulator code is available at: https://github.com/TingyangSunJeff/LLM inference simulator/tree/main.
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Table 4
Average per-token inference time (s) under the configuration in Table 2 (/] = 20; 100 requests; MATLAB results
shown in parentheses).

Client location Algorithm 0.1 requests/s 0.5 requests/s
Inax = 64 Lnax = 128 Lax = 64 Lnax = 128
Cluster0 PETALS 6.23 (5.33) 4.76 (4.74) 6.28 (5.33) 5.14 (4.74)
Proposed 1.92 (1.59) 1.43 (0.92) 2.00 (1.59) 1.34 (0.92)
Clusterl PETALS 5.44 (5.17) 4.60 (4.58) 5.56 (5.17) 4.79 (4.58)
Proposed 1.78 (1.65) 1.04 (0.83) 1.88 (1.65) 1.11 (0.83)
Cluster2 PETALS 5.30 (4.85) 4.85 (4.07) 5.34 (4.85) 5.25 (4.07)
Proposed 1.79 (1.59) 1.31 (0.92) 1.94 (1.59) 1.37 (0.92)

Table 5

Average per-token inference time (s) under the topologies in Table 3 (/!

max = 20; 100 requests; MATLAB results shown
in parentheses).

Topology Algorithm 0.1 requests/s 0.5 requests/s
Iy = 64 Iy = 128 Iy = 64 I = 128
PETALS 4.98 (4.75) 4.03 (3.88) 5.26 (5.11) 4.58 (4.10)

AboveN

oveNet Proposed 1.86 (1.63) 1.44 (1.36) 1.97 (1.83) 135 (1.05)
PETALS 631 (6.03) 3.82 (3.49) 6.74 (6.19) 416 (3.41)
BellCanada Proposed 133 (1.41) 126 (0.92) 149 (1.41) 111 (0.92)
CTS.CE PETALS 7.05 (6.12) 469 (3.47) 6.89 (5.97) 489 (337)
Proposed 138 (1.41) 095 (0.91) 1.35 (1.40) 107 (0.91)

(e.g., a Flask web server as in [36]). Unless stated otherwise, we set the design parameter |R| as discussed after Corollary 3.6. Our
experiment results are averaged over 5 Monte Carlo runs and our simulation results are averaged over 20 Monte Carlo runs.

Benchmark: We compare the proposed two-time-scale algorithm (Alg. 2) with the original block placement and request routing
algorithm in PETALS [8], where block placement is performed sequentially by letting each newly-added server choose a consecutive
range of the most under-served blocks as measured by a heuristic throughput metric, and request routing is performed by letting
each client build a graph with heuristic edge weights based on network latency and processing time,'° and then use a Dijkstra-like
algorithm to find the shortest path that traverses the required blocks in order. We set the target number of concurrent requests to
the expected number of arrivals during the first inference session plus one standard deviation.

Metrics: Our primary performance metric is the average inference time per token for all the tokens, excluding the local processing
times at the client (as they are not affected by the resource allocation at servers). In addition, we also measure the average inference
times for the first token and each of the remaining tokens, respectively, for additional insights, as well as the average running time of
each algorithm.

4.2. Experiment results and simulator validation

4.2.1. Inference time

Clustered scenario: Tables 4, C.7, and C.8 present the average inference times for all the tokens, the first token in each sequence,
and the remaining tokens, respectively, under various client locations (Cluster 0, 1, or 2), BPRR algorithms (PETALS [8] or the
proposed), request rates, and sequence lengths. The results show that: (i) the proposed algorithm (Alg. 2) achieves significantly
(60-70%+) smaller average inference times compared to the original algorithm in PETALS in all the tested cases, and (ii) our MATLAB
simulator produces results that are roughly consistent with the actual experiments. A closer look shows that the performance
improvement mainly comes from the time for the first token (Table C.7), for which our algorithm achieves an order-of-magnitude
reduction. Although the improvement in the inference time for the remaining tokens is smaller (Table C.8), the overall improvement
is dominated by the time reduction for the first token. Comparing the results across different settings, we further see that: (i)
increasing the output length can reduce the average per-token time due to amortizing the first token’s inference time over more
tokens, and (ii) the client location can affect the performance, e.g., a client in Clusterl has relatively smaller inference times than
a client in ClusterO under the same algorithm due to its proximity to high-performance servers, but the difference is small as the
communication time is only a small fraction of the total inference time (e.g., sending one embedding for BLOOM-176B across two
clusters only takes about 0.12 s).

