

Optimal pricing in a Single Server Queue

Ashok Krishnan K.S.

Inria,
Sophia Antipolis, France.

Joint work with

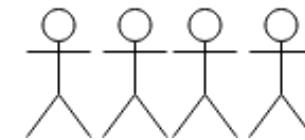
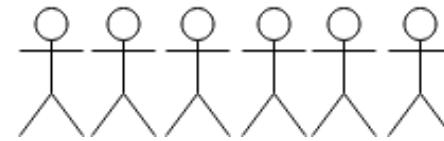
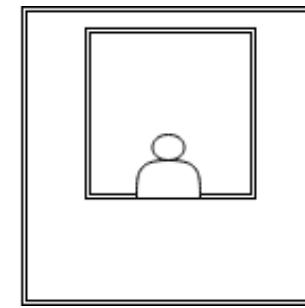
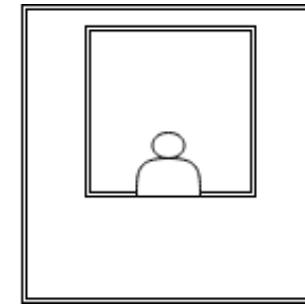
Chandramani Singh¹, Siva Theja Maguluri², Parimal Parag¹

¹ IISc Bangalore ² Georgia Tech

Source:
Alexandre Duret-Lutz
<https://www.flickr.com/photos/gad/89650415>

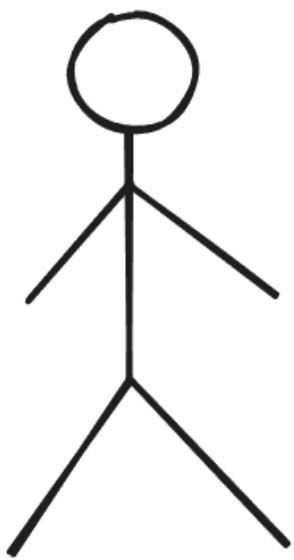
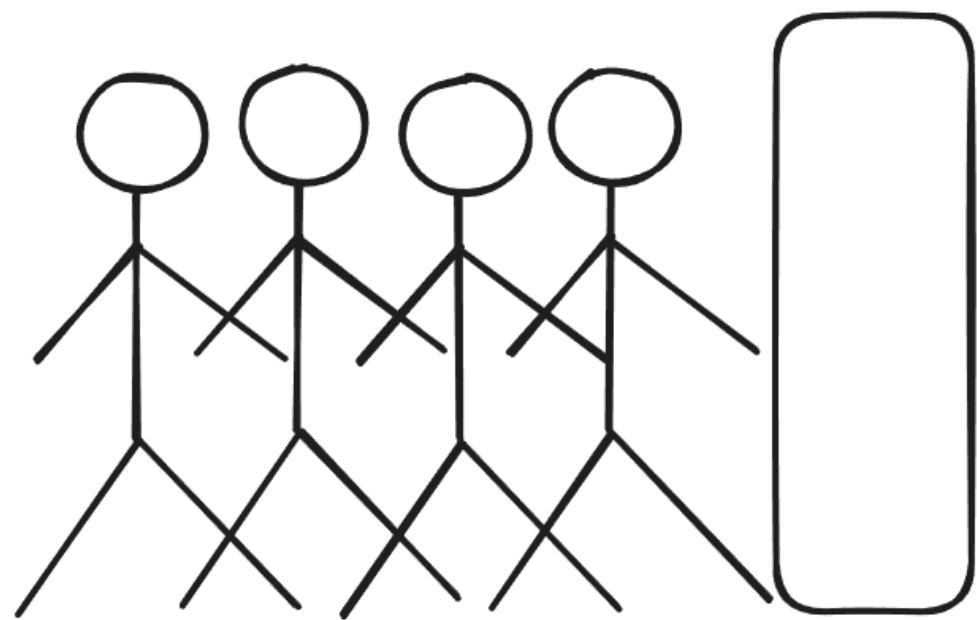
To Join or Not to Join

