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Random Coding + Hybrid ARQ

Consider the problem of communicating a k-bit message over a
memoryless binary erasure channel (BEC) with erasure probability
0 ≤ ǫ < 1, using random coding + hybrid ARQ∗:

∗ARQ: Automatic Repeat Request
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Consider the problem of communicating a k-bit message over a
memoryless binary erasure channel (BEC) with erasure probability
0 ≤ ǫ < 1, using random coding + hybrid ARQ∗:

• Consider a random binary parity-check matrix H of size
(n − k)× n

• Consider an arbitrary mapping from k-bit messages to n-bit
codewords in the null-space of matrix H

• The source maps the message x = (x1, . . . , xk) to a codeword
c = (c1, . . . , cn)

• The source divides the codeword c into m sub-blocks
c1, . . . , cm for a given 2 ≤ m ≤ n, where ci = (cni−1

, . . . , cni )
for i ∈ [m] = {1, . . . ,m}, and n1, . . . , nm are given integers
such that k ≤ n1 < n2 < · · · < nm = n, and n0 = 0

∗ARQ: Automatic Repeat Request
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Random Coding + Hybrid ARQ (Cont.)

• The source sends the first sub-block, c1

• The destination receives c1, or a proper subset thereof

• The destination performs ML decoding to recover the message
x, and depending on the outcome of decoding, sends an ACK
or NACK to the source over a perfect feedback channel
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• The source sends the first sub-block, c1

• The destination receives c1, or a proper subset thereof

• The destination performs ML decoding to recover the message
x, and depending on the outcome of decoding, sends an ACK
or NACK to the source over a perfect feedback channel

• If the source receives a NACK, it sends next sub-block, c2,
and waits for an ACK or NACK again

• This action repeats until (i) the source receives an ACK; or (ii)
it exhausts all the sub-blocks, and does not receive an ACK

In case (i), the communication round succeeds, and the source
starts a new communication round for the next message

In case (ii), the communication round fails, and the source starts a
new communication round for the message x.

2 / 19



Problem

Expected Effective Blocklength: The expected number of bits
being sent by the source within a communication round
(the randomness comes from both the channel and the code)

Problem: To identify the aggregate sub-block sizes n1, . . . , nm−1

such that the expected effective blocklength is minimized where a
maximum of m sub-blocks (i.e., maximum m bits of feedback) are
available in a communication round
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Previous Works vs. This Work

Previous works (for channels other than BEC):

[1] Vakilinia-Williamson-Ranganathan-Divsalar-Wesel ’14
(Feedback systems using non-binary LDPC codes with a
limited number of transmissions, ITW)

[2] Williamson-Chen-Wesel ’15 (Variable-length convolutional
coding for short blocklengths with decision feedback, TCOM)

[3] Vakilinia-Ranganathan-Divsalar-Wesel ’16 (Optimizing
transmission lengths for limited feedback with non-binary
LDPC examples, TCOM)

In this work, we propose a solution by extending the sequential
differential optimization (SDO) framework of [3] for BEC
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Expected Effective Blocklength

• Rt : the number of bits observed by the destination at time t,
i.e., Rt ∼ B(t, 1− ǫ)

• PRt
: the discrete probability measure associated with the

random variable (r.v.) Rt , i.e.,

PRt
(r) =

(

t

r

)

ǫt−r (1− ǫ)r
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i.e., Rt ∼ B(t, 1− ǫ)

• PRt
: the discrete probability measure associated with the

random variable (r.v.) Rt , i.e.,

PRt
(r) =

(

t

r

)

ǫt−r (1− ǫ)r

• Ps(r): the probability of decoding success given that the
number of bits observed by the destination is r , i.e.,

Ps(r) =











0 0 ≤ r < k
∏n−r−1

l=0

(

1− 2l−(n−k)
)

k ≤ r < n

1 r ≥ n
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Expected Effective Blocklength (Cont.)

