Lecture-03: Conditional Expectation

1 Conditional expectation

Consider a probability space (Q),F, P).

Definition 1.1. For a random variable X, the conditional distribution conditioned on an event E € JF is
given by
o PUX<x}NE)
F X|E(x) = W

Remark 1. We can verify that F, E :R — [0,1] is a distribution function for any E € F.

Definition 1.2. For any Borel measurable function g : R — R and a random variable X : () — R defined
on the probability space (), F, P), the conditional expectation of a random variable ¢(X) given an event
E is given by

X)[E)2 [ g(dbqe()

Example 1.3. Consider two random variables X, Y defined on the same probability space (Q), F, P)
with the joint distribution Fxy(x,y) = P({X < x,Y <y}). For each y € R, we define event G, =

Y~!(—o0,y] € F such that Fy(y) = P(G,). Then, for each y € R such that P(G,) > 0, we can write
the conditional distribution of X given the event G, as

Fxy(x,y)
F(y) ~

The conditional expectation of X given the event G, is defined as

E[X|G,] :/xeRxde\cy(x):/de W'

Fxig, () =

Example 1.4. Consider a random variable X : () — R and a simple random variable Y : ) — Y

defined on the same probability space. We observe that the conditional distribution of X given

the nontrivial event Ey = Y~ {y} for y € Y is Fyp, (x) = %E;):y}) Therefore, the conditional

expectation of X given the event E, is

_ 1 dFXY x Z _ ]E[X]lEy]
E[X|EJ)=E[X|Y=y]= /xe xdFy g, (x) /xE]R / ~P(Ey)

Since E[X | E,] is a scalar, we can write E[X1g, | = E[E[X | E,]Lg,].

Definition 1.5. Consider a random variable X : ) — R defined on probability space (Q),F,P), and an
event subspace & C J. The conditional expectation of X given € is denoted E[X|€] and is a random

variable Z £ E[X|€] : Q — R where
1. measurability: For each B € B(R), we have Z~!(B) € &, and
2_ orthogonality: for each event E € &, we have E[X1g| = E[Z1g], and

3. integrability: E |Z| < oco.



Proposition 1.6. Conditional expectation is unique almost surely.

Proof. Consider a random variable X : () — R defined on a probability space (Q),F,P) and a sub event
space € C J. Let Z; and Z; be conditional expectations of X given €. It suffices to show that A, =
{lweO:Z1—2Zy>¢€} € & and Be £ {weQ:Zy—2Z1 > €} € & defined for each € > 0 has measure
P(A¢) = P(Be) = 0. From the definition of conditional expectation and linearity of expectation, we

can write
0<eP(Ae) <E[(Z1 — Zz)]lAE] = ]E[X]lAe] — ]E[X]lAe] =0.

Similarly, we can show that P(B,) = 0, and the result follows. O

Remark 2. Any random variable Z : () — IR that satisfies the measurability, orthogonality, and inte-
grability, is the conditional expectation of X given the sub-event space € from the a.s. uniqueness of
conditional expectations.

Remark 3. Intuitively, we think of the event subspace € as describing the information we have. For each
A € &, we know whether or not A has occurred. The conditional expectation E[X|€] is the “best guess”
of the value of X given the information €.

Definition 1.7. Consider a random variable X : (3 — R and a random vector Y : (3 — R" defined on the
same probability space (Q),F, P). The conditional expectation of X given Y is defined as

E[X | Y] £ E[X|c(Y)].

Proposition 1.8. For two random variables X,Y : Q) — R defined on the same probability space (03, F,P), the
conditional expectation E[X | Y] is a function of Y.

Proof. We denote the conditional expectation E[X | Y] by a o(Y)-measurable random variable Z : () —
R. It suffices to show that for any y € RR, the conditional expectation Z(w) remains constant on the set of
outcomes w € Y1 {y}. First, we show that for any event A € o(Y), either Y1 {y} CAor ANY 1 {y} =
@. This follows from the fact that either y € A or y € A. Next, we suppose that there exists a y € R and

wy,wy € Yy} such that Z(w1) # Z(wy). It follows that there exists an event B= Z~1 {Z(w;)} € 0(Z)
such that wy € B and w, ¢ B. Since Z is 0(Y)-measurable, it follows that B € ¢(Z) C ¢(Y). This leads to
a contradiction. O

Proposition 1.9. Let X,Y be random variables on the probability space (Q),F,P) such that E |X|,E|Y| < oo.
Let G and 3 be sub-event spaces of F. Then

1. linearity: E[aX + BY | §] = aE[X | §] + BE[Y | G, as.
2. monotonicity: If X <Y as., then E[X | §] <E[Y | ], as.