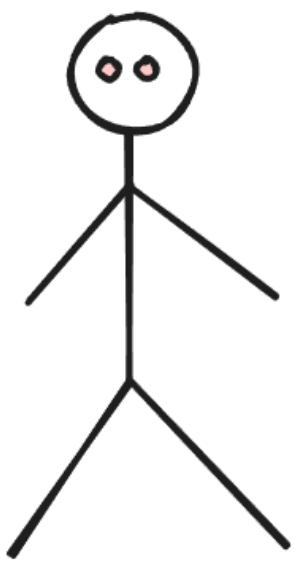
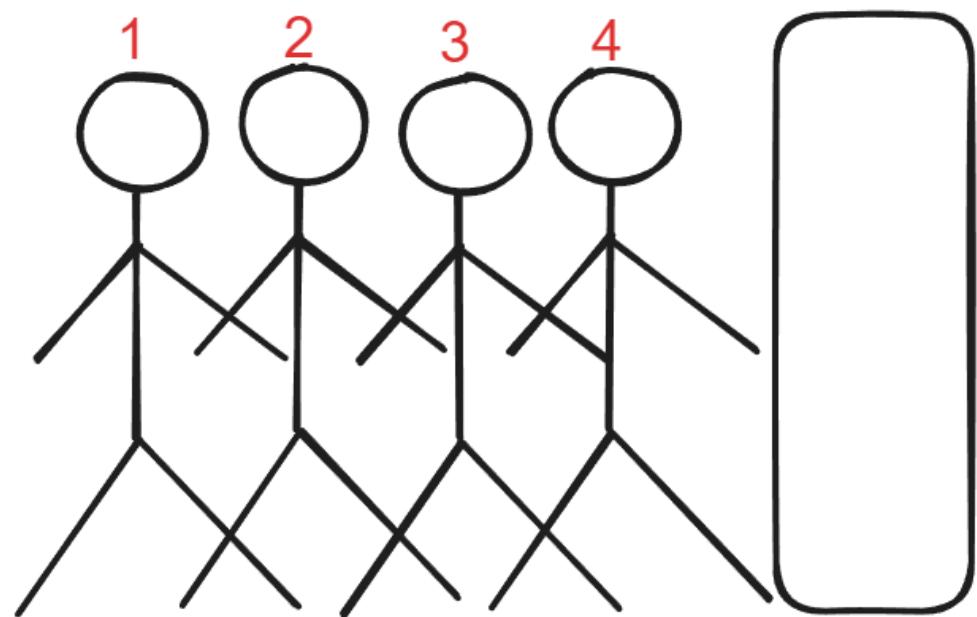
- Example

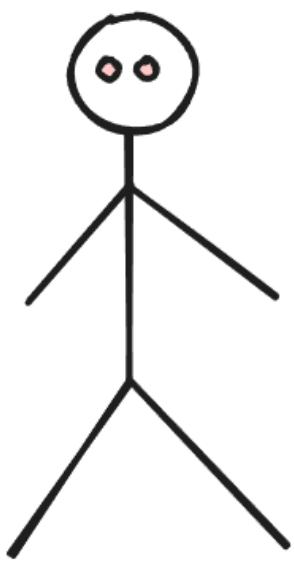
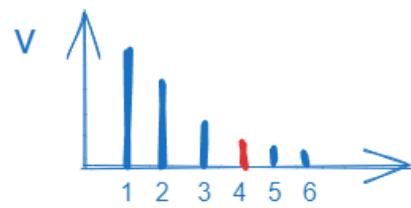
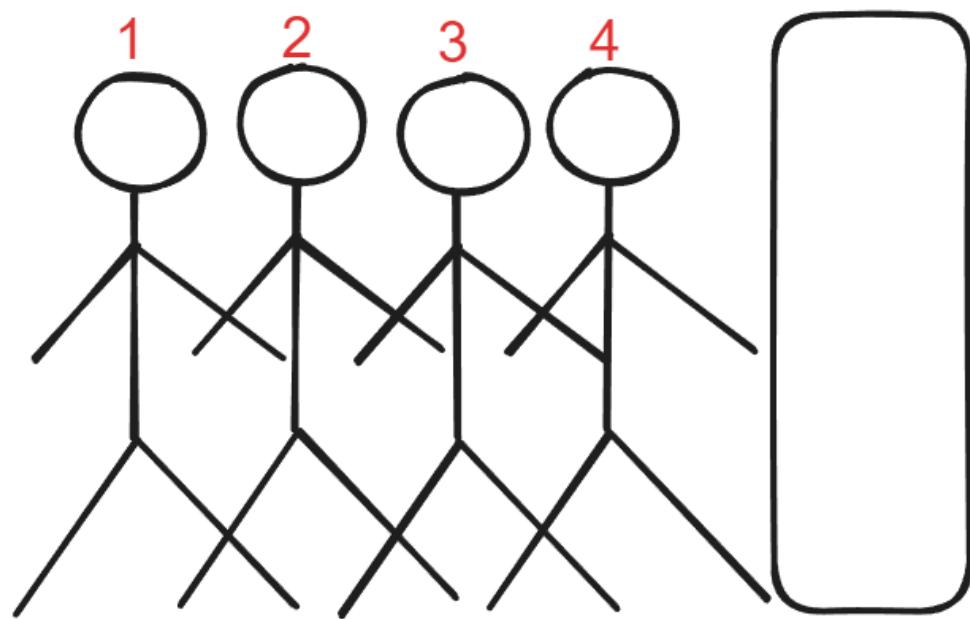