Scattered scenario: Tables 5, C.9, and C.10 present the corresponding results under the network topologies in Table 3. The
results show qualitatively similar observations as before, e.g., the proposed algorithm significantly reduces the inference times

10" Unlike G, (1) in Alg. 2 that uses our validated performance models to compute edge weights, the routing algorithm in PETALS uses heuristic weights,
which causes the sum weight along a path to differ from the actual inference time; see [16] for details.
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Table 6

Algorithm running time (s) (algorithm running time is independent of client location, request rate, and sequence

length).
Scenario PETALS Proposed
Clustered 0.0186 + 0.0013 0.0216 + 0.0004
AboveNet 0.0190 = 0.0081 0.0333 +0.0128
BellCanada 0.0291 +0.0011 0.0287 +0.0018
GTS-CE 0.0350 + 0.0020 0.0320 + 0.0012
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Fig. 7. Inference time per token when varying frac. of high-performance servers n (C = 0.4 - #nodes, A =0.5, N = 100, I} =20, .., = 128).

in a diverse set of cases with different numbers of servers, different topologies, and different loads (controlled by request rate
and sequence length). This validates the generalizability of our observations. We also see bigger improvements for the larger
networks (e.g., 60-70% improvement for AboveNet and around 80% improvement for GTS-CE), suggesting promising performance
improvement for large deployments.

Remark: We have examined the specific block placement and request routing decisions made by the two algorithms to understand
the causes of the observed performance difference. The primary cause turns out to be the difference in how the GPU memory is
allocated between model blocks and attention caches: PETALS uses a fixed allocation of attention cache space without considering
concurrent sessions [16], which causes it to frequently run out of memory and incur waiting times for incoming requests; in
contrast, our solution is designed to handle a certain number of concurrent sessions, which allows it to avoid waiting when properly
configured, leading to the significant reduction in the time for the first token. These different memory allocations manifest in the
number of blocks placed at each server, where PETALS places 53 blocks on A100 and 4 blocks on MIG, whereas our algorithm (CG-
BP) only places 41 blocks on A100 and 3 blocks on MIG. We also note that although our simulator implements the same decision
making logic as the real system, it cannot perfectly predict the time for executing the decisions due to complex runtime factors
(e.g., memory fragmentation and low-level scheduling) not captured by our system model, which is the cause of the mildly different
results. Nevertheless, the simulated performance is overall predictive of the actual performance observed in our experiments.

4.2.2. Algorithm running time

Table 6 shows the average running time of each algorithm evaluated in Tables 4-5. To ensure a fair comparison and separate
the decision making time from the time of implementing the decisions, we evaluate the running times of both our algorithm and
the original algorithm in PETALS [8] based on their MATLAB implementation. Both solutions are fast enough so that the decision
making time is negligible compared to the actual inference time.

4.3. Results of experimentally-validated simulations

We now use the validated MATLAB simulator to evaluate a wider range of scenarios based on the topologies in Table 3. Figs. 6-7
show the average inference time per token (over all the tokens) as we vary the available resources in terms of either #servers or the
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fraction of high-performance servers. Figs. 8-9 show the corresponding results as we vary the demands in terms of the request rate
or the sequence length. As additional benchmarks, we simulate three variations of PETALS’ algorithm in addition to the original
version in [8]: (1) applying PETALS’ block placement algorithm to servers in an optimized order computed by line 3 of our Alg.
2 (‘Optimized Order’), (2) applying PETALS’ block placement algorithm but placing the same number of blocks per server as our
algorithm (‘Optimized Number’), and (3) optimizing the request routing according to the MILP (21) under the block placement
given by PETALS (‘Optimized RR’). Besides additional benchmarks, these variations also serve the purpose of an ablation study as
they each contain one aspect of our proposed solution.

