- 1. Consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+) \subseteq \mathcal{F}$ defined on this probability space. Let τ_n be a stopping time adapted to this filtration \mathcal{F}_{\bullet} for each $n \in \mathbb{N}$. Let $\tau_n \leq \tau_{n+1}$ for all $n \in \mathbb{N}$ and $\tau_n \uparrow \tau$ almost surely, then show that the limit τ is a stopping time. A stopping time for which for which such a monotonically increasing sequence exists is called a *predictable stopping time*.
- 2. Let $\tau : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ be a sequence of predictable stopping times. Show that $\tau_{\infty} \triangleq \sup_n \tau_n$ is a predictable stopping time.
- 3. Consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+) \subseteq \mathcal{F}$ defined on this probability space. Let τ_n be a stopping time adapted to this filtration \mathcal{F}_{\bullet} for each $n \in \mathbb{N}$. Show that the following are also stopping times.
 - (a) $\sup_n \tau_n$.
 - (b) $\inf_n \tau_n$.
 - (c) $\limsup_n \tau_n$.
 - (d) $\liminf_n \tau_n$.
- 4. Consider a probability space (Ω, \mathcal{F}, P) and let σ, τ be stopping times on the natural filtration \mathcal{F}_{\bullet} , for $T = \mathbb{N}$. Show that the following events are in \mathcal{F}_{τ} and \mathcal{F}_{σ} .
 - (a) $\{\sigma < \tau\}$
 - (b) $\{\sigma = \tau\}$
 - (c) $\{\sigma \leq \tau\}$
- 5. Consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+) \subseteq \mathcal{F}$ defined on this probability space. Let τ_1, τ_2 be stopping times adapted to this filtration \mathcal{F}_{\bullet} , then show that $\mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2} = \mathcal{F}_{\tau_1 \wedge \tau_2}$.
- 6. Consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+) \subseteq \mathcal{F}$ defined on this probability space. Let τ_n be a stopping time adapted to this filtration \mathcal{F}_{\bullet} for each $n \in \mathbb{N}$. Let $\tau_n \ge \tau_{n+1}$ for all $n \in \mathbb{N}$ and $\tau_n \downarrow \tau$ almost surely, then show that $\mathcal{F}_{\tau} = \bigcap_n \mathcal{F}_{\tau_n}$.
- 7. Consider a probability space (Ω, \mathcal{F}, P) . Show that for a stopping time τ , and $\{B(t) : t \ge 0\}$, a standard Brownian motion, the Brownian motion reflected at τ , $\{B^*(t) : t \ge 0\}$ defined as

$$B^{*}(t) = B(t)\mathbf{1}_{\{t \le \tau\}} + (2B(\tau) - B(t))\mathbf{1}_{\{t > \tau\}}$$

is also a standard Brownian motion.

Hint: Make use of the fact that Brownian motion is symmetric, i.e. $P(B(t) \le x) = P(B(t) \ge (-x))$.

8. Consider a probability space (Ω, \mathcal{F}, P) . On this, consider a Brownian motion $\{B(t) : t \ge 0\}$ such that B(0) = 0. Define the running maximum $M(t) = \max_{0 \le s \le t} B(t)$. For a > 0, show that $P\{M(t) > a\} = 2P\{B(t) > a\}$.

Hint: Use the reflection principle from the previous problem.