3. identity: If X is G-measurable and E | X| < co, then X =E[X | §] a.s. In particular, c = E[c | §], for any
constant ¢ € R.

4. conditional Jensen’s inequality: If ¢ : R — R is convex and E |ip(X)| < oo, then E[p(X) | §] >
P(E[X | 9]), as.

5. pulling out what’s known: If Y is G-measurable and E | XY| < oo, then E[XY | §] = YE[X | §], a.s.

6. L2-projection: If E|X|? < oo, then {* = E[X | §] minimizes E[(X — {)?] over all G-measurable random
variables { such that E||* < oo

7. tower property: If H C §, then E[E[X | §] | H] = E[X | H], a.s..
8. irrelevance of independent information: If H is independent of o(G,0 (X)) then
E(X|o(5,%)] =E[X | ], as.
In particular, if X is independent of H, then E[X | H] = E[X], a.s.

Proof. Let X,Y be random variables on the probability space (€0, F, P) such that E|X|,E|Y| < co. Let §
and J be event spaces such that §,{ C J.



1. linearity: Let Z2aE [X | §]+ BE[Y | §], then since E[X ] §],E[Y € G] are G-measurable, it follows
that their linear combination Z is also §-measurable. The 1ntegrab1l1ty follows from the following
triangle inequality and the monotonicity of expectation

2] < lae| [E[X | S]| + B[ B[Y | S]J-

Further, for any event F € G, from the linearity of expectation and definition of conditional expec-
tation, we have

E[Z1g] = «E[E[X | §]1¢] + BE[E[Y | §]1¢] = E[(aX + BY)1¢].

2. monotonicity: Let € > 0 and define A = {E[X | ] — E[Y | §] > €} € G. Then from the definition
of conditional expectation, we have

0<E[(E[X|S] —E[Y|9))1a] =E[(X-Y)1a]<O.

Thus, we obtain that P(A.) = 0 for all € > 0. Taking limit € | 0, we get 0 = lim.joP(A¢) =
P(lim¢ Ae) = P(Ap).

3. identity: It follows from the definition that X satisfies all three conditions for conditional expec-
tation. The event space generated by any constant function is the trivial event space {©,Q} C §
for any event space. Hence, E|c | Gl =c.

4. conditional Jensen’s inequality: We will use the fact that a convex function can always be repre-
sented by the supremum of a family of affine functions. Accordingly, we will assume for a convex
function ¢ : R — R, we have linear functions ¢; : R — R and constants c; € R for all i € I such that

Y = supic(¢i +ci)-
For each i € I, we have ¢;(E[X | §]) +¢; = E[¢:(X) | §] + ¢; < E[¢(X) | ] from the linearity and
monotonicity of conditional expectation. It follows that

(E[X| §]) = sup(4(E[X | 8)) + ) <E[p(X)| 5]

5. pulling out what’s known: Let Y be §-measurable and E |XY| < co. Since Y is given to be G-
measurable, conditional expectation E[X | §] is §-measurable by definition, and product function
is Borel measurable, it follows that YE[X | §] is §-measurable.

It suffices to show that E[XY1¢] = E[YE[X | §]1¢] for all events G € § and E |YE[X | §]| < o,
when Y is a simple §-measurable random variable such that E |XY| < co. It follows that, we

can write Y =), cyy1, for finite Y and E, £y 1{y} €Gforall y €Y. From the definition of
conditional expectation and linearity, we obtain for any G € §

E[YE[X | S]1g] = ) vE[lcne, E[X | S]] = ) vE[X1cng,| = E[X ) ylcne,] = E[XY1g].
yeY yey yeY

Conditional Jensen’s inequality applied to convex function || : R — R, we get | E[X | §]| <E[|X] | §].
Therefore,

E[|Y|[E[X | S][] = Zd YIE[EX | S][1E,] < Za ly|E[|X|1g,| = E|XY].
ye yE

6. L-projection: We define L2(5) £ {{ a G measurable random variable : E{> < co }. From the con-
ditional Jensen’s inequality applied to convex function ()?: R — R, we get that E(E[X | §])?
E[X? | §]. Since X € L?, it follows that X € L! and hence E[X | §] € L?. It follows that {*
E[X | gl e L2(9) from the definition of conditional expectation.

