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Random Coding + Hybrid ARQ

Consider the problem of communicating a k-bit message over a
memoryless binary erasure channel (BEC) with erasure probability
0 < e < 1, using random coding + hybrid ARQ*:

*ARQ: Automatic Repeat Request
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Random Coding + Hybrid ARQ

Consider the problem of communicating a k-bit message over a
memoryless binary erasure channel (BEC) with erasure probability
0 < e < 1, using random coding + hybrid ARQ*:

Consider a random binary parity-check matrix H of size
(n—k)xn

Consider an arbitrary mapping from k-bit messages to n-bit
codewords in the null-space of matrix H

The source maps the message x = (x1,...,xx) to a codeword
C = (Cl,...,C,,)

The source divides the codeword c into m sub-blocks
Ci,...,Cmy for a given 2 < m < n, where ¢; = (cp, ,,....Cpn)
for i € [m] ={1,...,m}, and ny,...,n, are given integers

suchthat k <m <n<---<nm=mn,and ng =0

*ARQ: Automatic Repeat Request



Random Coding + Hybrid ARQ (Cont.)

e The source sends the first sub-block, ¢;
e The destination receives c1, or a proper subset thereof

e The destination performs ML decoding to recover the message
x, and depending on the outcome of decoding, sends an ACK
or NACK to the source over a perfect feedback channel
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The destination receives c1, or a proper subset thereof

The destination performs ML decoding to recover the message
x, and depending on the outcome of decoding, sends an ACK
or NACK to the source over a perfect feedback channel

If the source receives a NACK, it sends next sub-block, c,
and waits for an ACK or NACK again

This action repeats until (i) the source receives an ACK; or (ii)
it exhausts all the sub-blocks, and does not receive an ACK
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Random Coding + Hybrid ARQ (Cont.)

e The source sends the first sub-block, ¢;
e The destination receives c1, or a proper subset thereof

e The destination performs ML decoding to recover the message
x, and depending on the outcome of decoding, sends an ACK
or NACK to the source over a perfect feedback channel

e If the source receives a NACK, it sends next sub-block, c»,
and waits for an ACK or NACK again

e This action repeats until (i) the source receives an ACK; or (ii)
it exhausts all the sub-blocks, and does not receive an ACK

In case (i), the communication round succeeds, and the source
starts a new communication round for the next message

In case (ii), the communication round fails, and the source starts a
new communication round for the message x.
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Problem

Expected Effective Blocklength: The expected number of bits
being sent by the source within a communication round
(the randomness comes from both the channel and the code)

Problem: To identify the aggregate sub-block sizes ni,...,nn_1
such that the expected effective blocklength is minimized where a
maximum of m sub-blocks (i.e., maximum m bits of feedback) are
available in a communication round
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Previous Works vs. This Work

Previous works (for channels other than BEC):

[1] Vakilinia-Williamson-Ranganathan-Divsalar-Wesel '14
(Feedback systems using non-binary LDPC codes with a
limited number of transmissions, ITW)

[2] Williamson-Chen-Wesel '15 (Variable-length convolutional
coding for short blocklengths with decision feedback, TCOM)

[3] Vakilinia-Ranganathan-Divsalar-Wesel '16 (Optimizing
transmission lengths for limited feedback with non-binary
LDPC examples, TCOM)

In this work, we propose a solution by extending the sequential
differential optimization (SDO) framework of [3] for BEC
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Expected Effective Blocklength

e R;: the number of bits observed by the destination at time t,
i.e., Rt ~ B(t, 1-— 6)

e Pg,: the discrete probability measure associated with the
random variable (r.v.) R, i.e.,

P = (})era-o

5/19



Expected Effective Blocklength

e R;: the number of bits observed by the destination at time t,
i.e., Rt ~ B(t, 1-— 6)

e Pg,: the discrete probability measure associated with the
random variable (r.v.) R, i.e.,

t
r

P = (})era-o

e Py(r): the probability of decoding success given that the
number of bits observed by the destination is r, i.e.,

0 0<r<k

P(r)=<TIlg (1 —-2-0=R) k<r<n
1 r>n

5/19



Expected Effective Blocklength (Cont.)

e Pack(t): the probability that the destination sends an ACK
to the source at time t or earlier, i.e.,

1_22:0(1_'DS(t_e))PRt(t—e) k<t<n

Pack(t) =
ack(t) {o 0<t<k
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Expected Effective Blocklength (Cont.)

e Pack(t): the probability that the destination sends an ACK
to the source at time t or earlier, i.e.,

