
Lecture-02: Probability Review

1 Probability Review

Definition 1.1 (σ-algebra). A collection A of subsets of a set Ω is called a σ-algebra if (i) it contains the
empty set, (ii) it is closed under complements, and (iii) it is closed under countable unions.

Definition 1.2. A probability space (Ω,F, P) consists of

(i) set of all possible outcomes called a sample space denoted by Ω,

(ii) a σ-algebra over sample space called event space denoted by F, and

(iii) a non-negative set function probability denoted by P : F→ [0,1], such that P(Ω) = 1, and is addi-
tive for countably disjoint events.

An element of the sample space is called an outcome and an element of event space is called an event.

Definition 1.3. A collection of events E⊆ F is called a sub-event space if it is a σ-algebra over Ω.

Definition 1.4. For a family of events A ⊆ F, the sub-event space generated by the family A is the
smallest sub-event space containing the family A and denoted by σ(A).

Remark 1. The sub-event space σ(A) contains all the elements of A and the complements and countable
unions of generated sets.

Example 1.5 (Discrete σ-algebra). For a finite sample space Ω, the event space F = {A : A ⊆ Ω}
consists of all subsets of sample space Ω, and is denoted by 2Ω or P(Ω).

Example 1.6 (Borel σ-algebra). If the sample space Ω = R, then a Borel σ-algebra is generated by
half-open intervals by complements and countable unions. That is, B(R) ≜ σ({(−∞, x] : x ∈ R}).
We make the following observations.

1. From closure under complements, the open interval (x,∞) belong to B(R) for each x ∈ R.

2. From closure under countable unions, the open interval (−∞, x) = ∪n∈N(−∞, x − 1
n ] belongs

to B(R) for each x ∈ R.

3. From closure under complements, half-closed intervals [x,∞) belongs to B(R) for each x ∈ R.

4. From closure under finite intersections, the closed set [x,y] = [x,∞)∩ (−∞,y] belongs to B(R)
for each x,y ∈ R.

5. From closure under countable intersections, the singleton {x}=
⋂

n∈N([x − 1
n , x + 1

n ]) belongs
to B(R) for each x ∈ R.

1.1 Limits of sets and continuity of probability

There is a natural order of inclusion on sets through which we can define monotonicity of probability
set function P. To define continuity of this set function, we define limits of sets.
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Definition 1.7. For a sequence of sets (An : n ∈ N), we define limit superior and limit inferior of this
set sequence respectively as

limsup
n

An =
⋂

n∈N

⋃
k⩾n

Ak, liminf
n

An =
⋃

n∈N

⋂
k⩾n

Ak.

It is easy to check that liminf An ⊆ limsup An. We say that limit of set sequence exists if limsup An ⊆
liminf An, and the limit of the set sequence in this case is limsup An.

Theorem 1.8. Probability set function is monotone and continuous.

Proof. Consider two events A ⊆ B both elements of F, then from the additivity of probability over
disjoint events A and B \ A, we have

P(B) = P(A ∪ B \ A) = P(A) + P(B \ A)⩾ P(A).

Monotonicity follows from non-negativity of probability set function, that is since P(B \ A) > 0. For
continuity from below, we take an increasing sequence of sets (An : n ∈ N), such that An ⊆ An+1 for
all n. We observe that A∞ ≜ limn An = ∪n∈N An and An ↑ A∞. We can define disjoint sets (En : n ∈ N),
where

E1 = A1, En = An \ An−1, n ⩾ 2.

The disjoint sets En’s satisfy ∪n
i=1Ei = An for all n ∈ N and ∪nEn = ∪n An. From the above property and

the additivity of probability set function over disjoint sets, it follows that

P(A∞) = P(∪nEn) = ∑
n∈N

P(En) = lim
n∈N

n

∑
i=1

P(Ei) = lim
n∈N

P(∪n
i=1Ei) = lim

n∈N
P(An).

For continuity from below, we take decreasing sequence of sets (An : n ∈ N), such that An+1 ⊆ An for all
n. We can form increasing sequence of sets (Bn : n ∈N) where Bn = Ac

n. Then, the continuity from above
follows from continuity from above. Continuity of probability for general sequence of converging sets
follows from the definition of limsup and liminf of sequence of sets and the continuity of probability
function from above and below.

1.2 Independence

Definition 1.9. For a probability space (Ω,F, P), two events A, B ∈ F are independent events if

P(A ∩ B) = P(A)P(B).

Definition 1.10. Two sub-event spaces G and H are called independent if any pair of events (G, H) ∈
G×H are independent. That is,

P(G ∩ H) = P(G)P(H), G ∈ G, H ∈H.

1.3 Conditional Probability

Definition 1.11. Let (Ω,F, P) be a probability space. For events A, B ∈ F such that 1 > P(B) > 0, the
conditional probability of event A given event B is defined as

P(A|B) = P(A ∩ B)
P(B)

.

