Real-Time Status Updates for Correlated Source

Sudheer Poojary Sanidhay Bhambay **Parimal Parag**

Electrical and Communication Engineering Indian Institute of Science, Bangalore

IEEE Information Theory Workshop November 08, 2017

Why timely update?

Real-Time Update

- Critical to know the status update before decision making
- Cyber-physical systems: Environmental/health monitoring
- Internet of Things: Real-time actuation/control

How to measure timeliness? Real-Time Update

- Last correctly decoded message generated at U(t)
- Smaller the age A(t) = t U(t), more timely the message
- Goal: Minimize limiting average age $\lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^{t} A(s)$

Link Model

Context

- Point-to-point communication with limited feedback
- Reliability through finite block-length coding
- Control channel with information about coding scheme

Source Model

- Sampled source $M_i \in \Delta_m$ Markov with transition matrix P
- Probability of the state difference M_{j+1} − M_j ∈ Δ_k independent of the initial state

Update Protocol

True Update

Encode current state $M_j \in \Delta_m$ to n bit codeword X^n

Incremental Update

- ▶ State difference $M_j M_{j-1} \in \Delta_k$ almost surely
- If last update successfully received, then encode state difference to n bit codeword Xⁿ

Generalized Incremental Update

If state difference $M_j - M_{j-1} \in \Delta_k$ and last update successfully received, then send incremental update, else send true update

Problem Statement

Question

Find the differential encoding threshold k for timely update of a Markov source that minimizes limiting average age

Answer

- Higher threshold: more differential encoding opportunities
- Lower threshold: more error protection

Coding and Channel Model

Finite-length Code

Finite length code of n bits with permutation invariant code

Bit-wise Erasure Channel

- Each transmitted bit of the codeword Xⁿ erased *iid* with probability e
- Number of erasures per codeword *E* Binomial (n, ϵ)

Decoding and Reception

Receiver Timing

Reception at time t + n of n bits sent at time t after n channel uses

Probability of Decoding Failure

- True updates: $p_t = \mathbb{E}P(n, n m, E)$
- Incremental updates: $p_d = \mathbb{E}P(n, n-k, E)$
- Monotonicity: $0 < p_d < p_t < 1$

Differential Encoding Probability

Probability of source state difference being represented by k bits, $p_e = P_i(\Delta_k)$ for all states i

Renewal Reward Theorem

- Time instant S_i of the *i*th successful reception of the true update
- ► For all three schemes, the *i*th inter-renewal time T_i = S_i - S_{i-1} is *iid*
- Accumulated age in *i*th renewal period also *iid*

$$S(T_i) = \sum_{t=S_{i-1}}^{S_i-1} A(t)$$

By renewal reward theorem, the limiting average age is

$$\mathbb{E} A \triangleq \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} A(s) = \frac{\mathbb{E} S(T_i)}{\mathbb{E} T_i}.$$

Age Sample Path: True Updates

- True updates Z_i , *iid* geometric with success prob $(1 p_t)$
- ► Successful incremental updates W^s_i, iid geometric with success probability p_e(1 − p_d)
- ► Failed incremental updates W^f_i, iid Bernoulli with success probability <u>Pepd</u>
 <u>1-pe(1-pd)</u>

Mean Age

Theorem

Limiting average age for the true update scheme is a.s.

$$\mathbb{E}A \triangleq \lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^t A(s) = n - \frac{1}{2} + \frac{n\mathbb{E}(W_i^s)^2 + n\mathbb{E}(W_i^f + Z_i)^2}{2(\mathbb{E}W_i^s + \mathbb{E}W_i^f + \mathbb{E}Z_i)}.$$

Uniform IID Source

System Parameters

- Differential encoding prob $p_e = \frac{2^k}{2^m}$
- Random coding, erasure probability $\epsilon = 0.1$
- Code length n = 20, information bits m = 15

State Homogeneous Markov Source

System Parameters

- Transition probability $P_{i,i\pm 1} = \frac{\alpha}{2}, P_{i,i} = 1 \alpha$
- Random coding, erasure probability $\epsilon = 0.1$
- Code length n = 20, information bits m = 15

Discussion and Concluding Remarks

Main Contributions

- Integration of coding and renewal techniques to study timely communication for delay-sensitive traffic
- ► We model channel unreliability by the erasure channel
- Model source correlation by Markov process
- True and incremental updates are special cases

Avenues of Future Research

- Extend results to correlated finite-state erasure and error channels
- Impact of other coding schemes on timeliness