2020 IEEE International Conference on Acoustics, Speech, and Signal Processing

Adaptive Distributed Stochastic Gradient

Descent for Minimizing Delay in the
Presence of Stragglers

Serge Kas Hanna

Email: serge.k.hanna@rutgers.edu
Website: tiny.cc/serge-kas-hanna



mailto:serge.k.hanna@rutgers.edu
tiny.cc/serge-kas-hanna

Joint work with

Rawad Bitar, TUM Parimal Parag, 11SC

Venkat Dasari, US Army RL Salim El Rouayheb, Rutgers

Serge Kas Hanna IEEE ICASSP 2020 2



Distributed Computing and Applications

Cloud computing

. .l g
wEramazon
uF webservices
Outsourcing computations Distributed Machine
to companies Learning

Serge Kas Hanna IEEE ICASSP 2020 3



Speeding Up Distributed Machine Learning

Master Master wants to run a ML algorithm on a
Dataset large dataset A

Learning process can be made faster by
outsourcing computations to worker nodes

/a\\
ArE = b

Worker1  Worker2  Worker 3

communicate results back to master

ﬂ ﬂ Workers who perform local computations and

Stragglers: slow or unresponsive workers can
significantly delay the learning process

Master is as fast as the slowest worker!

Serge Kas Hanna IEEE ICASSP 2020 4



Distributed Machine Learning

> Master has dataset X € R™*¢, |abels y € R™ and wants to learn a
model w* € R? that best represents y as a function of X

Optimization problem

Master

Find w* € R% that minimizes a
certain loss function F

m
data vectors

m
labels

w* =argmin F(X,y,w)
w

d
dimension

» When the dataset is large (m >>), computation is a bottleneck

» Distributed learning: recruit workers e 1) Distribute data ton

workers

2) Workers compute on
local data & send to
master

3) Master aggregates
responses & updates
model 5




GD, SGD & batch SGD

» Gradient Descent (GD), choose w, randomly then iterate

W1 = w; —nVF(4,w;),
where 7 is the step size and VF is the gradient of F

> When dataset A is large, computing VF (4, w) is cumbersome Wjs1 = wj = VEW)
» Stochastic Gradient Descent (SGD): at each iteration, update w; based on one
row of A € R%*1 that is chosen uniformly at random

randomly chosen
/ data vector from A

Wiy = Wj — UVF(a' Wi)’

sample 1
row at
random

» Batch SGD: choose a batch of s < m data vectors uniformly at random

sample
batch of s
rows at
random

random batch of

/ data vectors
Wi = w; —nVF(S,w;),

» SGD & Batch SGD can converge to w* with a higher number of iterations



Synchronous Distributed GD

» Distributed GD: each worker computes a partial gradient on its local data

ﬂ Worker 1 - Compute g, (w;) = VF (A1, w;)

Dataset
LA

% |
Master computes \ -

gWwj)=g1+g2++gn  gn(W)) Worker n - Compute g, (w;) = VF (A, wj)

Master

/
|
& gz(Wj)

» Atiteration j:
1. Master sends the current model w; to all workers
2. Workers compute their partial gradients and send them to the master
3. Master aggregates the partial gradients by summing them to obtain full gradient

» Aggregation with simple summation works if VF is additively separable, e.g. £, loss

» Straggler problem: Master is as fast as the slowest worker



Speeding up Distributed GD: Previous Work

» Coding theoretic approach: Gradient coding [Tandon et al. ‘17], [Yu et al. ‘17],
[Halbawi et al. ‘18], [Kumar et al. ‘18], ...

* Main idea: Distribute data redundantly and encode the partial gradients

* Responses from stragglers are treated as erasures and the full gradient is
decoded from responses of non-stragglers

» Approximate gradient coding: [Chen et. al ‘17], [Wang et al. ‘19], [Bitar et al. ‘19], ...

* Main idea: master does not need to compute exact gradient, e.g. SGD

* Ignore the response of stragglers and obtain an estimate of the full gradient

|
|Fastest-k SGD: wait for the responses of the fastest k < n workers and ignorei
Ithe responses of the n — k stragglers '

» Mixed Strategies: [Charles et al. ‘17], [Maity et al. ‘18], ...



Fastest-k SGD

» Our question: how to choose the value of k in fastest-k SGD with fixed step size?

» Numerical example on synthetic data: linear regression, £, loss function
Error vs Time of Fastest-k SGD

102 _

—— k=10 (fixed) n = 50 workers

—— k=20 (fixed) .
Lot k=30 (fixed) m = 2000 data points

—— k=40 (fixed)

d = 10 dimension

10° Response time of workers iid ~ exp(1)

Error

1071 5 Key observation
10-2 ] I Error-runtime trade-off: convergence is I
I faster for small k but accuracy is lower |
10_3- -------------------‘
(I) l(l)O 2(I)0 3(I)0 4(I)0 5(I)0 6(I)0

t (wall-clock time)

» What does theory say?