2 Random variables

Definition 2.1. A real valued random variable X on a probability space (Ω,F, P) is a function X : Ω →R

such that for every x ∈ R, we have

X−1(−∞, x]≜ {ω ∈ Ω : X(ω)⩽ x} ∈ F.

Recall that the collection {(−∞, x] : x ∈ R} generates the Borel σ-algebra B(R). Therefore, it follows
that X−1(B(R)) ⊆ F, since set inverse map X−1 preserves complements, unions, and intersections.
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Definition 2.2. For a random variable X defined on the probability space (Ω,F, P), we define σ(X) is
the smallest σ-algebra formed by inverse mapping of Borel sets, i.e.

σ(X)≜ σ(
{

X−1(−∞, x] : x ∈ R
}
).

Remark 2. We note that σ(X) is a sub-event space of F and hence probability is defined for each element
of σ(X).

Definition 2.3. For a random variable X defined on probability space (Ω,F, P), the corresponding dis-
tribution function F : R → [0,1] is defined as

F(x)≜ (P ◦ X−1)(−∞, x], for all x ∈ R.

Theorem 2.4. Distribution function F of a random variable X : Ω → R is non-negative, monotone increasing,
continuous from the right, and has countable points of discontinuities. Further, if P ◦ X−1(R) = 1, then

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.

Proof. Non-negativity and monotonicity of distribution function follows from non-negativity and mono-
tonicity of probability set function, and the fact that for x1 < x2

X−1(−∞, x1] ⊆ X−1(−∞, x2].

Let xn ↓ x∞ be a decreasing sequence of real numbers. We take decreasing sets A ∈ FN, where An ≜
X−1(−∞, xn] ∈ F for n ∈ N. Then An ↓ A∞, and the right continuity of distribution function follows
from the continuity from above of probability set functions. Countable discontinuities follow from the
fact that limx→∞ FX(x) ⩽ 1. By taking sequences an ↓ −∞ and bn ↑ ∞, we define sequence of mono-
tone sets An ≜ X−1(−∞, an] ↓ ∅ and Bn ≜ X−1(−∞,bn] ↑ Ω. The result follow from the continuity of
probability function.

Example 2.5. One of the simplest family of random variables are indicator functions 1 : F × Ω →
{0,1}. For each event A ∈ F, we can define an indicator function as

1A(ω) =

{
1, ω ∈ A,
0, ω /∈ A.

We make the following observations.

1. 1A is a random variable for each A ∈ F. This follows from the fact that

1
−1
A (−∞, x] =


∅, x < 0,
Ac, x ∈ [0,1),
Ω, x ⩾ 1.

2. The distribution function F for the random variable 1A is given by

F(x) =


0, x < 0,
P(Ac), x ∈ [0,1),
1, x ⩾ 1.

2.1 Expectation

Let g : R→R be a Borel measurable function, i.e. g−1(−∞, x]∈B(R) for all x ∈R. Then, the expectation
of g(X) for a random variable X with distribution function F is defined as

Eg(X) =
∫

x∈R
g(x)dF(x).
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Remark 3. Recall that probabilities are defined only for events. For a random variable X, the probabilities
are defined for generating events X−1(−∞, x] ∈ F by F(x) = P ◦ X−1(−∞, x].

Remark 4. The expectation is only defined for random variables. For an event A, the probability P(A)
equals expectation of the indicator random variable 1A.

3 Random Vectors

Definition 3.1. If X1, . . . , Xn are random variables defined on the same probability space (Ω,F, P), then
the vector X ≜ (X1, . . . , Xn) is a random mapping Ω → Rn and is called a random vector. Since each Xi
is a random variable, the joint event ∩i∈[n]X

−1
i (−∞, xi] ∈ F, and the joint distribution of random vector

X is defined as
FX(x1, . . . , xn) = P

(
∩i∈[n]X

−1
i (−∞, xi]

)
, for all x ∈ Rn.

Definition 3.2. A random variable X is independent of an event subspace E, if σ(X) and E are inde-
pendent event subspaces.

Remark 5. Since σ(X) is generated by the collection (X−1(−∞, x] : x ∈ R), it follows that X is indepen-
dent of E if and any if for all x ∈ R and event E ∈ E,

E[1{X⩽x}1E] = P({X ⩽ x} ∩ E) = P({X ⩽ x})P(E) = E1{X⩽x}E1E.

Definition 3.3. Two random variables X,Y are independent if σ(X) and σ(Y) are independent event
subspaces.

Remark 6. Since σ(X) and σ(Y) are generated by collections (X−1(−∞, x] : x ∈ R) and (Y−1(−∞,y] : y ∈
R), it follows that the random variables X,Y are independent if and only if for all x,y ∈ R, we have

FX,Y(x,y) = FX(x)FY(y).

Definition 3.4. A random vector X : Ω → Rn is independent if the joint distribution is product of
marginals. That is,

FX(x) =
n

∏
i=1

FXi (xi), for all x ∈ Rn.
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