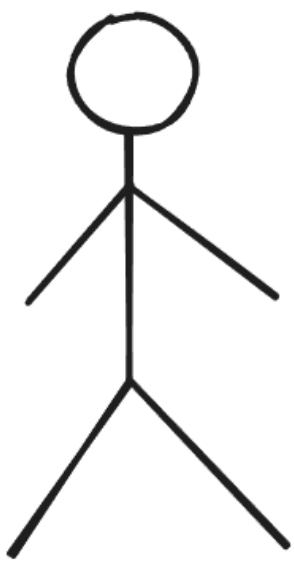
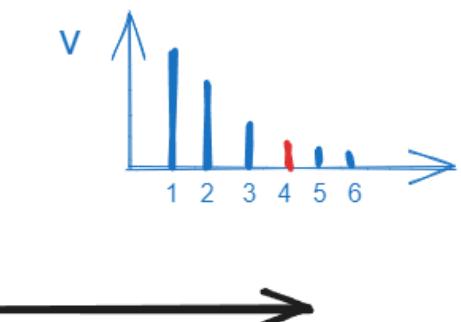
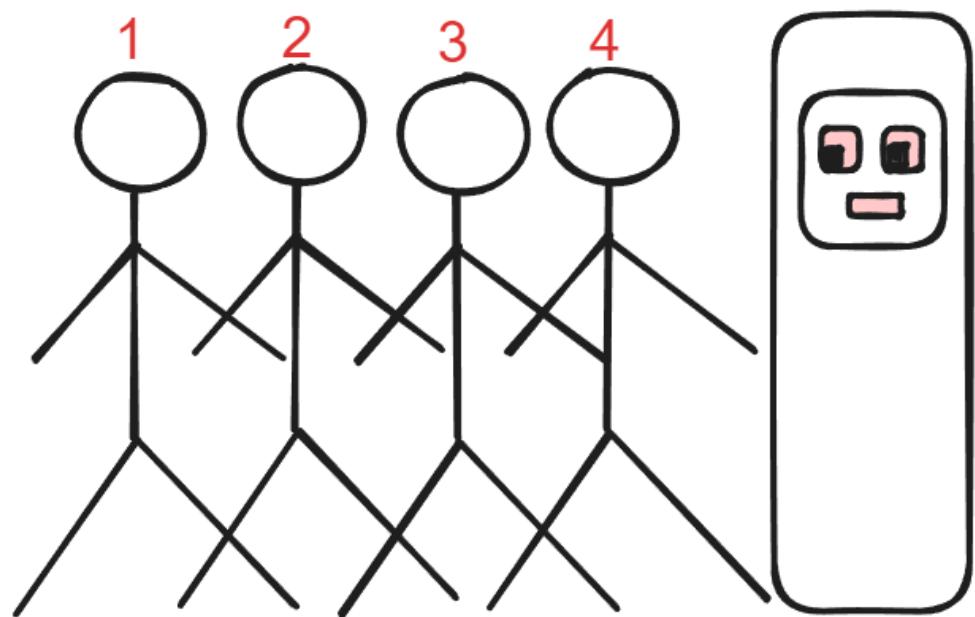
Examples

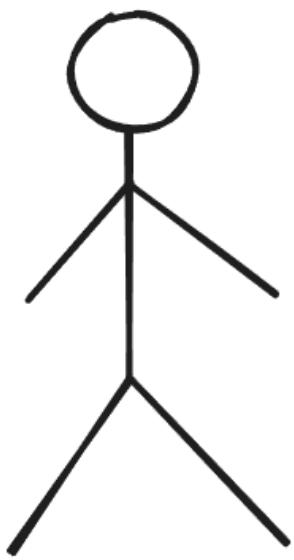
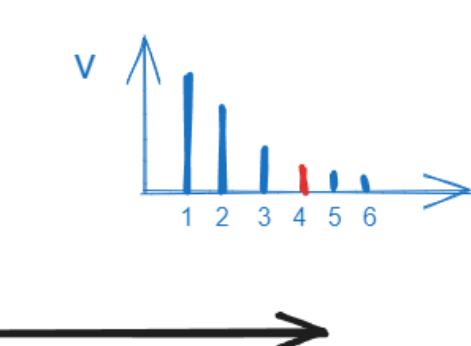
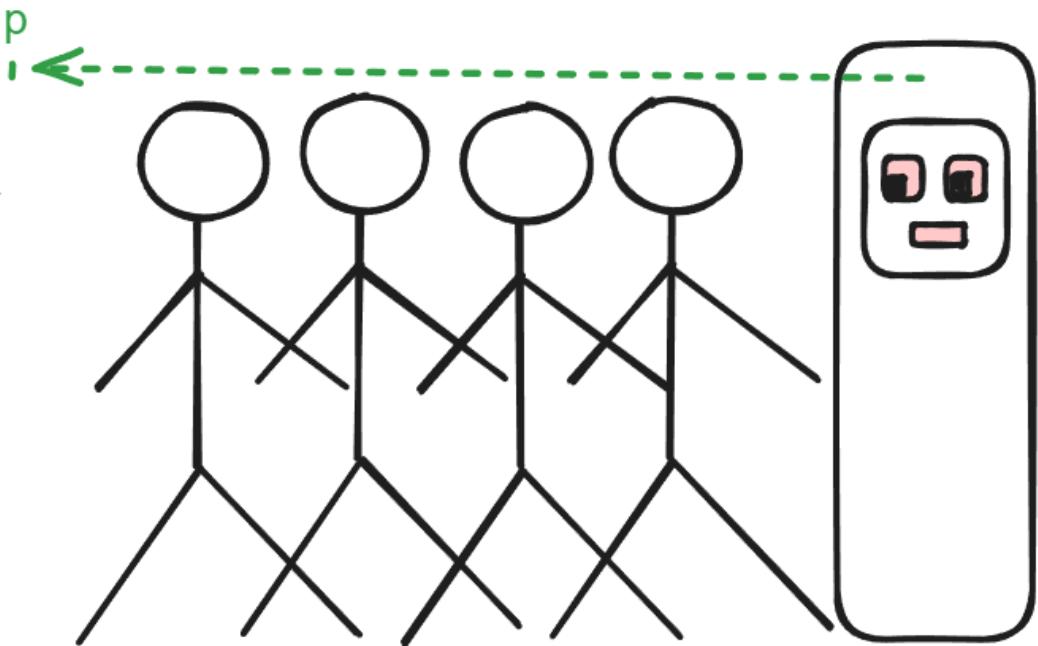
- Cloud Servers
- Uber
- Movies
- Restaurants
- And more...

