Lecture 26: Dominated Convergence Theorem

Continuation of Fatou’s Lemma.

Corollary 0.1. If f € LT and {f, € Lt : n € N} is any sequence of functions
such that f, — f almost everywhere, then

/nghmmf/an.

Proof. Let f, — f everywhere in X. That is, liminf f,(z) = f(x) (= limsup f,
also) for all z € X. Then, by Fatou’s lemma,

/f:/liminffngliminf/ fn-
b's b's b's

If f, - f everywhere in X, then let £ = {z € X : liminf f,(x) # f(z)}. Since
fn — [ almost everywhere in X, u(E) = 0 and

/Xf: X_Ef and /an: X_Efn Vn

thus making f,, - f everywhere in X — E. Hence,

/f — f < liminf fo = liminf/fn.
X X-F X

X—-F

]

Example 0.2 (Strict inequality). Let S,, = [n,n+1] C R and f,, = X;,. Then,
f =liminf f, = 0 and

0 = /fd/,L < liminf/fndu = 1.
R R

Example 0.3 (Importance of non-negativity). Let S, = [n,n + 1] C R and
fn=—Xg,. Then, f =liminf f,, = 0 but

0 = /fd,u > liminf/fndu = —1.
R R
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Proposition 0.4. If f € Lt and [, fdu < oo, then (a) the set A = {z € X :
f(z) = oo} is a null set and (b) the set B ={x € X : f(x) > 0} is o-finite.

Proof. Recall that for any f € LT

/fdu = sup{/ pdp - 0< o< f, ¢ simple}
X X

and for a simple function ¢, [ ¢ du = 377 | aju(E;), where E; = ¢~ ({a;}) and
{a1,as,...,a,} is the the range of 1.

(a) Assume, on the contrary, that (A) > 0 and let I = [, fdu < oo. Define a
simple function ¢ as

1
TOy

Since f(x) = oo forallz € A and ¢(x) =0 forall z € X — A, ¢(z) < f(z) for
all z € X and therefore, [, ¢du < [, fdp. But [ ¢dp=21>1= [, fdpu,
which is a contradiction. Thus, u(A) = 0.

XA.

(b) A o-finite set is a countable union of sets of finite measure. Define B, =
{x € X : f(z) > n~'}. Then, B is a countable union of B,s. For each B,,
define the simple functions ¢, = n~'Xp,. For all n € N, ¢,, < f, and hence

Jx Ondp < [y fdp < oo. Since [y ¢ppdp = n'u(By), p(B,) < co. Thus,
B = U, enB, is o-finite.

]

1 Integration of Real-Valued Functions

We now discuss integration of real-valued function which need not be positive. Let
f* and f~ be the positive and negative parts of f respectively, where

fT(z) = max{f(z),0} and f~(z)=max{—f(z),0} forall ze€ X.

Then, f = f* — f~. Note that both f* and f~ are positive real-valued functions.
If at least one of [ f*dp and [, f~ dp is finite, then we define

/deu _ /Xj”du - /deu-

If both fX ftdu and fX f~ du are finite, then f is said to be integrable. Since
|fl = fT + [, [ is integrable iff fX |fldu < co.
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Proposition 1.1. The set of integrable real-valued functions on X, denoted by
F(X,R), is a real vector space, and the integral is linear functional on it.

Proof. To prove that F(X,R) is a vector space, it suffices to prove that any linear
combination of integrable real-valued functions in F(X,R) also in F(X,R). For
any f,g € F(X,R) and a,b € R, |af +bg| < |a||f|+1b]|g| (by triangle inequality).
Hence, [y af + bgldu < [x(allf|+1bllgl) dn = lal [ 1/ du + bl fy gl dn < o0
since both f and g are integrable. Thus, af + bg is also in F(X,R).

To prove that the functional I : f — [, fdu, f € F(X,R), is linear, we need
to show that (a)I(cf) = cI(f)and (b)I(f+g) = I(f)+1(g) forall f,g € F(X,R).

(a) We will use the facts that (¢f)™ = ¢f" and (cf)” = ¢f~ for ¢ > 0 and that
(ef)T = |e|f~ and (c¢f)” = |c|fT for ¢ < 0. Recall that for any ¢ € LT,
I(cg) = cl(g) and for any f € F(X,R), both f* and f~ are positive. Let
¢ > 0. Then, using the above facts, I(cf) = c(I(f") — I(f7)) = ¢I(f). For
¢ <0, I(cf) =I((cf)") = I((cf)7) = lel((f7) = I(fT)) = —lelI(f) = eI (f).