P _ 1_26 0(1 'DS(t_e))'DRt(t_e) k<t<n
rerlt) =1 0<t<k

e S: the index of last sub-block being sent by the source within
a communication round

e [E[ns|: the expected effective blocklength, i.e.,

E[”S] =Nm+ Z — Njit+1 PA(K(”/)
i=1

Problem: To identify ny, ..., ny,—1 such that E[ns] is minimized

19



Multi-Dimensional vs. One-Dimensional
Optimization

Challenge: The problem of minimizing E[ns] is a multi-dimensional
optimization problem with integer variables ny,... . n,_1
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Multi-Dimensional vs. One-Dimensional
Optimization

Challenge: The problem of minimizing E[ns] is a multi-dimensional
optimization problem with integer variables ny,... . n,_1

Idea: Sequential differential optimization (SDO) reduces the
problem to a one-dimensional optimization with integer variable n;

Recall

E[ns] = nm + Z — ni+1)Pack(ni)

Suppose that a smooth approximation F(t) of Pack(t) is given

Define

E[”S] = Nm+ Z ni—nj41 F( )

/19



Sequential Differential Optimization (SDO)

Recall

E[”s]—nm+z ni — nj1)F(n;)
i=1

SDO: Given fiy, ..., f;_1, an approximation A; of the optimal value
of n; for 2 < i < m —1 can be computed via setting the partial
derivative of E[ns] with respect to n;_; to zero and solving for n;
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Sequential Differential Optimization (SDO)

Recall

E[”s]—nerZ ni — nj1)F(n;)
i=1

SDO: Given fiy, ..., f;_1, an approximation A; of the optimal value
of n; for 2 < i < m —1 can be computed via setting the partial
derivative of E[ns] with respect to n;_; to zero and solving for n;

~ Given 7 (and fip = —o0), an approximation 7i; of the optimal
value of n; for all 2 < i < m — 1 can be obtained sequentially by

)

~> a one-dimensional optimization problem with variable n;

i = fi—1+ | (F(Ai—1) — F(fi—2)) (%&t)

Challenge: To find a smooth approximation F(t) to Pack(t)

19



Main Idea and Contributions

Fact: Pack(t) for t < n matches the CDF of the r.v. N, that
represents the length of a communication round

Idea:
e To study the asymptotic behavior of the mean and variance of
the r.v. N, as n grows large, and
e To approximate Pacxk(t) by the CDF of a continuous
r.v. with a mean and variance matching the mean and
variance of the r.v. N, as n grows large
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Fact: Pack(t) for t < n matches the CDF of the r.v. N, that
represents the length of a communication round

Idea:
e To study the asymptotic behavior of the mean and variance of
the r.v. N, as n grows large, and
e To approximate Pacxk(t) by the CDF of a continuous
r.v. with a mean and variance matching the mean and
variance of the r.v. N, as n grows large

In this work, we show that
limp— o0 E[Np] = (k + c0)/(1 —€)

and
limp_s00 Var(N,) = ((k + co)e + co + c1)/(1 — €)?

where ¢y = 1.606609... is the Erdos-Borwein constant, and
c1 = 1.13733... is the digital search tree constant
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Throughput (T)
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e the benefit in terms of throughout for m > 5 becomes relatively small
e a small number of sub-blocks (i.e., a few bits of feedback) suffice to achieve a

throughput close to that obtained with unlimited feedback
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Proof Steps

In this work, we show that
lim,— o0 E[Np] = (k + @) /(1 —€)

and
limp—oo Var(Ny) = ((k + co)e + co + c1) /(1 — €)?

where ¢y = 1.606609... is the Erdos-Borwein constant, and
c1 = 1.13733... is the digital search tree constant

Proof Steps:

e Analysis of the length of a communication round in the
asymptotic regime over a lossless channel

(by using closed-form formulas for several sums of products)
e Extension of the previous analysis for lossy channels

(by showing matching lower and upper bounds)
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Asymptotic Analysis over A Lossless Channel

Assume
e ¢ =0, i.e., the channel is lossless
e m = n, i.e., each sub-block is one bit
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Asymptotic Analysis over A Lossless Channel

Assume
e ¢ =0, i.e., the channel is lossless
e m = n, i.e., each sub-block is one bit

Define

e M,: the number of bits needed for the message to become
decodable, following the prescribed order in the codeword

e Py, : the discrete probability measure for the r.v. M, i.e.,

P, (r) = Ps(r) — Ps(r — 1)

2k Ty (1 —2-(=R) k<r<n

0 otherwise

~ Py, (r)= {

Goal: To study lim,_oc E[M,] and lim,_,~ Var(M,)
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lim,—o0 E[M,] and lim,_,., Var(M,)

For any n,
n n—k n—k
E[Ma = rPu,(r)=> (k+027" J] (1-27)
r=k i=0 j=i+1
and
n n—k n—k
E[M2] =Y " rPy,(r)=> (k+i)27" J] (1-27)
r=k i=0 Jj=i+1
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lim,—o0 E[M,] and lim,_,., Var(M,)

