
Adaptive Distributed Stochastic Gradient
Descent for Minimizing Delay in the

Presence of Stragglers

2020 IEEE International Conference on Acoustics, Speech, and Signal Processing

Serge Kas Hanna
Email: serge.k.hanna@rutgers.edu

Website: tiny.cc/serge-kas-hanna

mailto:serge.k.hanna@rutgers.edu
tiny.cc/serge-kas-hanna

Joint work with

Salim El Rouayheb, Rutgers

Rawad Bitar, TUM Parimal Parag, IISC

Venkat Dasari, US Army RL

Serge Kas Hanna IEEE ICASSP 2020 2

Distributed Computing and Applications

Focus of this talk:
Distributed

Machine Learning

The Age of Big Data Internet of Things (IoT) Cloud computing

Outsourcing computations
to companies

Distributed Machine
Learning

Serge Kas Hanna IEEE ICASSP 2020 3

Speeding Up Distributed Machine Learning

Worker 1 Worker 3Worker 2

Master

…

𝐴

𝐴"
𝐴#
…
𝐴%

𝐴" 𝐴# 𝐴& 𝐴%

Dataset
Master wants to run a ML algorithm on a
large dataset 𝐴

Challenge:

Stragglers

Workers who perform local computations and
communicate results back to master

Learning process can be made faster by
outsourcing computations to worker nodes

4

Stragglers: slow or unresponsive workers can
significantly delay the learning process

Master is as fast as the slowest worker!

Serge Kas Hanna IEEE ICASSP 2020

Distributed Machine Learning
Ø Master has dataset 𝑋 ∈ ℝ*×,, labels 𝒚 ∈ ℝ𝒎 and wants to learn a

model 𝒘∗ ∈ ℝ, that best represents 𝒚 as a function of 𝑋

Ø When the dataset is large (𝑚 ≫), computation is a bottleneck

Find 𝒘∗ ∈ ℝ, that minimizes a
certain loss function 𝐹
𝒘∗ = arg min

𝒘
𝐹(𝑋, 𝒚,𝒘)

Ø Distributed learning: recruit workers

Master

𝑋 𝒚 𝑚
labels

𝑚
data vectors

𝑑
dimension

Optimization problem

Worker 1

Worker 𝑛

Worker 2
Master

…𝑋 𝒚
𝐴#

𝐴"

𝐴"

𝐴%

𝐴#

𝐴%

…=

1) Distribute data to 𝑛
workers

2) Workers compute on
local data & send to
master

3) Master aggregates
responses & updates
model

…

𝐴 = [𝑋|𝒚]
5

GD, SGD & batch SGD
Ø Gradient Descent (GD), choose 𝒘B randomly then iterate

𝒘CD" = 𝒘C − 𝜂∇𝐹 𝐴,𝒘𝒋 ,

where 𝜂 is the step size and ∇𝐹 is the gradient of 𝐹

𝒘CD" = 𝒘C − 𝜂∇𝐹 𝒘Ø When dataset 𝐴 is large, computing ∇𝐹 𝐴,𝒘 is cumbersome

Ø Stochastic Gradient Descent (SGD): at each iteration, update 𝒘C based on one
row of 𝐴 ∈ ℝ,D" that is chosen uniformly at random

𝒘CD" = 𝒘C − 𝜂∇𝐹 𝒂,𝒘𝒋 ,

randomly chosen
data vector from A 𝐴

𝒂

Ø Batch SGD: choose a batch of 𝑠 < 𝑚 data vectors uniformly at random

𝒘CD" = 𝒘C − 𝜂∇𝐹 𝑆,𝒘𝒋 ,

random batch of
data vectors

Ø SGD & Batch SGD can converge to 𝒘∗ with a higher number of iterations

𝐴

𝑆

sample 1
row at
random

sample
batch of 𝑠
rows at
random

6

Synchronous Distributed GD
Ø Distributed GD: each worker computes a partial gradient on its local data

Worker 1

Worker 𝑛

Worker 2
Master

…

𝐴#

𝐴"

𝐴%

…

𝐴"

𝐴%

…

Dataset

𝐴#

𝒘C

𝑔"(𝒘C)
𝒘C

𝑔#(𝒘C)
𝒘C

𝑔%(𝒘C)
Master computes

𝑔(𝒘C) = 𝑔" + 𝑔# + ⋯+ 𝑔%

Compute 𝑔"(𝒘C) = ∇𝐹(𝐴", 𝑤C)