• PACK(t): the probability that the destination sends an ACK
to the source at time t or earlier, i.e.,

PACK(t) =

{

1−
∑t

e=0(1− Ps(t − e))PRt
(t − e) k ≤ t ≤ n

0 0 ≤ t < k
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• PACK(t): the probability that the destination sends an ACK
to the source at time t or earlier, i.e.,

PACK(t) =

{

1−
∑t

e=0(1− Ps(t − e))PRt
(t − e) k ≤ t ≤ n

0 0 ≤ t < k

• S : the index of last sub-block being sent by the source within
a communication round

• E[nS ]: the expected effective blocklength, i.e.,

E[nS ] = nm +

m−1
∑

i=1

(ni − ni+1)PACK(ni )

Problem: To identify n1, . . . , nm−1 such that E[nS ] is minimized
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Multi-Dimensional vs. One-Dimensional

Optimization

Challenge: The problem of minimizing E[nS ] is a multi-dimensional
optimization problem with integer variables n1, . . . , nm−1
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Multi-Dimensional vs. One-Dimensional

Optimization

Challenge: The problem of minimizing E[nS ] is a multi-dimensional
optimization problem with integer variables n1, . . . , nm−1

Idea: Sequential differential optimization (SDO) reduces the
problem to a one-dimensional optimization with integer variable n1

Recall

E[nS ] = nm +

m−1
∑

i=1

(ni − ni+1)PACK(ni )

Suppose that a smooth approximation F (t) of PACK(t) is given

Define

Ẽ[nS ] = nm +

m−1
∑

i=1

(ni − ni+1)F (ni )
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Sequential Differential Optimization (SDO)

Recall

Ẽ[nS ] = nm +

m−1
∑

i=1

(ni − ni+1)F (ni )

SDO: Given ñ1, . . . , ñi−1, an approximation ñi of the optimal value
of ni for 2 ≤ i ≤ m − 1 can be computed via setting the partial
derivative of Ẽ[nS ] with respect to ni−1 to zero and solving for ni
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Sequential Differential Optimization (SDO)

Recall

Ẽ[nS ] = nm +

m−1
∑

i=1

(ni − ni+1)F (ni )

SDO: Given ñ1, . . . , ñi−1, an approximation ñi of the optimal value
of ni for 2 ≤ i ≤ m − 1 can be computed via setting the partial
derivative of Ẽ[nS ] with respect to ni−1 to zero and solving for ni

❀ Given ñ1 (and ñ0 = −∞), an approximation ñi of the optimal
value of ni for all 2 ≤ i ≤ m − 1 can be obtained sequentially by

ñi = ñi−1 +

⌈

(F (ñi−1)− F (ñi−2))

(

dF (t)

dt

∣

∣

∣

t=ñi−1

)−1
⌉

❀ a one-dimensional optimization problem with variable n1

Challenge: To find a smooth approximation F (t) to PACK(t)
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Main Idea and Contributions

Fact: PACK(t) for t < n matches the CDF of the r.v. Nn that
represents the length of a communication round

Idea:

• To study the asymptotic behavior of the mean and variance of
the r.v. Nn as n grows large, and

• To approximate PACK(t) by the CDF of a continuous
r.v. with a mean and variance matching the mean and
variance of the r.v. Nn as n grows large
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Idea:

• To study the asymptotic behavior of the mean and variance of
the r.v. Nn as n grows large, and

• To approximate PACK(t) by the CDF of a continuous
r.v. with a mean and variance matching the mean and
variance of the r.v. Nn as n grows large

In this work, we show that

limn→∞ E[Nn] = (k + c0)/(1− ǫ)

and
limn→∞Var(Nn) = ((k + c0)ǫ+ c0 + c1)/(1− ǫ)2

where c0 = 1.60669... is the Erdös-Borwein constant, and
c1 = 1.13733... is the digital search tree constant
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Numerical Results
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T = kPACK(n)
E[nS ]

