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To Join or Not to Join

* Example




Examples

* Cloud Servers
* Uber

* Movies

* Restaurants

* And more...
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Model

Poisson Exponential
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Model

 Random valuation for each user
* Valuation depends on queue length
* Valuation decreases stochastically as queue length increases
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Optimization

* Choose admission prices at each queue length
* Maximize long run average revenue
* A simple solution: Myopic policy

Myopic Policy: For each queue length, charge the price that is optimal for its valuation.

The myopic policy is guaranteed to provide at least a fixed fraction of the optimal
revenue.



Myopic Policy

e Can perform well when variation of valuation with load is small

* Performs badly at high loads in some cases
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Queue without waiting cost
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All packets have same valuation distribution G
Price p independent of queue length

Arrival joins if valuation greater than price, i.e, with
probability 1 — G (p)

Revenue equals m;lx Ap(1 —G(p))



Queue with waiting cost
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Valuation G; will depend on queue length i
Modelled as MDP
Obtain Bellman’s equations
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Congestion loss A; increasing in queue length i
Optimal prices correspond to max A(p — A(i)) (1 — G(p))



Solving the equations: Outline

* Truncate to K equations

*|Solve to get optimal price vector u(K)

As K becomes larger, Revenue(u(K)) — optimal Revenue

As K becomes larger, u(K) — optimal price vector”

*conditions apply



Solving the equations: Outline

* The K equations yield a scalar fixed point equation in the optimal
revenue rate 0

6 =1(0)
* Solve this iteratively and obtain the revenue rate 6
* Plug this back in the equations to obtain the optimal prices
* Iterative algorithm gives optimal revenues and prices



Special Case: Non Random valuations

* Valuation is non random: when queue length is i, valuation is v;
*V; DUV

e Case 1: There some queue length beyond which no one is accepted
* Finite system of equations

* Case 2: All are accepted always
* Infinite system of equations
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Valuation G(u) = 1 — exp(—log(i + e) u)
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