We first show that X — {* is uncorrelated with all { € L?(G). Towards this end, we let { € L*(3)
and observe that

E[(X —{")¢] = B[ZX] - E[CE[X | §]] = E[ZX] — E[E[{X | §]] = 0.

The above equality follows from the linearity of expectation, the §-measurability of ¢, and the
definition of conditional expectation. Since {* € L?(G), we have ({ — {*) € L2(SG). Therefore,
E[(X —¢*)(Z — {*)] =0. For any { € L?(G), we can write from the linearity of expectation

E(X— ) =E(X ") +E(( ") - 2E(X - {) (¢ &) 2 B(X - ")~

(1> /A



7. tower property: Measurability follows from the definition of conditional expectation, since E[X ‘ H]
is H measurable. Integrability follows from the application of conditional Jensen’s inequality to
convex function || : R — R to get |E[X | ]| < E[|X| | }], which implies E |E[X | H]| < E|X| <
co. Orthogonality follows from the definition of conditional expectation, since forany H€ H{ C G,
we have

E[E[E[X | 9] | H]1ny] = E[E[X | §]1y] = E[X1y] = E[E[X | H]1p].
8. irrelevance of independent information: Measurability follows from the definition of conditional
expectation and the definition of 0'(G, ). Since E[X | §] is §-measurable, it is (G, ) measurable.

Integrability follows from the conditional Jensen's inequality applied to convex function || : R —
R, to get [E[X | §]| <E[|X]| | ], which implies that E |E[X | §]| < E|X]| < co.

Orthogonality follows from the fact that it suffices to show for events A = GN H € 0 (G, H) where
G € Gand H € H. In this case,

E[X | §]1gnu) =E[E[X | §]1c1y]) = E[E[X | §]16]E[1x] = E[X1G]E[1y] = E[X1gan]-

Example 1.10 (Conditioning on simple random variables). Let X and Y be random variables de-
fined on the probability space (Q2,F, P), where Y =}, cy y1, is simple with finite Y, E, £y-Hyle
F for all y € Y are mutually disjoint, and py, = P(E,) > 0 for all y € Y. Then, we observe that
E[X[Y]= )  B[X|E,]lE, as.
yeY
To show this, we will use the almost sure uniqueness of conditional expectation that satisfies three

properties in the definition. For measurability, we observe that o(Y) = ¢(E, :y € Y), and RHS is a
simple o (Y)-measurable random variable. For integrability, we observe that

Z]E X\Ey ]lEy
yeY

Y |E[X | Y]|P(Ey).
yeY

Thus, integrability follows from the finiteness of |E[X | E,]|. For orthogonality, we observe that any
G € 0(Y) = UyerEy for some finite subset F C Y. Further, we observe that E[X1g, | = E[X | Ey|P(Ey).
Therefore, we have

E[) ) E[X|Elg,1g] = E[) E[X|E:]1E,] = E[X1g].
zeFyeY z€F

Example 1.11 (Conditioning on simple random variables). Consider two random variables X,Y
defined on the same probability space (), F,P), where Y is a simple random variable such that
Y C R is finite alphabet, E, £ Y1 ({y}) € 0(Y) C F, and p, £ P(E,) > 0. Thus, we can write
V= Z y]l Ey:
y€Y
The collection (E, € F:y € Y) forms a finite partition of the outcome space () and generates (Y) =
{UyepEy €eF:FC H}. For an event space € C J, we claim
E[X|c(,Y)] =) E[X|0(&Ey)]lE, as.
yeY

We will show this by uniqueness of conditional expectation that satisfies the following three prop-
erties. First, we verify that RHS is o(€,Y) measurable, which follows from the definition since

E[X |o(E,Ey)] € 0(E,Ey) Co(E,Y). Second, it follows from the triangular and conditional Jensen’s
inequality, that

E|Y E[X|0(EEy)lg,| < Y E[E[X|1g, | 0(&,Ey)] <E|X].

yeY yeY
It suffices to show that for any A € €, we have E[Y, ey E[X | 0(€,Ey)]1g, 1alE,] = E[X141E,]. To
this end, we observe that LHS of above equation is equal to

E[E[XTank, | 0(&, E2)]] = E[XTang, .
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