• ES: Optimization by Exhaustive Search
• SDO-NA: SDO based on Normal Approximation
• SDO-LNA: SDO based on Log-Normal Approximation
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Numerical Results (Cont.)
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• the benefit in terms of throughout for m ≥ 5 becomes relatively small
• a small number of sub-blocks (i.e., a few bits of feedback) suffice to achieve a

throughput close to that obtained with unlimited feedback
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Proof Steps

In this work, we show that

limn→∞ E[Nn] = (k + c0)/(1− ǫ)

and
limn→∞Var(Nn) = ((k + c0)ǫ+ c0 + c1)/(1− ǫ)2

where c0 = 1.60669... is the Erdös-Borwein constant, and
c1 = 1.13733... is the digital search tree constant

Proof Steps:

• Analysis of the length of a communication round in the
asymptotic regime over a lossless channel

(by using closed-form formulas for several sums of products)

• Extension of the previous analysis for lossy channels

(by showing matching lower and upper bounds)
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Asymptotic Analysis over A Lossless Channel

Assume

• ǫ = 0, i.e., the channel is lossless

• m = n, i.e., each sub-block is one bit
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Asymptotic Analysis over A Lossless Channel

Assume

• ǫ = 0, i.e., the channel is lossless

• m = n, i.e., each sub-block is one bit

Define

• Mn: the number of bits needed for the message to become
decodable, following the prescribed order in the codeword

• PMn
: the discrete probability measure for the r.v. Mn, i.e.,

PMn
(r) = Ps(r)− Ps(r − 1)

❀ PMn
(r) =

{

2k−r
∏n−r−1

l=0

(

1− 2l−(n−k)
)

k ≤ r ≤ n

0 otherwise

Goal: To study limn→∞ E[Mn] and limn→∞Var(Mn)
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limn→∞ E[Mn] and limn→∞Var(Mn)

For any n,

E[Mn] =

n
∑

r=k

rPMn
(r) =

n−k
∑

i=0

(k + i)2−i

n−k
∏

j=i+1

(

1− 2−j
)

and

E[M2
n ] =

n
∑

r=k

r2PMn
(r) =

n−k
∑

i=0

(k + i)22−i
n−k
∏

j=i+1

(

1− 2−j
)
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E[Mn] =

n
∑

r=k

rPMn
(r) =

n−k
∑

i=0

(k + i)2−i

n−k
∏

j=i+1

(

1− 2−j
)

and

E[M2
n ] =

n
∑

r=k

r2PMn
(r) =

n−k
∑

i=0

(k + i)22−i
n−k
∏

j=i+1

(

1− 2−j
)

Theorem

For any k, lim
n→∞

E[Mn] = k + c0 and lim
n→∞

Var(Mn) = c0 + c1 where

c0 =
∑∞

i=1
1

2i−1
= 1.60669... is the Erdös-Borwein constant, and

c1 =
∑∞

i=1
1

(2i−1)2
= 1.13733... is the digital search tree constant

Proof: By using the closed-form formulas for several infinite sums
of infinite products
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Asymptotic Analysis over A Lossy Channel

Assume

• ǫ > 0, i.e., the channel is lossy
• m = n, i.e., each sub-block is one bit
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Assume

• ǫ > 0, i.e., the channel is lossy
• m = n, i.e., each sub-block is one bit

Define

• Er : the number of bits erased before r bits are observed by
the destination, i.e., Er ∼ NB(r , ǫ)

• PEr
: the discrete probability measure for the r.v. Er , i.e.,

PEr
(e) =

(

r + e − 1

e

)

ǫe(1− ǫ)r

• Nn: the length of a communication round
• PNn

: the discrete probability measure for the r.v. Nn, i.e.,

PNn
(t) =

{

∑t
r=k PEr

(t − r)PMn
(r) k ≤ t < n

∑∞
u=n

∑u
r=k PEr

(u − r)PMn
(r) t = n

Goal: To study limn→∞ E[Nn] and limn→∞Var(Nn)
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limn→∞ E[Nn] and limn→∞Var(Nn)