Compute 𝑔#(𝒘C) = ∇𝐹(𝐴#, 𝑤C)

Compute 𝑔%(𝒘C) = ∇𝐹(𝐴%, 𝑤C)

Ø Aggregation with simple summation works if ∇𝐹 is additively separable, e.g. ℒ# loss

Ø Straggler problem: Master is as fast as the slowest worker
7

Ø At iteration 𝑗:
1. Master sends the current model 𝒘C to all workers
2. Workers compute their partial gradients and send them to the master
3. Master aggregates the partial gradients by summing them to obtain full gradient

Speeding up Distributed GD: Previous Work

Ø Coding theoretic approach: Gradient coding [Tandon et al. ‘17], [Yu et al. ‘17],
[Halbawi et al. ‘18], [Kumar et al. ‘18], …

8

Ø Approximate gradient coding: [Chen et. al ‘17], [Wang et al. ‘19], [Bitar et al. ‘19], …

• Main idea: master does not need to compute exact gradient, e.g. SGD

• Ignore the response of stragglers and obtain an estimate of the full gradient

• Fastest-𝒌 SGD: wait for the responses of the fastest 𝑘 < 𝑛 workers and ignore
the responses of the 𝑛 − 𝑘 stragglers

Ø Mixed Strategies: [Charles et al. ‘17], [Maity et al. ‘18], …

• Main idea: Distribute data redundantly and encode the partial gradients

• Responses from stragglers are treated as erasures and the full gradient is
decoded from responses of non-stragglers

Fastest-𝑘 SGD
Ø Our question: how to choose the value of 𝑘 in fastest-𝑘 SGD with fixed step size?

Ø Numerical example on synthetic data: linear regression, ℒ# loss function

Ø What does theory say?

Error-runtime trade-off: convergence is
faster for small 𝑘 but accuracy is lower

Ø Previous work on fastest-𝑘 SGD: Analysis by [Bottou et al. ’18] & [Duta et al. ‘18] for
predetermined (fixed) 𝑘

𝑛 = 50 workers

𝑑 = 10 dimension
𝑚 = 2000 data points

Error vs Time of Fastest-𝑘 SGD

Key observation

Response time of workers iid ∼ exp(1)

Theorem [Murata 1998]: SGD with fixed step size goes through an exponential
phase where error decreases exponentially, then enters a stationary phase where
𝒘C oscillates around 𝒘∗

9

Our Contribution: Adaptive fastest-𝑘 SGD

Ø Approach: adapt the value of 𝑘 throughout
the runtime to maximize time spent in
exponential decrease

Ø Challenge: in practice we do not know the error because we do not know 𝒘∗

Ø Our results:

Ø Our goal: speed up distributed SGD in the presence
of stragglers, i.e., achieve lower error is less time

Ø Adaptive: start with smallest 𝑘 and then increase
𝑘 gradually every time error hits a plateau

1. Theoretical:

• Derive an upper bound on the error of fastest-𝑘 SGD as a function of time

• Determine the bound-optimal switching times

2. Practical: Devise an algorithm for adaptive fastest-𝑘 SGD based on a statistical heuristic
Serge Kas Hanna IEEE ICASSP 2020 10

Envelope

Our Theoretical Results
Theorem 1 [Error vs. Time of fastest-𝑘 SGD]: Under certain assumptions on the loss
function, the error of fastest-𝑘 SGD after wall-clock time 𝑡 with fixed step size satisfies

𝔼 𝐹 𝒘` − 𝐹 𝒘∗ | 𝐽 𝑡 ≤
𝜂𝐿𝜎#

2𝑐𝑘𝑠 + 1 − 𝜂𝑐
`
fg

"hi 𝐹 𝒘B − 𝐹 𝒘∗ −
𝜂𝐿𝜎#

2𝑐𝑘𝑠 ,

with high probability for large 𝑡, where 0 < 𝜖 ≪ 1 is a constant error term, 𝐽(𝑡) is the
number of iterations completed in time 𝑡, and 𝜇m is the average of the 𝑘`n order statistic
of the random response times.