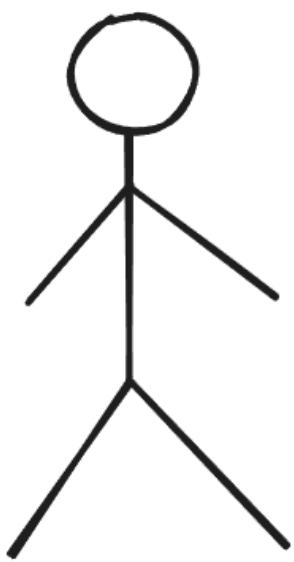
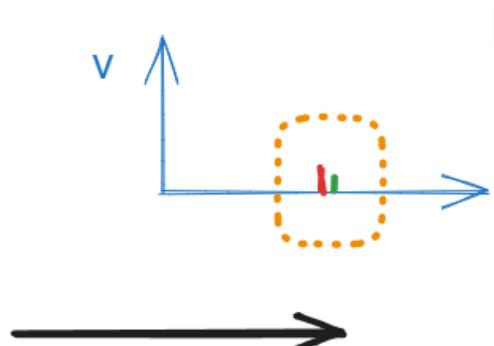
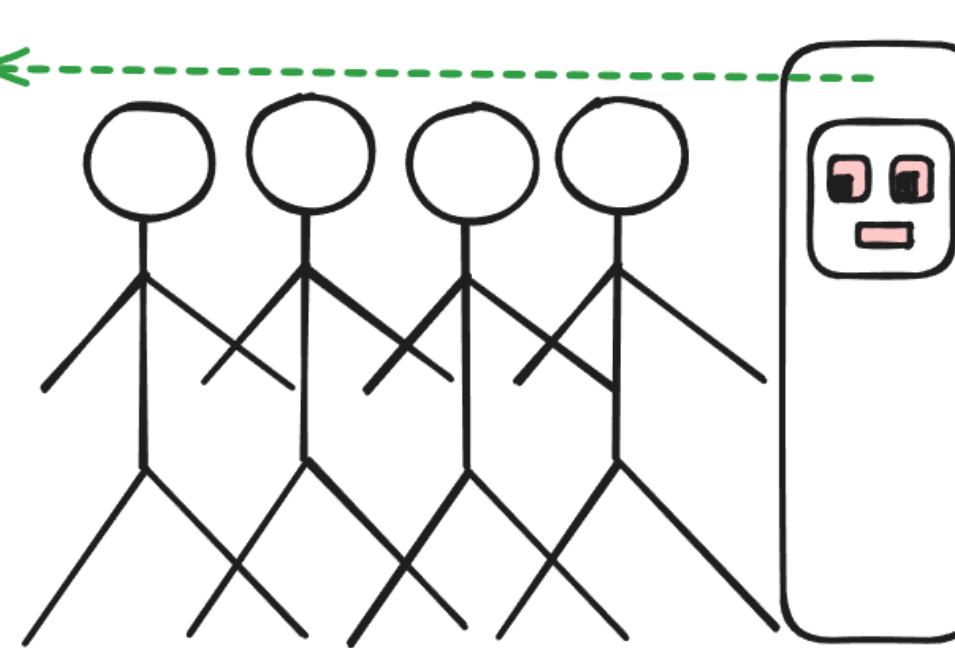