❀ Nn < n: the destination can recover the message before all
the codeword bits are sent by the source

❀ Nn = n: all the codeword bits are exhausted by the source,
and the destination may or may not recover the message

For any n,

E[Nn] =

n
∑

r=k

∞
∑

e=0

min(r + e, n)PEr
(e)PMn

(r)

and

E[N2
n ] =

n
∑

r=k

∞
∑

e=0

min((r + e)2, n2)PEr
(e)PMn

(r).
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❀ Nn < n: the destination can recover the message before all
the codeword bits are sent by the source

❀ Nn = n: all the codeword bits are exhausted by the source,
and the destination may or may not recover the message

For any n,

E[Nn] =

n
∑

r=k

∞
∑

e=0

min(r + e, n)PEr
(e)PMn

(r)

and

E[N2
n ] =

n
∑

r=k

∞
∑

e=0

min((r + e)2, n2)PEr
(e)PMn

(r).

Theorem

For any k and ǫ, lim
n→∞

E[Nn] = µ(k , ǫ) , k+c0
1−ǫ

and

lim
n→∞

Var(Nn) = σ2(k , ǫ) , (k+c0)ǫ+c0+c1
(1−ǫ)2

Proof: By showing matching lower and upper bounds
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An Upper Bound on lim
n→∞

E[Nn]

Since min(r + e, n) ≤ r + e,

E[Nn] =
∑n

r=k PMn
(r)

∑∞
e=0 min(r + e, n)PEr

(e)

≤
∑n

r=k PMn
(r)

∑∞
e=0(r + e)PEr

(e)

for all n.
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(e) +
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(e)

= r + E[Er ] = r/(1 − ǫ)

Thus,

E[Nn] ≤
∑n

r=k rPMn
(r)/(1 − ǫ) = E[Mn]/(1− ǫ)

for all n.
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(e) +
∑∞

e=0 ePEr
(e)

= r + E[Er ] = r/(1 − ǫ)

Thus,

E[Nn] ≤
∑n

r=k rPMn
(r)/(1 − ǫ) = E[Mn]/(1− ǫ)

for all n.

Since limn→∞ E[Mn] = k + c0 (by the result of the lossless case),

lim
n→∞

E[Nn] ≤ (k + c0)/(1− ǫ)
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A Lower Bound on lim
n→∞

E[Nn]

Since min(r + e, n) = r + e for 0 ≤ e ≤ n − r ,

E[Nn] =
∑n

r=k

∑∞
e=0min(r + e, n)PEr

(e)PMn
(r)

≥
∑n

r=k

∑n−r
e=0(r + e)PEr

(e)PMn
(r)

for all n.
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Since PMn
(r) is monotone decreasing in n for all k ≤ r ≤ n,
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j=r−k+1(1− 2−j)

Thus,

E[Nn] ≥
∑n

r=k 2
k−r

∑n−r
e=0(r + e)PEr

(e)
∏∞

j=r−k+1(1− 2−j)

for all n.

Since by the closed-form formulas for several sums of products,
∑∞

r=k 2
k−r

∑∞
e=0(r+e)PEr

(e)
∏∞

j=r−k+1(1−2−j ) = (k+c0)/(1−ǫ)

then,
lim
n→∞

E[Nn] ≥ (k + c0)/(1− ǫ)
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Summary and Ongoing Work

In this work:

• Considered the problem of communicating a message over a
BEC, using random coding + hybrid ARQ

• Proposed a framework based on the sequential differential
optimization (SDO) to optimize the parameters of the system
such that the average throughput of the system is maximized

Ongoing work: Extending the proposed SDO-based framework

• for scenarios with constrained feedback rate

• for channels with memory
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