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Introduction

Previous Work and Our Setting

Social optimum vs Revenue Maximization

Naor ’69, Chen ’01, Borgs ’14

Homogeneous vs heterogeneous customers

Whang ’90, Shimkin ’00, Mandelbaum ’02

Single vs Multi Servers

Haviv ’94, Bradford ’96, Dumas ’11

Our setting:

Revenue maximization
Heterogeneous customers
Multi server system
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System Model

State evolution

0 1 2 3 4 5

λ0 λ1

µ

λ2

2µ

λ3

3µ

λ4

4µ 5µ

λi = λP(V ≥ pi ) = λ(1 − G (pi )) = λG (pi )

Gives stationary distribution π



System Model

Revenue

λ i busy servers

price pi
w .p. πi

joins w .p. G (pi )

Revenue =λ
∑K−1

i=0 πiG (pi )pi



System Model

The Infinite Server Case
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Infinite Servers

Revenue =λ
∑∞

i=0 πiG (pi )pi

≤ λG (p∗)p∗
∑

i πi

p∗ = arg max pG (p)



System Model

A Sub-Optimal Scheme
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Uniform Pricing

All states have same price

p∗5 = arg max pG (p)(1 − π5(p))
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Properties of the Optimal Solution
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Properties of the Optimal Solution
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Properties of the Optimal Solution
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Optimal Solution and its properties

Revenue Gain
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Figure: Revenue rate as a function of load



Summary

Summary

Analysis of system with heterogeneous customers

Solution to the server pricing problem for revenue maximization

Uniform pricing is optimal for infinite server system

Analytical MDP solution to obtain the optimal pricing for a finite
server system

Two simple heuristic algorithms for pricing a finite server system

Properties of optimal pricing for finite server systems

Performance comparison between the optimal and heuristic algorithms
for finite server systems
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