First of all, all the simulations confirm that the proposed algorithm can significantly accelerate the inference in comparison to
the original algorithm in PETALS.

Moreover, these results suggest that: (i) optimizing the allocation of GPU memory between model blocks and attention caches as
in ‘Optimized Number’ can improve the inference time in most cases, particularly under relatively high demands; (ii) optimizing the
order of block placement across servers as in ‘Optimized Order’ may help in some cases, but does not always improve the inference
time; (iii) similarly, optimizing request routing as in ‘Optimized RR’ may help in some cases, but can worsen the performance for
long sequences (Fig. 9). In contrast, our proposed solution that combines all these ideas is able to improve the performance in all
the tested cases. This observation highlights the importance of systematically formulating and solving the resource allocation problem in
distributed LLM inference systems. Meanwhile, the fact that ‘Optimized Order’ and ‘Optimized RR’ can sometimes underperform the
original algorithm in PETALS suggests the suboptimality of the greedy block placement and myopic request scheduling strategy,
which leaves potential room for improvement in future work.

Furthermore, comparing across the simulated cases indicates a trend that the performance improvement achieved by our proposed
solution is larger in more resource-constrained scenarios (e.g., fewer servers/high-performance servers or higher request rate), in which
case good resource allocation is more important. We note that in practice, the demands usually grow with the system size. Thus, we
further simulate a case of proportionally increasing #servers and request rate in Fig. C.13, which shows a clear trend of widening
performance gap between our solution and PETALS, indicating the potential for our solution to achieve even greater performance
improvements in larger deployments. We also conduct a sensitivity analysis with respect to the load parameter |R| as shown in Fig.
C.14, which shows that while the configuration of this parameter affects the performance of our solution, its impact is mild and our
solution remains superior to the benchmarks over a wide range of actual loads.

Meanwhile, our algorithm has slightly higher running times than the original algorithm in PETALS in some cases (see Figs.
C.15-C.20 in Appendix C.2), but the difference is negligible compared to the actual inference time.

5. Conclusion
In this work, we systematically studied the problem of performance optimization for geographically-distributed LLM inference,
using PETALS as a concrete example. Using experimentally validated performance models, we formulated the optimal offline block

placement and request routing problem as a MILP, proved its NP-hardness, and developed a polynomial-complexity algorithm with
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guaranteed performance. We then adapted our algorithm into a two-time-scale solution for the online setting with a guaranteed
completion time under bounded load. Our experiments and cross-validated simulations in diverse settings not only confirmed the
capability of the proposed algorithm in significantly reducing the inference times, but also provided insights on the key factors
driving such improvement. In addition to the developed algorithm, this work also produced a light-weighted CPU-only simulator
capable of predicting the performance of distributed LLM inference on profiled GPU servers, which will be open-sourced to facilitate
future research on the performance of LLM for researchers with limited GPU access.
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Appendix A. Supporting proofs

Proof of Lemma 3.1. Denote the sequence of servers on p by iy, ..., i,. For the first hop (c,i)), a; < a.+m,=1<a; +m; -1
implies that block 1 is hosted by server iy, i.e., the first a; +m; — 1 blocks can be found in order by traversing p up to i;. Similarly,
if the first a; +m; —1 blocks (k € [n—1]) can be found in order up to iy, thenq; , <a; +m;, <a;  +m,  —1implies that the first
a;,,, +m  —1Dblocks can be found in order up to i,,. Thus, the first a; +m,; —1 blocks can be found in order up to i,. Moreover,
since L+1=ay <a; +m; <as+my—1=L+1,a +m —1=L.Thus, all the blocks can be found in order along path p, i.e., p

