
Lecture-05: Stopping Times

1 Stopping Times

Let (Ω,F, P) be a probability space, and F• = (Ft ⊆ F : t ∈ T) be a filtration on this probability space for
an ordered index set T ⊆ R considered as time.

Definition 1.1. A random variable τ : Ω → T defined on a probability space (Ω,F, P) is called a stopping
time with respect to a filtration F• if τ is almost surely finite and the event {τ ⩽ t} ∈ Ft for all t ∈ T.

Remark 1. Let F• be a natural filtration associated with a real-valued time-evolving random process
X : Ω → XT defined on the probability space (Ω,F, P). That is, Ft = σ(Xs, s ⩽ t) for all times t ∈ T.

Remark 2. A stopping time τ : Ω → T for the process X is an almost surely finite random variable such
that if we observe the process X sequentially, then the event {τ ⩽ t} can be completely determined by
the sequential observation (Xs, s ⩽ t) until time t.

Remark 3. The intuition behind a stopping time is that its realization is determined by the past and
present events but not by future events. That is, given the history of the process until time t, we can tell
whether the stopping time is less than or equal to t or not. In particular, E[1{τ⩽t} | Ft] = 1{τ⩽t} is either
one or zero.

Definition 1.2. For a process X : Ω → XT and any Borel measurable set A ∈ B(X), first hitting time to
states A by the process X is denoted by τA

X : Ω → T ∪ {∞}, defined as τA
X ≜ inf{t ∈ T : Xt ∈ A} .

Example 1.3. Let the process X be adapted to a filtration F•. Then, we observe that the event{
τA

X ⩽ t
}
= {Xs ∈ A for some s ⩽ t} ∈ Ft for all t ∈ T. It follows that, τX

A is a stopping time with
respect to filtration F• if τX

A is finite almost surely.

Theorem 1.4. Consider an almost surely finite random variable τ : Ω → N ∪ {∞} and a filtration F• defined
on the probability space (Ω,F, P). The random variable τ is a stopping time with respect to this filtration F• iff
the event {τ = n} ∈ Fn for all n ∈ N.

Proof. We first show that if {τ = n} ∈ Fn for all n ∈ N, then τ is a stopping time. It follows from the fact
that {τ ⩽ n} = ∪m⩽n {τ = m} ∈ Fn for each n ∈ N.

For the converse, we assume that τ is a stopping time and fix an n ∈ N. Then {τ ⩽ n} ∈ Fn and
{τ ⩽ n − 1} ∈ Fn. The result follows from the closure of an event space under complements and inter-
sections, which implies that {τ = n} = {τ ⩽ n} \ {τ ⩽ n − 1} ∈ Fn.

Example 1.5. Consider a random sequence X : Ω → XN with the natural filtration F• and a mea-
surable set A ∈ B(X). If the first hitting time τA

X : Ω → N ∪ {∞} for the sequence X to hit set
A is almost surely finite, then τA

X is a stopping time. For this case, we can write
{

τA
X = n

}
=

∩n−1
k=1 {Xk /∈ A} ∩ {Xn ∈ A} ∈ Fn for each n ∈ N.

1.1 Properties of stopping time

Lemma 1.6. Let τ1,τ2 : Ω → T be stopping times on probability space (Ω,F, P) with respect to filtration F•.
Then the following hold true.

i min{τ1,τ2} and max{τ1,τ2} are stopping times.
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ii If P{τ1 ∈ I} = 1 and P{τ2 ∈ I} = 1 for a countable I ⊆ T, then τ1 + τ2 is a stopping time.

Proof. Let F• = (Ft : t ∈ T) be a filtration, and τ1,τ2 associated stopping times.

i Result follows since the event {min{τ1,τ2} > t}= {τ1 > t}∩{τ2 > t} ∈Ft, and the event {max{τ1,τ2}⩽ t}=
{τ1 ⩽ t} ∩ {τ2 ⩽ t} ∈ Ft for any time t ∈ T.

ii It suffices to show that the event {τ1 + τ2 ⩽ t} ∈ Ft for any t ∈ I = N. We fix n ∈ I, and it follows
from the closure of event space Fn under countable unions and intersection, that {τ1 + τ2 ⩽ n} =⋃

m∈N {τ1 ⩽ n − m,τ2 ⩽ m} ∈ Fn.

Lemma 1.7. Consider a random walk S : Ω → RN with i.i.d. step-sizes X : Ω → RN having finite E |X1|. Let
τ : Ω → N be a random variable independent of the step-size sequence such that E |τ| < ∞. Then,

ESτ = EX1Eτ.