» Previous work on fastest-k SGD: Analysis by [Bottou et al. 18] & [Duta et al. ‘18] for
predetermined (fixed) k 9



Our Contribution: Adaptive fastest-k SGD

» Our goal: speed up distributed SGD in the presence
of stragglers, i.e., achieve lower error is less time

10? 3 — k=10 (fixed)

—— k=20 (fixed)
Envelope —— k=30 (fixed)
—— k=40 (fixed)

101-;
» Approach: adapt the value of k throughout
the runtime to maximize time spent in
exponential decrease

100 +

Error

1071 4

1072 3

» Adaptive: start with smallest k and then increase _
k gradually every time error hits a plateau 1074

0 100 200 300 400 500 600
t (wall-clock time)

» Challenge: in practice we do not know the error because we do not know w*

» Our results:
1. Theoretical:
* Derive an upper bound on the error of fastest-k SGD as a function of time

* Determine the bound-optimal switching times

2. Practical: Devise an algorithm for adaptive fastest-k SGD based on a statistical heuristic
Serge Kas Hanna IEEE ICASSP 2020 10



Our Theoretical Results

IEEE ICASSP 2020



Example on Theorem 2

» Example with iid exponential response times: evaluate upper bound and apply Thm 2

102 3 —— k=1 (fixed)
f —— k=2 (fixed)
101 4 —— k=3 (fixed)
] —— k=4 (fixed)
—— k=5 (fixed)

10°
0 ] » Adaptive k-sync

S *  Switching points
o 1071 4
10—2 4
10_3 E . k \ \
**'*" —— \\iﬁ
0 1000 2000 3000 4000 5000 6000 7000 8000 12

t (time)



Algorithm for Adaptive fastest-k SGD

» Start with k = 1 and then increase k every time a phase transition is detected
» Phase transition detection: monitor the sign of consecutive gradients

Exponential phase Stationary phase

In stationary phase, Stochastic approximation:

consecutive gradients are [Pflug 1990]

likely to point in opposite o
directions due to oscillation  Detect phase transition:

[Chee and Toulis ‘18]

In exponential phase,
consecutive gradients are
likely to point in the same
direction

= VF(w;)VF(wj4,) >0 = VF(w;)VF(wj4,) <0

|
» Initialize a counter to zero and update:
counter + 1, if VF(Wj)VF(Wj+1)T <0

counter = T
counter — 1, if VF(Wj)VF(Wj+1) >0

» Declare a phase transition if counter goes above a certain threshold & increase k=,



Simulation Results:

Non-adaptive vs Adaptive Fastest-k SGD

» Simulation on synthetic data X:

- Generate X: pick m data vectors chosen uniformly at random from {1,2, ..., 10}¢
- Pick w* uniformly at random from {1,2, ..., 100}¢

- Generate labels: y ~ V' (Xw*, 1)

- Loss function: £, loss (least square errors)

- Workers’ response times are iid ~ exp(1) and independent across iterations

» Simulation results on adaptive fastest-k SGD for n = 50 workers

] —— Adaptive k-sync
101 - ® Switching times _
5 — Non-adaptive k = 10 (fixed) n = 50 workers
] —— Non-adaptive k=20 (fixed
on-acap fve ( !Xe : m = 2000 data vectors
10° - —— Non-adaptive k = 30 (fixed)
_ ] Non-adaptive k = 40 (fixed) d = 100 dimension
o B
- 107" 5 n = 0.005 step size
1072 3
103 E

0 1000 2000 3000 4000 5000 6000 14
Time



Simulation Results:

Async vs Adaptive Fastest-k SGD

» Asynchronous Stochastic Gradient Descent: update the model w; and send new
model w;,, every time a worker finishes it’s partial gradient computation

» Workers who have not finished continue working on the old model

> Simulation results:

103 5
] —— Adaptive fastest-k, k=1 to k=36 (step=5)
' ® Switching points
102 -
E — Async
] n = 50 workers
10" - m = 2000 data vectors
‘é d = 100 dimension
g 1005
] n = 0.002 step size
1071 3
1072 4

0 200 400 600 800 1000
t (wall-clock time) 15



Summary and Future Work

» Speeding up distributed machine learning

e Straggler problem

* Adaptive fastest-k SGD for minimizing delay in the presence of stragglers
e Theoretical results: bounds on the error & bound-optimal switching times
* Novel realizable algorithm based on statistical heuristic

* Numerical results showing gain with respect to non-adaptive SGD

> Future work

* Simulations or real data (MNIST, CFAR, etc.)

e \Variable step size

* Mixed strategies: coding + adaptivity

Serge Kas Hanna IEEE ICASSP 2020 16