For any n,
n n—k n—k
E[Ma = rPu,(r)=> (k+027" J] (1-27)
r=k i=0 j=i+1
and
n n—k n—k
E[M2] =Y " rPy,(r)=> (k+i)27" J] (1-27)
r=k i=0 Jj=i+1

Theorem

For any k, Iim E[Mn] = k+cg and Ii}m Var(M,) = co + c1 where
n—oo

Co = Z, 1 2, = 1.606009... is the Erdos-Borwein constant, and
G = Do 1= 1)2 = 1.13733... is the digital search tree constant

Proof: By using the closed-form formulas for several infinite sums
of infinite products

14 /19



Asymptotic Analysis over A Lossy Channel

Assume
e ¢ >0, i.e., the channel is lossy
e m = n, i.e., each sub-block is one bit
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e E,: the number of bits erased before r bits are observed by
the destination, i.e., E, ~ NB(r,¢)
e Pr: the discrete probability measure for the r.v. £, i.e.,

Pe (e) = <r e 1>ee(1 oy

e
e N,: the length of a communication round
e Pp,: the discrete probability measure for the r.v. N, i.e.,

P, (t) = {Zik cete P Ksren
Zu:an:k PE,(u_r)’DMn(r) t=n

Goal: To study lim,— o E[N,] and lim,_, Var(N,)
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lim,—00 E[N,] and lim,_, Var(N,)

~> N, < n: the destination can recover the message before all
the codeword bits are sent by the source

~» N, = n: all the codeword bits are exhausted by the source,

and the destination may or may not recover the message

For any n,
n

E[N,] = > min(r + e, n)Pg, (&) Pu,(r)

r=k e=0

E[N] = Z min((r + €)2, n*)Pg ()P, (r).

r=k e=0

and
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lim,—00 E[N,] and lim,_, Var(N,)

~> N, < n: the destination can recover the message before all
the codeword bits are sent by the source

~» N, = n: all the codeword bits are exhausted by the source,
and the destination may or may not recover the message

For any n, Lo
E[N,] = > min(r + e, n)Pg, (&) Pu,(r)
and ,,r:;e_o
E[NZ] =) min((r + €)%, n*)Pe, (&) Pu, (r).
r=k e=0

Theorem
For any k and e, ,,IEQOE[N"] = u(k,e) AL % el
i k

Proof: By showing matching lower and upper bounds
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An Upper Bound on lim E[N,]

n—o00

Since min(r +e,n) <r+e,
E[N] = 327k Pm,(r) 2oeZo min(r + e, n) P, (e)

<ok Pm,(r) 22¢20(r + €)PE(e)
for all n.
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E[Na] = 37— Pum,(r) 22220 min(r + €, n) P, (e)
< D ork P (r) 2oeZo(r + €)Pe.(e)
for all n.
Since E, ~ NB(r,¢),
>emo(r +e)Pe(e) = r3 o Pe(e) + > o2 ePE (e)
=r+E[E]=r/(1—¢)
Thus,
E[Na] <327 rPm,(r)/(1 =€) = E[M,]/(1 — €)

for all n.

Since lim, o0 E[M,] = k + ¢ (by the result of the lossless case),

Jim BIN,] < (k -+ c0)/(1 - )
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A Lower Bound on lim E[N,]

n—o00

Since min(r +e,n)=r+efor0<e<n-—r,
EINA] = Y0, 3235 o min(r + e, m)Pe, (€)Pu, (1)
>3 =k 2oe=o(r + €)Pe.(€)Pum,(r)
for all n.
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A Lower Bound on lim E[N,]
n—o00
Since min(r +e,n)=r+efor0<e<n-—r,
E[Nn] = 327k 2eZo min(r + e, )P, (€) Pu, (r)
> > 7ok 2e=o(r + €)Pe(€)Pu,(r)
for all n.
Since Py, (r) is monotone decreasing in n for all k < r < n,
PMn(r) 2 |Imn‘>oo PMn(r) = 2k_r Hj.ir—k—l-l(l - 2_1)

Thus,

E[N] > 327 277 3205(r + e)Pe () TT72 ey (1 — 277)
for all n.
Since by the closed-form formulas for several sums of products,
>k 2T o (rte)Pe () TT7E, 1 (1-277) = (k+0)/(1—€)
then,

lim E[N,] > (k+ c)/(1 —¢€)

n—o0
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Summary and Ongoing Work

In this work:

e Considered the problem of communicating a message over a
BEC, using random coding + hybrid ARQ

e Proposed a framework based on the sequential differential
optimization (SDO) to optimize the parameters of the system
such that the average throughput of the system is maximized

Ongoing work: Extending the proposed SDO-based framework
e for scenarios with constrained feedback rate

e for channels with memory
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