is feasible. [

Proof of Theorem 3.2. We prove this theorem by a reduction from the optimization version of the partition problem [37]. Given
a set of positive integers W with 4 := (), o w)/2, the optimization version of the partition problem aims at finding a partition
of W into W; and W, such that | ey, w — Xew, w! is minimized. Without loss of generality, assume all the numbers in W to
be even and upper-bounded by'' 4. We construct an instance of the BPRR problem as follows: set the total number of blocks to
L = 2; construct a single client V, := {c} with |R.| = 4; construct a server j for each w; € W, and set s, s., and M; such that
SutS.w; = M; <2s,;sett; :=t,+7; = 1 for each w; € W; construct another server 0 (assuming w, ¢ W) with s,, +s.4 = M;, < 2s,,
and 1, :=t, + 7y = 2. This construction is possible as long as s,,/s, > 4 (which implies s,,/s, > w;, Yw; € W). For any partition
W, W) with 3 e w 2 X ey, , let e 1= %(zwew, W= Y ew, W, -6, Tyey, w=A+eand ¥, oy, w=4-e. The assumption
of W containing only even numbers ensures that 4 and ¢ are both nonnegative integers. By construction, every server can only
store one block, server j for each w; € W can serve w; parallel sessions with a per-token inference time of 7; = 1, and server
0 can serve A parallel sessions with a per-token inference time of 7, = 2. It is easy to see that the optimal objective value of the
constructed instance of BPRR conditioned on placing block 1 at the servers in .S, := {j : w; € W;} and block 2 at the servers in
S, i={j : w; € W,} U {0} is 24 + ¢, achieved by routing the maximum #requests to the faster servers before using server 0. Thus,
minimizing the subset sum difference for the partition problem is equivalent to minimizing the objective value of the corresponding
BPRR problem. The proof completes by noting that the optimization version of the partition problem is NP-hard [37]. [

Proof of Lemma 3.3.

~As servers are considered in the increasing order of tNJ (line 3), the value of T} for each block b only changes once from 70|R|
to t;, |R|, when block b is placed for the first time on a server j, € V. Therefore, with “argmax” breaking ties in favor of smaller
index, line 5 will select continuous blocks for each server before all the blocks are placed, i.e., server 1 will host blocks 1,...,m,
server 2 will host blocks m; + 1,...,m; + m,, etc. This continues until server K := min{k : Zj; ,m; > L}, for which the “argmax” in
line 5 will be achieved at the last possible index ag = L —my + 1. The resulting 7,’s form a monotone increasing piece-wise constant
series as shown in Fig. A.10. Under the conservative setting of m; in line 1 and this block placement, the relaxed request routing
will simply route all the |R| requests through the first K servers, achieving an average per-token inference time of

K

K
X mit =T (Y m; — L), (A1)
Jj=1 J

=1

11 The first assumption is because we can scale all the numbers by 2 without changing the solution. The second assumption is because if Juw* € W such that
w* > A, then the optimal solution is simply W, = {w*} and W, = W \ {w*}, and thus it suffices to consider instances where w < 4 for all w e W.
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i 1
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Fig. A.10. Illustration of T, in Alg. 1 after placing all the blocks.

where the second term is to adjust for the Z/K:  m;— L blocks hosted on both server K —1 and server K, as they will only be processed
at server K — 1. Meanwhile, since these are the fastest servers (in terms of Tj) that can host the entire model, the minimum per-token
inference time under the relaxed request routing is lower-bounded by (A.1). This completes the proof. []

Proof of Lemma 3.4. Due to the conservative calculation of the number of blocks per server (line 1), the GPU memory capacity
will always be satisfied, i.e., (16b) can be ignored. This decouples (16) into |V,| independent routing problems for each client.