Theorem 2 [Bound-optimal switching times]: The bound optimal switching times 𝑡m,
𝑘 = 1,… , 𝑛 − 1, at which the master should switch from waiting for the fastest 𝑘 workers
to waiting for the fastest 𝑘 + 1 workers are given by

𝑡m = 𝑡mh" +
𝜇m

− ln 1 − 𝜂𝑐
[ln 𝜇mD" − 𝜇m − ln 𝜂𝐿𝜎#𝜇m

+ ln(2𝑐𝑘 𝑘 + 1 𝑠 𝐹 𝒘`gpq − 𝐹 𝒘∗ − 𝜂𝐿 𝑘 + 1 𝜎#]
where 𝑡B = 0.

11Serge Kas Hanna IEEE ICASSP 2020

Example on Theorem 2
Theorem 2 [Bound-optimal switching times]: The bound optimal switching times 𝑡m,
..., are given by

𝑡m = 𝑡mh" +
𝜇m

− ln 1 − 𝜂𝑐
[ln 𝜇mD" − 𝜇m − ln 𝜂𝐿𝜎#𝜇m

+ ln(2𝑐𝑘 𝑘 + 1 𝑠 𝐹 𝒘`gpq − 𝐹 𝒘∗ − 𝜂𝐿 𝑘 + 1 𝜎#]
where 𝑡B = 0.

Ø Example with iid exponential response times: evaluate upper bound and apply Thm 2

12

Algorithm for Adaptive fastest-𝑘 SGD
Ø Start with 𝑘 = 1 and then increase 𝑘 every time a phase transition is detected

Ø Phase transition detection: monitor the sign of consecutive gradients

Ø Initialize a counter to zero and update:

Exponential phase Stationary phase

In exponential phase,
consecutive gradients are
likely to point in the same
direction

In stationary phase,
consecutive gradients are
likely to point in opposite
directions due to oscillation

⇒ ∇𝐹 𝑤C ∇𝐹 𝑤CD"
t < 0⇒ ∇𝐹 𝑤C ∇𝐹 𝑤CD"

t > 0

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = z
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1, 𝑖𝑓 ∇𝐹 𝑤C ∇𝐹 𝑤CD"

t < 0

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1, 𝑖𝑓 ∇𝐹 𝑤C ∇𝐹 𝑤CD"
t
> 0

Ø Declare a phase transition if counter goes above a certain threshold & increase 𝑘 13

Stochastic approximation:
[Pflug 1990]

Detect phase transition:
[Chee and Toulis ‘18]

Simulation Results:
Non-adaptive vs Adaptive Fastest-𝑘 SGD

Ø Simulation on synthetic data 𝑋:
- Generate 𝑋: pick 𝑚 data vectors chosen uniformly at random from 1,2, … , 10 ,

- Pick 𝒘⋆ uniformly at random from 1,2, … , 100 ,

- Generate labels: 𝒚 ∼ 𝒩(𝑋𝒘⋆, 1)

- Loss function: ℒ# loss (least square errors)

Ø Simulation results on adaptive fastest-𝑘 SGD for 𝑛 = 50 workers

- Workers’ response times are iid ∼ exp(1) and independent across iterations

𝑛 = 50 workers

𝑑 = 100 dimension

𝑚 = 2000 data vectors

𝜂 = 0.005 step size

14

Simulation Results:
Async vs Adaptive Fastest-𝑘 SGD

15

Ø Asynchronous Stochastic Gradient Descent: update the model 𝒘C and send new
model 𝒘CD" every time a worker finishes it’s partial gradient computation

Ø Workers who have not finished continue working on the old model

Ø Simulation results:

𝑛 = 50 workers

𝑑 = 100 dimension

𝑚 = 2000 data vectors

𝜂 = 0.002 step size

Summary and Future Work

• Straggler problem

Ø Speeding up distributed machine learning

• Adaptive fastest-𝑘 SGD for minimizing delay in the presence of stragglers

• Theoretical results: bounds on the error & bound-optimal switching times

Ø Future work

• Simulations or real data (MNIST, CFAR, etc.)

• Mixed strategies: coding + adaptivity

16Serge Kas Hanna IEEE ICASSP 2020

• Numerical results showing gain with respect to non-adaptive SGD

• Novel realizable algorithm based on statistical heuristic

• Variable step size