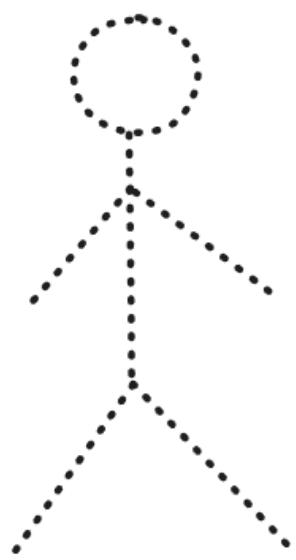
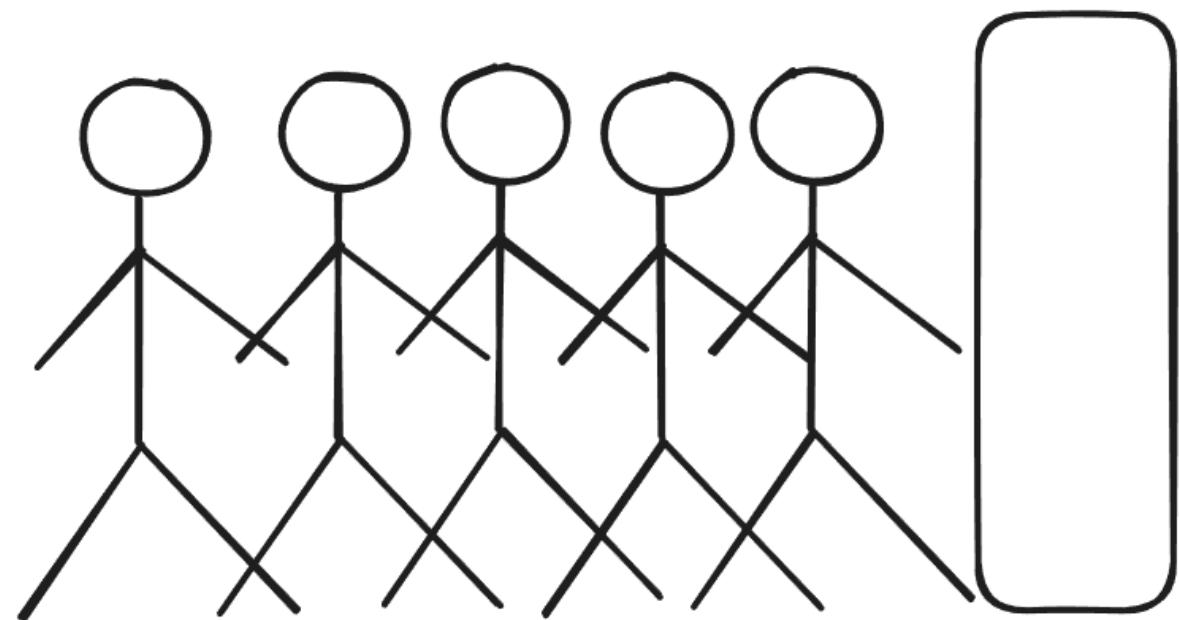