For each client ¢, the route feasibility constraints (11)-(12) can be enforced by limiting its request routing to a subgraph
G, = V<, ES ) of G, where V¢ only contains the servers ¥, and the S-client/D-client of ¢, and E , only contains feasible routing
links, ie., (i, j)’e E; ., if and only if (3) is satisfied. Each link (i, j) € E; has a routing cost of tl?j. It is easy to see that the subproblem
of (16) for client c is equivalent to the problem of finding the shortest (i.e., least-cost) path from the S-client to the D-client in G¢ ,
(line 12). In absence of the capacity constraint (16b), the optimal paths for all the requests from the same client are the same (liﬁe
13). This completes the proof. []

Proof of Theorem 3.5. Recall that 1,; := max,ey, ;. Since by Lemma 3.4 the shortest-path request routing is optimal under the
block placement by CG-BPRR, the average per-token inference time 7% achieved by CG-BPRR is upper-bounded by the average per-
token inference time under any request routing that is feasible under the block placement given by CG-BPRR. Specifically, consider
a solution that routes all the requests through the chain of servers 1, ..., K. By the proof of Lemma 3.3, server 1 will host the first
m; blocks, server 2 will host the next m, blocks, etc., and server K will host the last my blocks. Thus, servers 1, ..., K collectively
host all the blocks. Moreover, due to the conservative computation of m; in line 1 of Alg. 1, each server has enough capacity to
serve all the requests concurrently. Thus, the above routing is feasible. Under this solution, server j (j = 1,..., K — 1) processes m ;
blocks, yielding a per-token inference time of

tej+Tm; Sty +Tmp=mit;, Ve €V, (A.2)

Meanwhile, server K only processes the last L — Z]’;—ll m; blocks, yielding a per-token inference time of

K-1 K-1 ZK ym;—L K-1
j= J ~
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where (A.4) is because 7y — t,x /mg = tx by the definition in (14). The proof is completed by noting that T¢ < . O

Proof of Corollary 3.6. The result is directly applied by Theorem 3.5. Specifically, if the number of concurrent requests is no more
than |R|, then the block placement by CG-BP ensures that there is no memory contention between requests, i.e., each request can be
routed independently of the others. Since the average per-token inference time under the feasible but possibly suboptimal request
routing through servers 1, ..., K is already bounded by (17) as shown in the proof of Theorem 3.5, the average per-token inference
time under the optimal request routing must be bounded by (17). [
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Fig. B.11. Inference time vs. input length on A100: (a) for first token generation (b) for rest of token generation (40 blocks, /., = 128).
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Fig. B.12. Inference time vs. output length on A100: (a) for first token generation (b) for rest of token generation (40 blocks, l[’nax =20).

Proof of Corollary 3.7. The first claim follows from the fact that the completion time of r* (i.e., the time from its arrival to its
completion) if scheduled to path p.(7) is

(‘_J)rneap):(’)tf}+lmax DIEED) (tf}(t)+lmaxtfj). (A.5)
(i.j)Ep.(1) (i.))Ep. ()
The second claim follows from the fact that there is no waiting time if the number of concurrent requests is within |R],
ie., t;(t) = 0 V(i,j). In this case, the bound (A.5) is tight, i.e., the cost of a path equals the completion time on this path. By
definition, p.(f) minimizes the path cost, and thus it achieves the minimum completion time. []

Appendix B. Other supporting materials

B.1. Additional results on performance model validation

In addition to the number of processed blocks as in Fig. 2, we have also evaluated the inference time incurred at a given server
under varying input/output length as shown in Figs. B.11-B.12. These results have validated our inference time model by confirming
that the inference time for the first token only depends on the input length /L but not the output length /., and the inference time
for each of the subsequent tokens does not depend on either the input or the output length. Besides A100, we have also validated

our performance models on an MIG, which shows similar results.
B.2. Extension to heterogeneous input/output lengths

In the heterogeneous case where each request r € R has an input length /! and an output length /,, the attention cache size
becomes heterogeneous s/ := 2doqe] - (I +1,) - dtype_bytes (bytes). Our formulation (6) can be easily extended by replacing the
objective function (6a) with

22 X X (B.1)

ceV, reR, peP.(a,m) (i.))ep
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where 1 denotes the per-token inference time incurred by request r at link (i, j) averaged over all the tokens generated for this
request, and the constraint (6b) with

S + Z Z s Z fila;+m;—a;—m) < M;, Vj€EV, (B.2)
ceV, rer, PEP(a.m):
(i.j)ep,3i

Similar to (8), tl.’j is defined as:

<itﬁj(lf) + lrl, 1t¢.j> + (%Tj’(zr’w
When /[ r’ < [, for all r € R, (B.3) can be simplified to (4), where ¢ is the client sending request r.

