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Distributed Storage Systems

> How to minimize file access latency?
» Redundancy coding
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Storage model: Fragmentation & Encoding

» What if servers are memory constrained?

» File divided into V fragments & encoded into VR fragments
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Storage model: Placement on B servers with capacity aV
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» Number of useful servers after /th download, N,

» Fragment download times are i.i.d exponential with rate
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» Number of useful servers after /th download, N,

» Fragment download times are i.i.d exponential with rate

> Rate of download at /th stage = Ny



Problem

» How to minimize theN‘mean download time?

Figure: Number of useful servers number of fragments downloaded
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Figure: Number of useful servers number of fragments downloaded
» The normalized mean download time,
1
ny Yo E N

1
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» Problem: Find a storage scheme that maximizes the mean
number of useful servers averaged over all fragments.



Prior Works

MDS codes

Outperform replication codes in file access delay
> Huang et al(2012), Li et al(2016), Badita et al(2019)

Rateless codes
Offers near optimal performance
> Mallick et al(2019)

Staircase codes
Subfragmentation improves latency performance
> Bitar et al(2020)

Our model

Replication codes for a file with equal sized fragmentation over multiple servers each
with capacity to store more than one file fragment



(VR, V) MDS code on a-B system




VR, V) MDS code on a-B system




(VR, V) MDS code on a-B system

Optimality of MDS code

Reduction in useful servers is the least




Why not MDS?

» Decoding complexity

— —

» Scaling complexity

> Need large fragment sizes



a-(V, R) replication coded storage

Figure: A %-(7,3) replication coded storage with fragment sets, S; = {1, 2,3},
S, =42,3,4} ...

a-(V, R) replication coded storage ensemble

An a-(V, R) replication coded storage over B servers is the collection

S2{(51,Ss,...,58)|ISs| = aV for all b,o: = R/B}.



Problem statement

Problem Statement

Find a storage scheme S in an a-(V/, R) replication storage
ensemble that maximizes the mean number of useful servers
averaged over all fragments, i.e.

1 V-1
St = — E [Ny] .
oy 2 E



A simple upper bound on N,
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A simple upper bound on N,
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Upper Bound

[B/R], as

A

For an a-(V, R) replication storage scheme, the number of useful servers Ny after £

downloads is upper bounded in terms of m

Ne < Blipgy—my + (V= ORLypsy_my &
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Trivial case: a>1

Third stage
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» Each server can store all the fragments
» All servers remain useful throughout
» What if a < 17



Randomized (B, V, R) replication coded storage

» Place the fragments on randomly chosen servers

> (B, V,R) replication storage scheme: Each server has the capacity to store all
the VR fragments of a (VR, V) coded file
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» Place the fragments on randomly chosen servers
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Randomized (B, V, R) replication coded storage

» Place the fragments on randomly chosen servers

> (B, V,R) replication storage scheme: Each server has the capacity to store all
the VR fragments of a (VR, V) coded file
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Asymptotically an a-(V, R) storage

» As V is increased with R/B fixed, the normalized number of
fragments stored at any server converges to a = R/B
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Asymptotically an a-(V, R) storage

» As V is increased with R/B fixed, the normalized number of
fragments stored at any server converges to a = R/B
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The randomized (B, V, R) storage scheme is an a-(V, R) storage
scheme asymptotically in V.



Performance of Random Replication Storage

For the random (B, V, R) replication storage ensemble,

s (B0 )
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Numerical Results

Normalized useful servers E[N(/;)]/B

Figure: Normalized mean number of useful servers and upper bound
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Number of useful servers and download times

Table: Average download times of random (B, V, R) replication storage

Random storage code | Average download time
B \Y R
8 8 2 26936
12 12 3 14922
16 16 4 9915
20 20 5 7324




Conclusion

» We studied codes for distributed storage system with storage
constraints and file subfragmentation for achieving low latency

» For exponential download times, we proposed to maximize
mean number of useful servers instead of minimizing latency

» We show that MDS codes are optimal

> When there are no memory constraints at the server,
replication coded file can be optimally placed

> When servers have memory constraints, we show that
replication coding combined with probabilistic placement are
optimal asymptotically



