Differential Encoding for Real-Time Status Updates

Sanidhay Bhambay

Sudheer Poojary
Parimal Parag

Electrical and Communication Engineering Indian Institute of Science, Bangalore

The IEEE Wireless Communication and Networking Conference March 22, 2017

Why timely update?

▶ Critical to know the status update before decision making

Potential Scenarios

- Cyber-physical systems: Environmental/health monitoring
- ▶ Internet of Things: Real-time actuation/control

Link Model

Context

- ▶ Point-to-point communication with limited to no feedback
- ▶ Reliability through finite block-length coding

Source Model

- ▶ Source state X(t) can be represented by m bits
- ▶ State difference between n realizations can be represented by k < m bits

Problem Statement

Question

How to encode message at the temporally correlated source for timely update? Should one send the current state or the difference between the current and the past state?

Answer

It depends on the feedback

Coding Model

▶ Finite length code of *n* bits with permutation invariant code

Updates

- ► True Update: current state X(t) of m bits is encoded to n bit codeword Xⁿ
- ▶ Incremental Update: the state difference X(t) X(t n) of k bits encoded to n bit codeword X^n

Channel Model

ightharpoonup Each transmitted bit of the codeword X^n erased iid with probability ϵ

Erasure Distribution

Number of erasures is Binomial with parameter (n, ϵ)

Decoding and Reception

Receiver Timing

Reception at time t + n of n bits sent at time t after n channel uses

Probability of Decoding Failure

- ▶ True updates: $p_1 = \mathbb{E}P(n, n m, E)$
- ▶ Incremental updates: $p_2 = \mathbb{E}P(n, n k, E)$
- ▶ Monotonicity: $0 < p_2 < p_1 < 1$

Performance Metric

- ► Last successfully decoded source state at time *t* was generated at *U*(*t*)
- ▶ Information $age^1A(t)$ at time t as

$$A(t)=t-U(t).$$

Limiting value of average age

$$\lim_{t\to\infty}\frac{1}{t}\sum_{s=1}^t A(s).$$

¹Kaul, S., Yates, R., & Gruteser M., "Real-time status: How often should one update?". IEEE INFOCOM, 2012, pp. 2731–2735..

Update Transmission Schemes

True Updates

► Each opportunity send *true update*

Incremental Updates without Feedback

- ▶ Periodically send the *true update* after *q* updates
- ▶ In between true updates, send *incremental updates*.

Incremental Updates with Feedback

- ► Send the *true update* after each decoding failure
- ▶ In between true updates, send *incremental updates*.

Renewal Reward Theorem

- ► Time instant *S_i* of the *i*th successful reception of the true update
- For all three schemes, the *i*th inter-renewal time $T_i = S_i S_{i-1}$ is *iid*
- Accumulated age in ith renewal period

$$S(T_i) = \sum_{t=S_{i-1}}^{S_i-1} A(t)$$

is also iid

By renewal reward theorem, the limiting average age is

$$\mathbb{E}A \triangleq \lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^t A(s) = \mathbb{E}S(T_i)/\mathbb{E}T_i.$$

Age Sample Path: True Updates

- ▶ Inter-renewal time $T_i = nZ_i$
- ▶ Number of true update in *i*th renewal interval Z_i
- ▶ $\{Z_i : i \in \mathbb{N}\}$ is *iid* geometric with success parameter $(1 p_1)$

Mean Age

Theorem

Limiting average age for the true update scheme is a.s.

$$\mathbb{E}A \triangleq \lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^t A(s) = (n-1)/2 + n/(1-p_1).$$

Proof.

Cumulative age for *i*th renewal interval is

$$S(nZ_i) = \sum_{j=0}^{nZ_i-1} (n+j) = n^2Z_i + nZ_i(nZ_i-1)/2.$$

Age Sample Path: Incremental Updates Without Feedback

- ▶ Inter-renewal time $T_i = nqZ_i$
- Number of successfully decoded contiguous incremental updates \bar{W}_i-1 in the ith renewal interval
- $ar{W}_i$ is the number of successfully decoded updates in *i*th renewal interval

Mean Age

Theorem

Limiting average age for the incremental updates without feedback is

$$\mathbb{E}ar{A} \triangleq \lim_{t o \infty} rac{1}{t} \sum_{s=1}^t ar{A}(s) = rac{\mathbb{E}\,T_i^2}{2\mathbb{E}\,T_i} + rac{n^2\mathbb{E}\,ar{W}_i(ar{W}_i - 1)}{2\mathbb{E}\,T_i} - \left(n\mathbb{E}(ar{W}_i - 2) + rac{1}{2}
ight).$$

Proof.

Cumulative age $S(T_i)$ in the *i*th renewal interval is

$$S(T_i) = \sum_{j=1}^{\bar{W}_i-1} \sum_{k=0}^{n-1} (n+k) + \sum_{j=n(\bar{W}_i-1)}^{T_i-1} (n+j-n(\bar{W}_i-1)),$$

 $= \frac{n^2 \bar{W}_i(\bar{W}_i-1)}{2} + \frac{T_i^2}{2} - \left(n(\bar{W}_i-2) + \frac{1}{2}\right) T_i.$

16/23

Age Sample Path: Incremental Updates With Feedback

- ▶ Inter-renewal time $T_i = nZ_i + nW_i$
- ▶ Number of incremental updates *W_i* in *i*th renewal interval
- ▶ $\{W_i : i \in \mathbb{N}\}$ are *iid* geometric with success parameter p_2

Mean Age

Theorem

Limiting average age for the incremental updates with feedback is

$$\mathbb{E}\hat{A} \triangleq \lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^{t} \hat{A}(s) = \frac{(3n-1)}{2} + \frac{n(\mathbb{E}Z_i^2 + \mathbb{E}Z_i)}{2(\mathbb{E}W_i + \mathbb{E}Z_i)}.$$

Proof.

Cumulative age $S(T_i)$ over the *i*th renewal period T_i is

$$S(T_i) = \sum_{j=1}^{W_i-1} \sum_{k=0}^{n-1} (n+k) + \sum_{k=0}^{T_i-n(W_i-1)-1} (n+k)$$

= $(3n-1)T_i/2 + n^2(Z_i+1)Z_i/2$.

Analytical Comparison

Theorem

The mean age for the three schemes satisfy,

$$\mathbb{E}\hat{A} \leq \mathbb{E}A \leq \mathbb{E}\bar{A}.$$

Numerical Comparision

System Parameters

- Random coding scheme
- ▶ Code length n = 120
- Number of information bits m = 105
- q ∈ {2,6}

Discussion and Concluding Remarks

Main Contributions

- ► Integration of coding and renewal techniques to study timely communication for delay-sensitive traffic
- ▶ We model channel unreliability by the erasure channel
- Incremental updates only when there is feedback availability

Avenues of Future Research

- Extend results to structured sources
- Extend results to correlated finite-state erasure and error channels
- Impact of other coding schemes on timeliness