Since this change only affects some constant scaling factors, we can still convert the resulting optimization into a MILP as in
Section 3.2.2. With s, :=max, s”, CG-BPRR can still be used to obtain a feasible solution in the offline setting. We note that since in
practice the requests arrive dynamically, the precise input/output length for each request is unknown ahead of time. In this sense,
our proposed solution based on (6) allocates resources according to the maximum input and output lengths to ensure feasibility while
trying to optimize the worst-case performance, where the maximum input and output lengths are system parameters announced to
the clients.

-1
I

1j> (a; +m; —a; —m,). (B.3)

r

B.3. Linearization of bilinear terms

To linearize the bilinear terms a; f[.’j, a; f,.’j, m; f,.’/., and m; f,.’j, we introduce auxiliary variables a[.’j, ﬂi’j,y[j,éi’j > 0 as well as the

following linear constraints. Specifically, using the constraints

—(L+Df] +af; <0, (B.4a)
-a;+ ai’j <0, (B.4b)
a/-+(L+l)fI.’j—ai’st+1, (B.4c)

we can ensure that ai’j =aq; fi’l. for both fl.’j =0 and fi’j =1 (the ‘L + 1" is to cover the case of a; = L+ 1 for j € VCD). Similarly, we

can ensure that Bl =a,f; by the constraints

—Lf} +p <0, (B.5a)
—a,+p, <0, (B.5b)
a+Lf,~p, <L (B.5¢)

v =mf]; by the constraints

- Lfl.’l. + y,.rj <0, (B.6a)
- m; + J/l-'j <0, (B.6b)
mJ-+Lfi’j—yirj$L, (B.6C)

and &;; = m; f]; by the constraints

— Lf],+6], <0, (B.72)
- m +6], <0, (B.7b)
m+ Lf}, =8, < L. (B.7¢)

B.4. Approximation ratio of CG-BPRR

In addition to the upper bound in Theorem 3.5, we can also lower-bound the inference time as follows. Let m; := min(| M, /(s, +
s.)|, L) denote the maximum number of blocks that can be placed at server j (while still able to serve at least one request), and
th’c =1, +1.;/m; denote the minimum amortized inference time that server j can provide for generating a token for client c. Let jl(:)

denote a server index such that ?;(C) S < T©
17 vsl”

Lemma B.1. The minimum per-token inference time for client ¢ is lower-bounded by
K1 K.~1
0 . _ 7 ol e _ vy
T = ; oo +Tjo, <L I; mjic)> . (B.8)
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Algorithm 2: Two-time-scale BPRR for Online Setting

input : set of clients V,, target #requests |R|, #blocks L, size per block s,,, size per cache s, set of servers V,, parameters for each
Jj € V, including GPU memory M;, processing time 7;, and per-token RTTSs (7)) ey,
output: Block placement (a,m) and request routing f
// Conservative Greedy Block Placement (CG-BP):
1 m; < min([M,/(s,, +s.|RD], L), Vj € V;
2 C, <0, T, < y|R|, Vb e [L];
3 for each server j € V, in increasing order of th do
4 if 3b € [L] with C, < |R| then

atm =1
5 a; < ArgMAX e[y +1): C,<|R|, 3bEla,....a+m;~1} Zb’:a Ty;
6 else
7 | ) < argmingg; 1) (Cor v s Comy—1);

s | T,«T,—G-T)min (max(|R| - Cb,O)j/), Vb€ {a),....a, +m; - 1};