(b) Let f,g € F(X,R)and h= f+g. Then, ht —h™ = f+ — f~ +¢" — ¢~ and
consequently h* + f~ 4+ g~ = h™ 4+ fT + g'. Recall that if {f,} is a finite of
infinite sequence in L™ and f =3 f,, then [ f =3 [ f.. So,

/h++/f+/g:/h+/f++/g+.

Rearranging the terms above, we get
N R E E ey Ky K Ea

Proposition 1.2. For any f € F(X,R), | [ fI < [|f].

]

Proof. It [ f = 0, then this is trivial. For any real f, | [ f| =|[fT = [f7] <
| S+ =7+ [ f = JIf] (by triangle inequality). O

Proposition 1.3. (a) For any f € F(X,R), A= {z: f(z) # 0} is o-finite.
(b) If f,g € F(X,R), thenfEf:ngforallEEM i [If—gl=0if f=yg

almost everywhere.

Proof. (a) Note that A = A* U A~, where AT = {z: fT(z) > 0} and A~ = {z:
f~(z) > 0}. Since both f* and f~ are in LT, by Proposition 0.4, both A™
and A~ are o-finite. Hence, A is o-finite.



(b) The second equivalence follows from the fact that for any h € L™, [ h =0 iff
h = 0 almost everywhere. If [|f — g| = 0, then by Proposition , for any

E e M,
/Ef_/Eg‘ s /XXE’f_f” S /X\f—glzo

so that [, f = [, 9. Let h = f — g and assume that f = g almost everywhere
is false, then at least one of A™ and h~ must be nonzero on a set of positive
measure. Let £ = {z : h™(x) > 0} be one such set; note that h~(z) = 0 and
hence, [, h™(z) = 0 for all x € E. Then, [, f— [p9= [yh = [,ht > 0.
Similar conclusion can be drawn for A~ being nonzero on a set of positive
measure.

O
Remark 1. (i) Altering functions on a mull set does not alter their integration.
(i1) Let E € M. Then, it is possible to integrate f by defining f|g = 0.

(ii) It is possible to treat R-valued functions that are finite almost everywhere
as R-valued functions.

Definition 1.4. L' can be redefined as follows:
L'(u) = {Equivalence class of almost everywhere-defined integrable functions on X},

where two functions f and g are equivalent if u({z € X : f(x) # g(x)}) = 0.

Remark 2. (i) L'(u) is still a vector space (under pointwise almost everywhere
addition and scalar multiplication).

(ii) f € L'(u) will mean that f is an almost everywhere-defined integrable func-
tion.

(i) For any two f,g € L' (), define p(f,g) = [ |f —g| du. This is a metric, since
it is symmetric, satisfies triangle inequality, and is 0 if f and g are equal
almost everywhere. This definition allows L'(x) to be a metric space with
p(f,g) as the metric.

Theorem 1.5 (The Dominated Convergence Theorem). Let {f, € L' : n €
N} be a sequence of functions such that (a) f, — f almost everywhere and (b)

there exists a non-negative g € L' such that |f,| < g almost everywhere for all
ne€N. Then, f € L' and [ f =lim, o0 [ fa.

Remark 3. (i) [lim, o0 frn = lim, o [ f is an equivalent statement.
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(i) Here g dominates f,s.

Proof. Since f is the limit of measurable functions {f,} almost every where, it
is measurable. Since |f,| < ¢ almost everywhere, |f| = lim, o fn < ¢ almost
everywhere, and hence, f € L!. Furthermore, g + f,, < 0 almost everywhere and
g — fn < 0 almost everywhere. By Corollary

Jo+ [1= [+ 5 <timint [g+ 1) = [[g+tmin [ 1.
/fgliminf/fn. (1)

Using Corollary for g — f, we obtain

[o-[1=[to=p <timint [(g- )= [gtimnt [ 1.
[ = tmsw [ 1. )

Since liminf [ f, < limsup [ f,, using [1| and [2| we get

/fgnminf/fnghmsup/fngff,
/leiminf/fnzlimsup/fnS/fzgi_{go/fn.

as claimed. n

or

or

which forces

Theorem 1.6. Let {f, € L' : n € N} be a sequence of functions such that
Y onen J 1fnl <00, Then, Y, o fn converges to a function in L' and [, fo =
ZnGfon'

Proof. Recall that if {h,} is a finite of infinite sequence in L*, then [ h, =

> S B Set hy, = |fo| and let g = > [ ful- Then, [g=>" [ |fal < oo and
hence g € L.

