On Real-Time Status Updates over Symbol Erasure Channels

Parimal Parag

Austin Taghavi Jean-Francois Chamberland

Electrical Communication Engineering Indian Institute of Science

Electrical and Computer Engineering Texas A&M University

Wireless Communications and Networking Conference Mar 22, 2017

Timely Status Updates

Potential Scenarios

- Cyber-physical systems: Environmental/health monitoring
- Internet of Things: Real-time actuation/control

Updates over Erasure Channel

System Model

- Source has K bit message to send at all times
- One bit per channel use can be sent
- Bit-wise erasures *iid* Bernoulli with probability ϵ
- Number of *i* erasures in *N* channel usage is Binomial (N, ϵ)

Problem Statement

Compare the optimal coding for finite block length and hybrid ARQ schemes for timely update.

Timeliness Metric

U(t) generation time of last successfully received message, then information age

$$A(t)=t-U(t)$$

Empirical information age

Limiting empirical information age is

$$\bar{A} \triangleq \lim_{T \to \infty} \frac{1}{T} \int_0^T A(t) dt$$

Renewal Reward Theorem For a renewal interval T and accumulated reward $\int_0^T A(t) dt$

$$\mathbb{E}A = \bar{A} = \frac{\mathbb{E}\int_0^T A(t)dt}{\mathbb{E}T}$$

Finite Block Length Coding

- Maps message $m \in \mathbb{F}_2^K$ to codeword $x \in \mathbb{F}_2^N$
- Parity check matrix H such that Hx = 0 for any codeword x
- ▶ Number of erasures |E| in a block N are Binomial (N, ϵ)
- Decoding failure event is *iid* Bernoulli with probability

$$\rho = \mathbb{E}1\{\hat{x}(y) \neq x\} \triangleq \mathbb{E}P_f(N - K, |E|)$$

Single Transmission Scheme

- Encode K length message to N length codeword
- Transmit N length codeword over N channel usage
- Transmit new codeword at next transmission opportunity
- \blacktriangleright Number of transmission attempts M before a success is Geometric with success probability $1-\rho$

Single Transmission Scheme

• Mean age is $N + \frac{\mathbb{E}[M_i(NM_i+1)]}{2\mathbb{E}M_i}$

- ▶ Maps message $m \in \mathbb{F}_2^K$ to codeword $x \in \mathbb{F}_2^{aN}$ of depth a
- Decoding failure event is *iid* Bernoulli with probability

$$\bar{f}_a \triangleq \mathbb{E}P_f(aN - K, |E|)$$

▶ Number of transmission attempts *M* before a success is Geometric with success probability $1 - \bar{f}_a$

- ► Successive decoding failures with effective number of erasures |E|_i + (a − i)N
- Decoding failure event after transmission of depth *i* of *aN*-length codeword is Bernoulli with probability

$$\bar{f}_i = \mathbb{E}P_f(aN - K, |E|_i + (a - i)N)$$

- ▶ Number of erasures in first *iN* bits is $|E|_i \le |E|_{i-1} + N$
- Number of effective erasure decreasing with each transmission

$$|E|_1 + (a-1)N \ge |E|_2 + (a-2)N \ge \cdots \ge |E|_a$$

• Mean age is $N \mathbb{E} R_{i-1} + \frac{\mathbb{E}[(aM_i+R_i)((aM_i+R_i)N+1)]}{2\mathbb{E}(aM_i+R_i)}$

Mean Timeliness Result

Conclusions

- An analytical framework for parameter selection for timely updates over unreliable channels
- Demonstration of natural tradeoff between erasure resilience and timely delivery
- Optimal code rate very sensitive to channel characteristics
- Limited feedback does not improve timeliness update performance