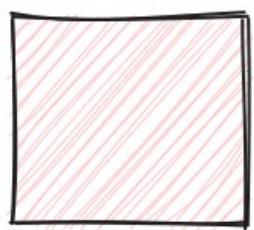




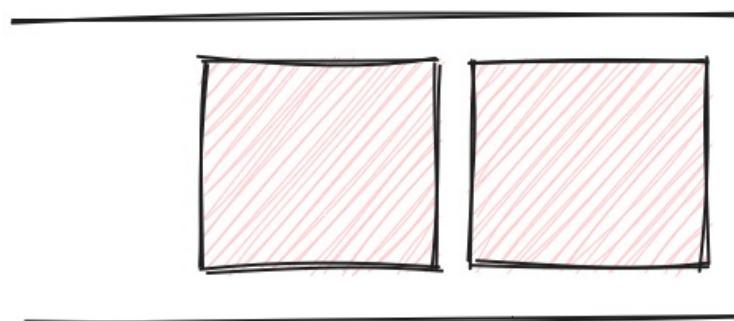




Model



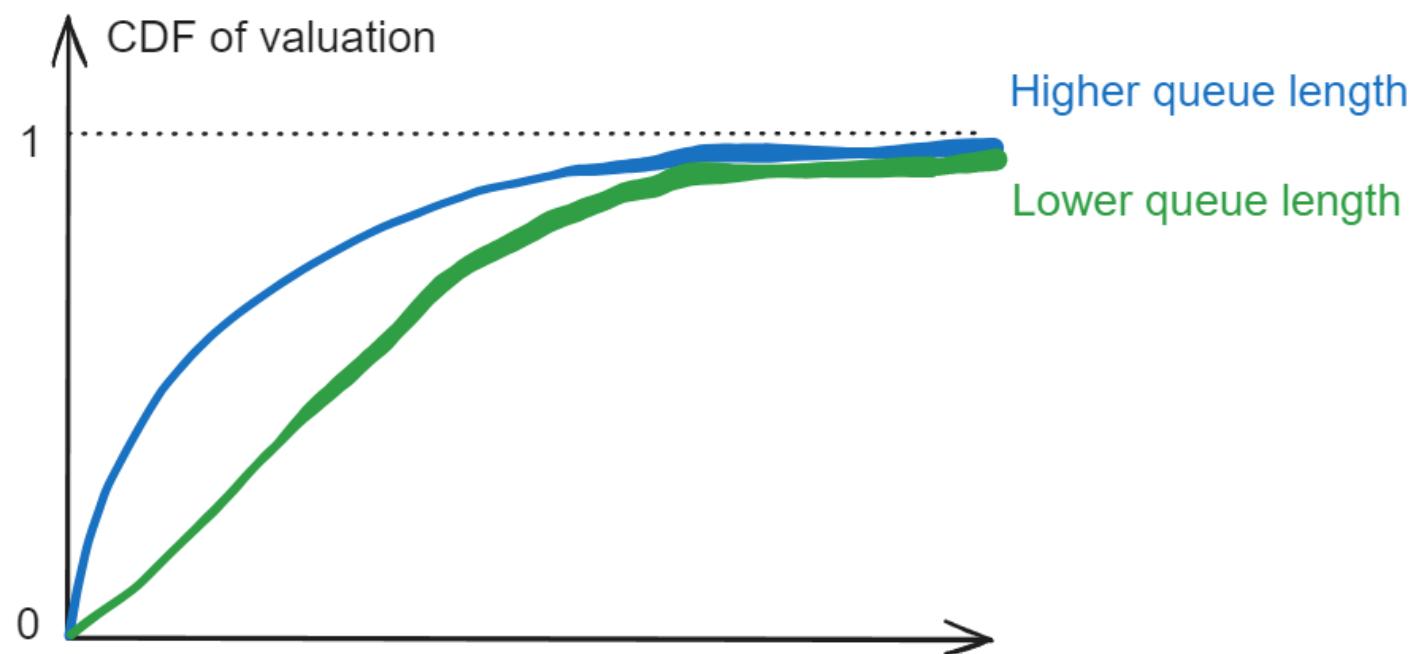
Poisson
 λ

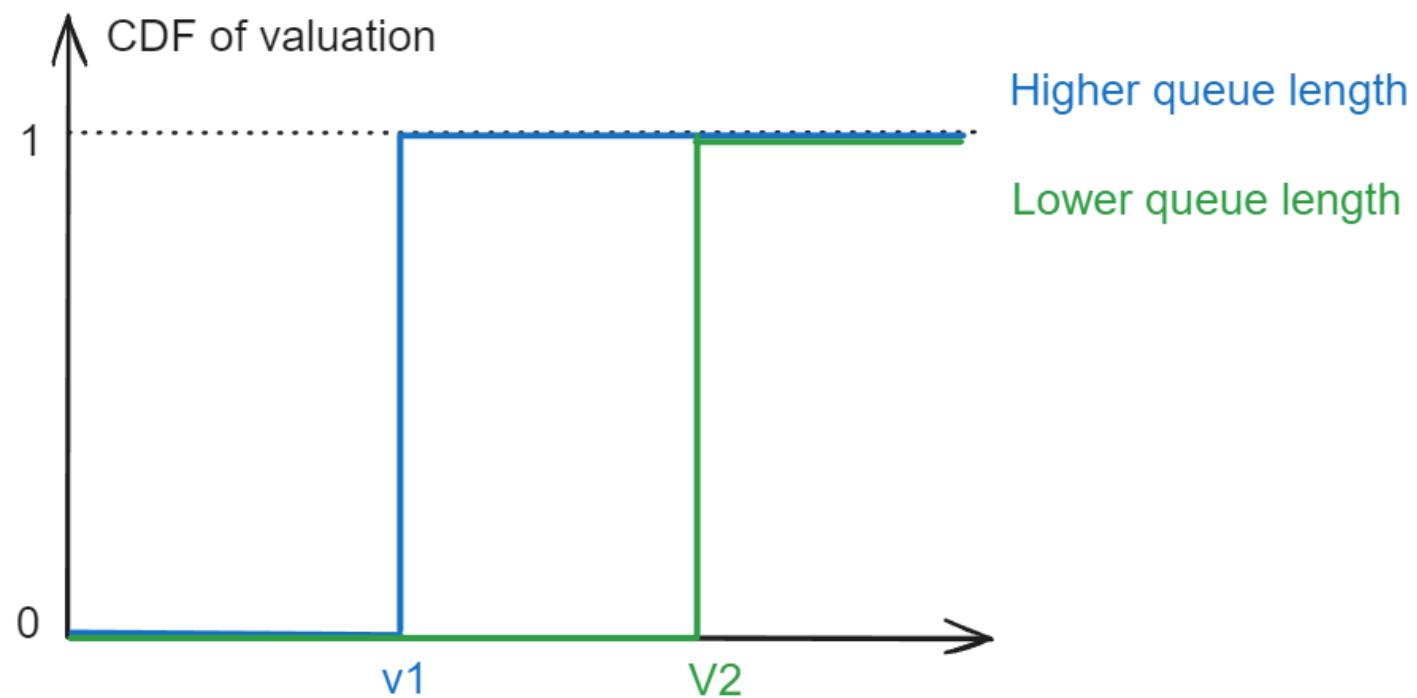


Exponential
 μ

Model

- Random valuation for each user
- Valuation depends on queue length
- Valuation decreases stochastically as queue length increases





Optimization

- Choose admission prices at each queue length
- Maximize long run average revenue
- A simple solution: Myopic policy

Myopic Policy: For each queue length, charge the price that is optimal for its valuation.