9 Cb<—C,,+?/-,Vbe{a/-,...,aj+m,—1];

// Waiting-penalized Shortest-path Request Routing (WS-RR):

10 for each new request r arriving from client ¢ at time t do

11 G (1) < the feasible routing topology for client ¢ under block placement (a, m), with a node/link set (V*, E; ) and a
waiting-penalized cost of t"j’(t) + lmaxtf/ for each (i, j) € E;

12 p.(t) < shortest path from the S-client to the D-client in G, @;
13 11 < WG J) € p.(0), V(. j) € E;

where K, := min{K : Zf=1 ﬁjm > L}. Thus, the minimum average per-token inference time T° for the requests {R .} .y is lower-bounded
« f

1
by T° > o Ty, IRTY.

Proof of Lemma B.1. It suffices to prove that the per-token inference time for client ¢ is lower-bounded by (B.8). First, we note that
the minimum per-token inference time is lower if we relax the request routing to block-by-block routing with a per-block inference
time ?j,c at server j, because in reality a request cannot be served more than m; blocks at server j and has to incur the entire
client-server RTT ¢ ; even if being processed by only a subset of the blocks at server j. Then, under such relaxed request routing,
the minimum inference time for a token is achieved by routing to the fastest servers that collectively hold all the blocks, which

are servers ji”, s j;f). That is, processing the first ijl_l mjm blocks at servers j%c), ,j(;)_l, and the remaining L — ijl_ ﬁjm
¢ - k ¢ - k

blocks at server jif). This corresponds to the per-token inference time given in (B.8), which then lower-bounds the actual per-token
inference time achievable for client ¢ under any feasible BPRR solution. []

Combining Theorem 3.5 and Lemma B.1 yields an upper bound on 7¢/T°, which is the approximation ratio for CG-BPRR.
B.5. Two-time-scale algorithm for online BPRR

For completeness, we summarize the proposed BPRR algorithm for the online setting in Alg. 2, which is adapted from the CG-
BPRR algorithm for the offline setting (Alg. 1). While Alg. 2 only runs CG-BP once at the beginning, it can be easily extended to
adapt the block placement by invoking CG-BP again when the observed number of concurrent requests deviates significantly from
the previously targeted value.

Appendix C. Additional evaluation results

C.1. Additional experiment results

Tables C.7-C.8 present the breakdown of the total average inference time in Table 4 into the inference time for the first token
and the inference time for each of the remaining tokens. Similarly, Tables C.9-C.10 provide the breakdown of the total average
inference time in Table 5.

C.2. Additional simulation results

To evaluate the performance of our solution as the system scales, we proportionally increase the number of servers and the
request rate as in Fig. C.13, and the result shows a trend of widening performance gap between our solution and PETALS.

We further evaluate the sensitivity of our solution to the configuration of the load parameter |R|. Under a fixed |R| computed
for a predicted rate A,,,,, Fig. C.14 shows the performance under different actual rates, which shows that in comparison with setting
|R| according to the actual rates as in Fig. 8, using a fixed |R| can lead to increased inference time when the actual rate is higher
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Table C.7
Average inference time for the first token (s) under the configuration in Table 2 (lr’nax =20; 100 requests; MATLAB
results shown in parentheses).

Client location Algorithm 0.1 requests/s 0.5 requests/s
Lnax = 64 Lnax = 128 Lo = 64 Inax = 128
Cluster0 PETALS 275.51 (252.61) 455.61 (427.72) 315.53 (252.61) 508.52 (427.72)
Proposed 60.43 (73.51) 62.98 (60.91) 66.94 (73.51) 69.62 (60.91)
Clusterl PETALS 236.34 (252.51) 463.39 (424.94) 298.27 (252.51) 489.85 (424.06)
Proposed 55.47 (85.50) 59.67 (72.06) 57.37 (85.50) 65.96 (72.06)
Cluster2 PETALS 245.70 (251.95) 470.33 (404.42) 259.69 (251.95) 480.43 (404.42)
Proposed 50.96 (73.51) 55.72 (60.91) 55.36 (73.51) 59.86 (60.91)
Table C.8

Average inference time for the remaining token (s) under the configuration in Table 2 (IL o = 20; 100 requests;
MATLAB results shown in parentheses).