By Proposition 0.4, g(z)(= >,cn|fa(x)]) is finite for all {z : g(z) > 0},

and for each such z ) fu(z) converges. Furthermore, the partial sums Fj, =



22:1 fn < g (by triangle inequality) for all k. We can now apply dominated
convergence theorem to the sequence of partial sums Fj, to obtain

k—o0 k—o0

which can be simplified to (using linearity of )

[sexfn

neN neN

O

Theorem 1.7. If f € L' and € > 0, then there is an integrable simple function
¢ = a;Xg, such that J1f = ¢| <e. (Thatis, the integrable simple functions are
dense in L' in the L' metric.)

Proof. Recall that for any real-valued measurable function g, there exists a se-
quence {1, } of simple functions such that ¢, — g and 0 < |¢);| < |iho| < ... < |g]
pointwise. Let {¢,} be as above for f. Then, ¢,s are integrable. Since |¢, — f| <
2f1, [|én — f| < € for sufficiently large n by the dominated convergence theo-
rem. O

2 Modes of Convergence

Let (X, M, i) be a measure space. Let {f,} be a sequence of functions in L! and
felLh.

Definition 2.1 (Convergence in L'). If f, — f in the metric p(f,g) = [|f —
g| du, then {f,} is said to converge to f in L'(yu).

Lemma 2.2. f, — f in L' iff limyen [ |fn — fldu = 0.

Definition 2.3 (Pointwise Convergence). {f,} is said to converge to f point-
wise if f,,(x) converges to f(z) for all z € X. In other words, for every ¢ > 0 and
x, there exists an N, such that |f,(x) — f(z)| < e for all n > N,.

Definition 2.4 (Uniform Convergence). {f,} is said to converge to f uni-
formly if for every € > 0, there exists an N, such that |f,(z) — f(z)| < € for all
n> N,and z € X.

Definition 2.5 (Almost Everywhere Convergence). {f,} is said to converge
to f almost everywhere if pu({x € X : lim, ., fo(x) # f(x)}) =0.



Definition 2.6 (Convergence in Measure). {f,} is said to converge to f in
measure if for every € > 0, lim,, oo p({z € X : |fu(z) — f(z)| = €}) = 0.

Definition 2.7 (Cauchy Convergence). {f,} is said to be Cauchy in measure
if for every € > 0, p({z € X : |fu(x) — fn(z)| = 0}) = 0 as m,n — .

Theorem 2.8. If f, — [ almost everywhere and f, < g for alln € N and some
g€ LY, then f, — f in L.

Proof. Follows from the dominated convergence theorem since |f, — f| < 2¢g. O

Proposition 2.9. If f, — f in L', then f, — f in measure.

Proof. Let E,. = {z : |fu(z) — f(z)] > €}. Then, f|fn —fl = fEn,E |fo = fl 2
ei(Ey ), and hence p(E, ) <e ' [|f, — f| = 0 as n — oo. O

Theorem 2.10 (Erogoff’s Theorem, Almost Uniform Convergence). Let
w(X) < oo and fi, fo,..., [ be measurable real-valued functions on X such that
fn = [ almost everywhere. Then, for every e > 0, there exists E C X such that
w(E) < e and f, — f uniformly on E°.

Remark 4. {f,} is said to converge to f almost uniformly if for every ¢ > 0, there
exists F € M of measure p(FE) < € such that f,, — f uniformly on E*.

Proof. Without loss of generality, assume that f, — f everywhere on X. For
k,n € N, let

En(k) = Un_{z € X« |fu(2) — f(2)] = V/i}-

Then, for fixed k, E,(k) decreases as n increases and N2, F,(k) = 0. Since
(X )oo, we conclude that lim, o p(E,(k)) = 0. Given € > 0 and k € N, choose
ny, large enough that p(E,(k)) < e27% and let £ = UX | E, (k). Then, u(E) < €
and we have |f,(z) — f(z)| < '/y for n > ny and x ¢ E. Thus, f, — f uniformly
on E°. [l
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