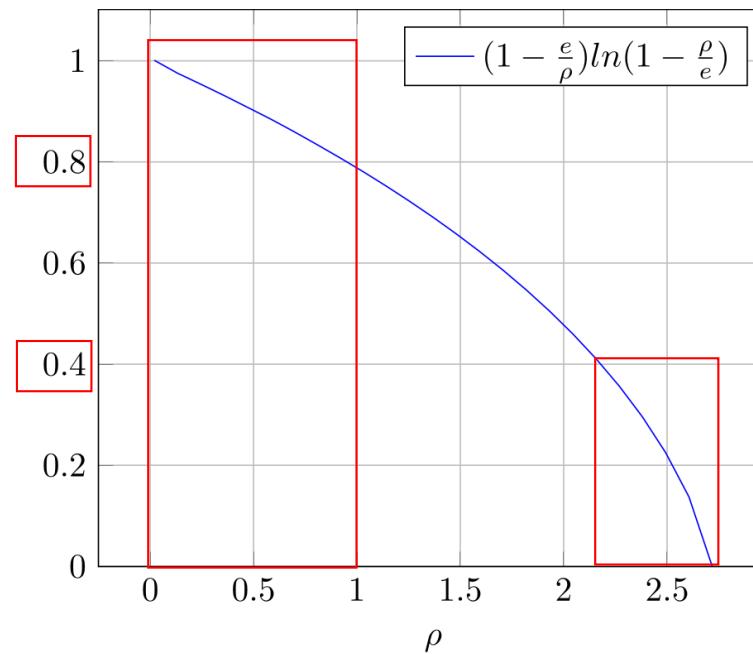
Theorem[KSMP]

The myopic policy is guaranteed to provide at least a fixed fraction of the optimal revenue.

Myopic Policy

- Can perform well when variation of valuation with load is small
- Performs badly at high loads in some cases

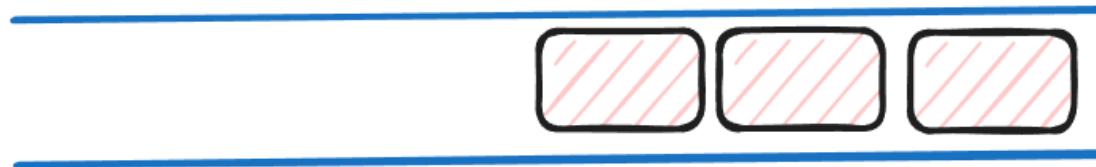
Ratio of
Myopic revenue
To Optimal
Revenue for
Exponential
valuation



Queue without waiting cost

- All packets have same valuation distribution G
- Price p independent of queue length
- Arrival joins if valuation greater than price, i.e, with probability $1 - G(p)$
- Revenue equals $\max_p \lambda p (1 - G(p))$

Queue **with** waiting cost



- Valuation G_i will depend on queue length i
- Modelled as MDP
- Obtain Bellman's equations

$$m_i(\Delta_i) = \frac{\theta - \mu \Delta_{i-1}}{\lambda}, \quad i = 0, 1, 2, 3, \dots$$

$$\Delta_{-1} = 0$$

- Congestion loss Δ_i increasing in queue length i
- Optimal prices correspond to $\max_p \lambda(p - \Delta(i))(1 - G(p))$

Solving the equations: Outline

- Truncate to K equations
- Solve to get optimal price vector $u(K)$

Theorem[KSMP]

As K becomes larger, $Revenue(u(K)) \rightarrow \text{optimal Revenue}$

Theorem[KSMP]

As K becomes larger, $u(K) \rightarrow \text{optimal price vector}^*$

*conditions apply

Solving the equations: Outline

- The K equations yield a scalar fixed point equation in the optimal revenue rate θ