Client location Algorithm 0.1 requests/s 0.5 requests/s
Iinax = 64 Lnax = 128 Inax = 64 Inax = 128
Cluster0 PETALS 1.96 (1.40) 1.21 (1.41) 1.37 (1.40) 1.18 (1.41)
Proposed 0.99 (0.45) 0.94 (0.45) 0.96 (0.45) 0.81 (0.45)
Clusterl PETALS 1.78 (1.25) 0.99 (1.27) 0.91 (1.25) 0.97 (1.27)
Proposed 0.93 (0.32) 0.58 (0.26) 0.98 (0.32) 0.60 (0.26)
Cluster?2 PETALS 1.49 (0.93) 1.18 (0.91) 1.29 (0.93) 1.51 (0.91)
Proposed 1.01 (0.45) 0.88 (0.45) 1.09 (0.45) 0.91 (0.45)
Table C.9
Average inference time for the first token (s) under the topologies in Table 3 (I = 20; 100 requests; MATLAB
results shown in parentheses)..
Topology Algorithm 0.1 requests/s 0.5 requests/s
Inax = 64 Lnax = 128 Lnax = 64 Lnax = 128
AboveNet PETALS 270.96 (254.74) 408.59 (316.21) 279.38 (264.81) 486.68 (412.72)
Proposed 76.48 (73.69) 89.15 (104.19) 81.65 (81.12) 91.41 (75.78)
BellCanada PETALS 360.94 (353.12) 382.01 (354.06) 378.10 (353.46) 417.17 (353.72)
Proposed 53.42 (62.75) 59.73 (62.68) 63.78 (62.67) 66.84 (62.70)
GTS-CE PETALS 393.93 (353.48) 478.71 (354.05) 389.35 (353.46) 505.90 (353.79)
Proposed 55.30 (62.84) 58.59 (62.66) 58.17 (62.65) 61.22 (62.65)
Table C.10

Average inference time for the remaining tokens (s) under the topologies in Table 3 (I | = 20; 100 requests; MATLAB
results shown in parentheses).

Topology Algorithm 0.1 requests/s 0.5 requests/s
Lo = 64 Lnax = 128 Lnax = 64 Lax = 128
AboveNet PETALS 0.77 (0.79) 0.84 (0.92) 0.91 (0.98) 0.78 (0.88)
Proposed 0.67 (0.52) 0.75 (0.55) 0.70 (0.57) 0.64 (0.46)
PETALS 0.69 (0.53) 0.84 (0.73) 0.80 (0.68) 0.91 (0.66)
BellCanada
Proposed 0.50 (0.44) 0.79 (0.44) 0.51 (0.44) 0.59 (0.44)
GTS-CE PETALS 0.92 (0.61) 0.96 (0.71) 0.83 (0.44) 0.95 (0.67)
Proposed 0.52 (0.43) 0.50 (0.42) 0.49 (0.42) 0.59 (0.43)

than expected, due to not reserving enough memory for attention caches and thus causing some requests to incur extensive waiting.
Nevertheless, the increase for our solution (‘Proposed’) is much smaller than that for the BPRR algorithm of PETALS (‘Optimized
Number’), demonstrating the robustness of our solution to load prediction.

Figs. C.15-C.19 show the running time of each algorithm in the simulations of Figs. 6-9. The results show that both the proposed
algorithm (‘Proposed’) and the original algorithm in [8] (‘Petals’) are fast enough so that their execution costs negligible time
compared to the actual inference time. The running time for ‘Optimized RR’ is substantially higher than the others as in this case
we directly solve the MILP (21) by the Gurobi optimizer [42]. The same observation holds in Fig. C.20, which corresponds to the
case in Fig. C.13 as we proportionally increase both the number of servers and the request rate.
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