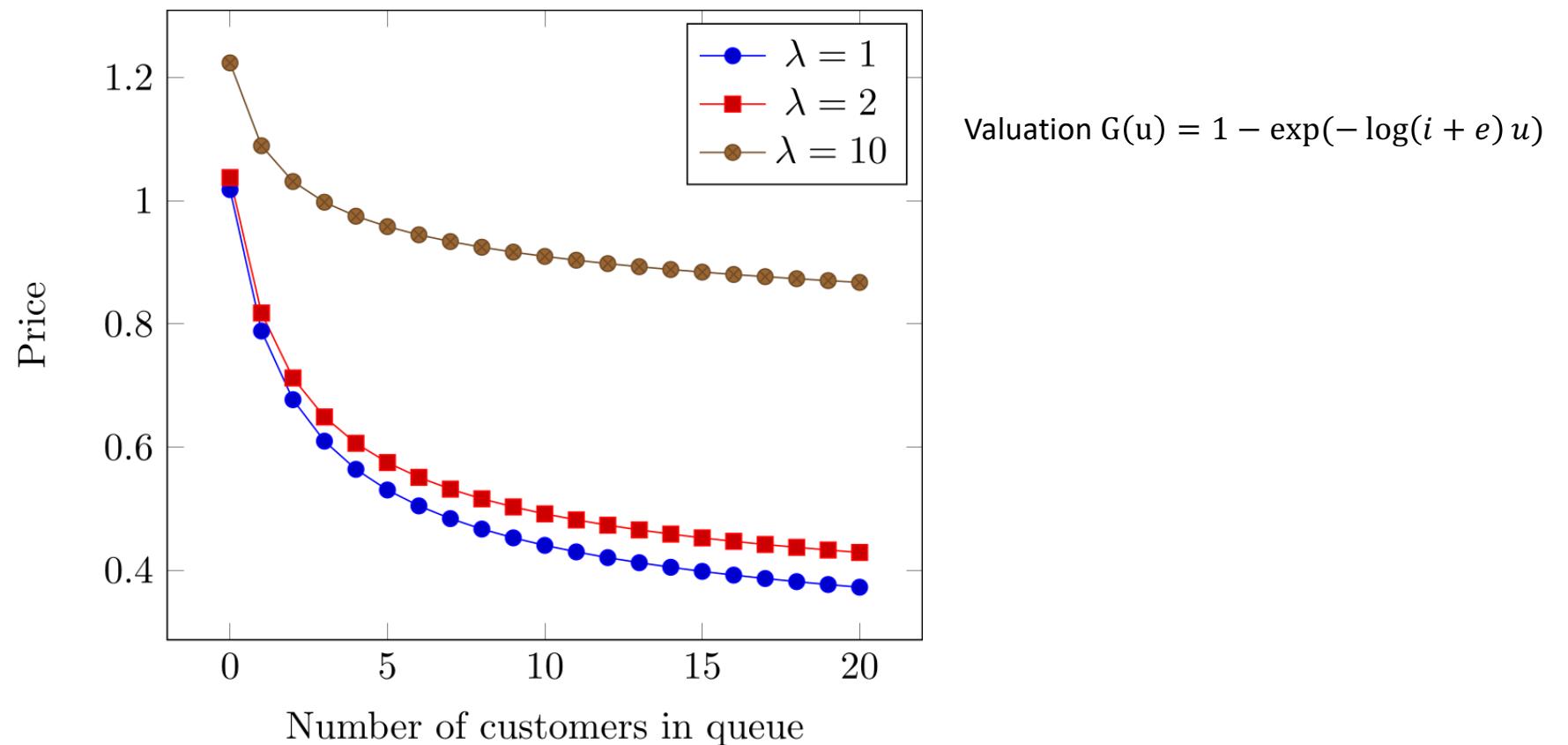
$$\theta = \psi(\theta)$$

- Solve this iteratively and obtain the revenue rate θ
- Plug this back in the equations to obtain the optimal prices
- Iterative algorithm gives optimal revenues and prices

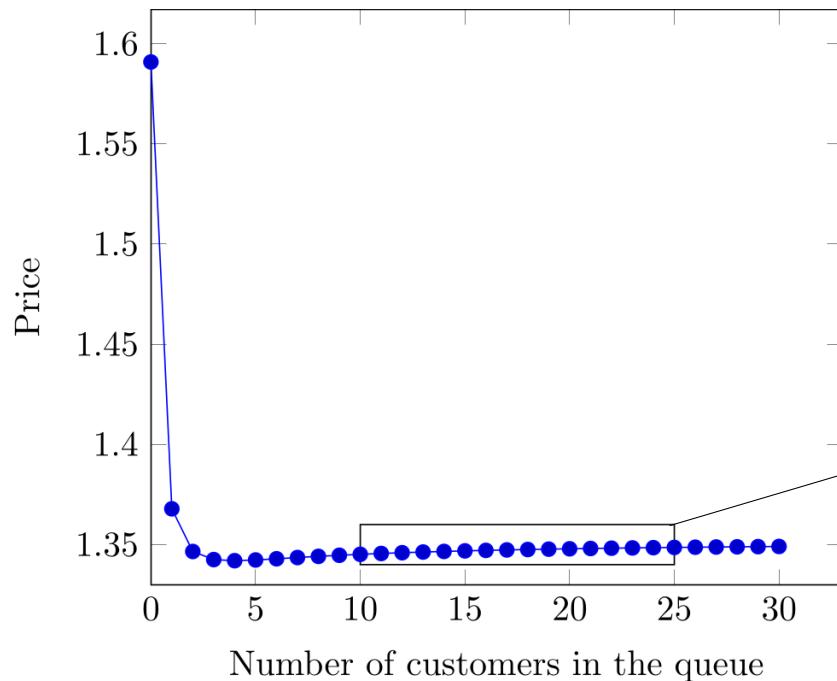
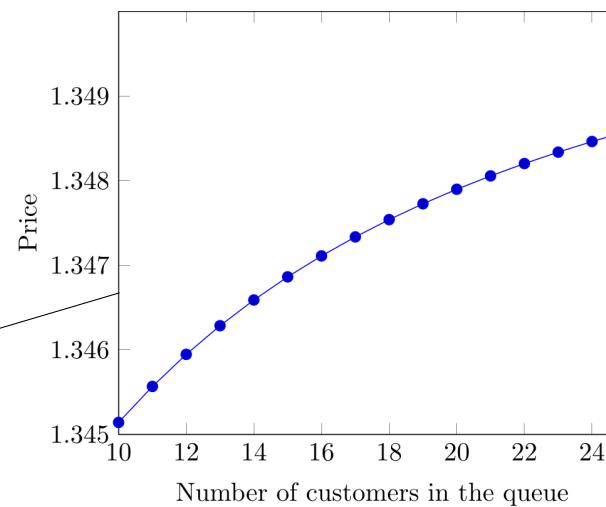
Special Case: Non Random valuations

- Valuation is non random: when queue length is i , valuation is v_i
- $v_i \rightarrow v$
- Case 1: There some queue length beyond which no one is accepted
 - Finite system of equations
- Case 2: All are accepted always
 - Infinite system of equations

Numerical Results



Numerical Results



Not decreasing!

$$\text{Valuation } G(u) = 1 - \exp\left(-\left(2 - \frac{1}{1+i}\right)u\right)$$

Numerical Results