Proof. Recall that the natural filtration of the random walk and the step-sizes are identical, and we
denote it by F•. We know that P(∪n∈N {τ = n}) = 1 and recall that conditional expectation of Sτ given
the discrete random variable τ is given by E[Sτ | σ(τ)] = ∑n∈N E[Sτ | τ = n]1{τ=n}. Since Sn = ∑n

i=1 Xi,
we obtain from the tower property and linearity of conditional expectation,

ESτ = E[E[Sτ |σ(τ)]] = E[ ∑
n∈N

n

∑
i=1

E[Xi | τ = n]1{τ=n}].

Since the i.i.d. random sequence X is independent of random variable τ, we get E[Xi | τ = n] = EX1,
and it follows that ESτ = EX1E[∑n∈N n1{τ=n}] = EX1Eτ.

Lemma 1.8 (Wald). Consider a random walk S : Ω → RN with i.i.d. step-sizes X : Ω → RN having finite
E |X1|. Let τ : Ω → N be a finite mean stopping time adapted to the natural filtration F• of the step-size sequence
X. Then,

ESτ = EX1Eτ.

Remark 4. We first examine why the proof of Lemma 1.7 breaks down for Lemma 1.8 when τ is a
stopping time with respect to natural filtration of X. In the later case, it is not clear what is the value
E[Xi|τ = n]? For example, consider the i.i.d. sequence X ∈ {0,1}N with P{Xi = 1} = p and stopping
τ ≜ inf{n ∈ N : Xi = 1} adapted to natural filtration of X. In this case, for i ⩽ τ

E[Xi|τ = n] = 1{i=n} ̸= EXi = p.

However, we do notice that the result somehow magically continues to hold, as

ESτ = E[ ∑
n∈N

1{τ=n}] = 1 = EX1Eτ =
p
p

.

Proof. Recall that the filtration generated by the random walk and the step-sizes are identical, and de-
noted by F•. From the independence of step sizes, it follows that Xn is independent of Fn−1. Since
τ is a stopping time with respect to random walk S, we observe that {τ ⩾ n} = {τ > n − 1} ∈ Fn−1,
and hence it follows that random variable Xn and indicator 1{τ⩾n} are independent and E[Xn1{τ⩾n}] =
EX1E1{τ⩾n}. Therefore,

E
τ

∑
n=1

Xn = E ∑
n∈N

Xn1{τ⩾n} = ∑
n∈N

EXnE
[
1{τ⩾n}

]
= EX1E

[
∑

n∈N

1{τ⩾n}

]
= E[X1]E[τ].

We exchanged limit and expectation in the above step, which is not always allowed. We were able to
do it by the application of dominated convergence theorem.
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1.2 Stopping time σ-algebra

We wish to define an event space consisting information of the process until a random time τ. For a
stopping time τ : Ω → T, what we want is something like σ(Xs : s ⩽ τ). But that doesn’t make sense,
since the random time τ is a random variable itself. When τ is a stopping time, the event {τ ⩽ t} ∈ Ft.
What makes sense is the set of all events whose intersection with {τ ⩽ t} belongs to the event subspace
Ft for all t ⩾ 0.

Definition 1.9. For a stopping time τ : Ω → T adapted to the filtration F•, the stopping time σ-algebra
is defined

Fτ ≜ {A ∈ F : A ∩ {τ ⩽ t} ∈ Ft, for all t ∈ T} .

Proposition 1.10. The collection of events Fτ is a σ-algebra.

Proof. It suffices to verify the following three conditions.

(i) Since τ is a stopping time, it follows that Ω ∈ Fτ .

(ii) Let A ∈ Fτ , then A ∩ {τ ⩽ t} ∈ Ft and we can write Ac ∩ {τ ⩽ t} = {τ ⩽ t} \ (A ∩ {τ ⩽ t}) ∈ Ft.

(iii) From closure of Ft under countable unions, it follows that Fτ is closed under countable unions.

Remark 5. Informally, the event space Fτ has information up to the random time τ. That is, it is a
collection of measurable sets that are determined by the process until time τ.

Remark 6. Any measurable set A ∈ F can be written as A = (A ∩ {τ ⩽ t})∪ (A ∩ {τ > t}). All such sets
A such that A ∩ {τ ⩽ t} ∈ Ft for all t ∈ T is a member of the stopped σ-algebra. Therefore, we note that
any event A ∈ Fτ does not guarantee that A ∩ {τ > t} ∈ Ft. Otherwise, Fτ = F.

Lemma 1.11. Let τ,τ1,τ2 be stopping times, and X : Ω → XT a random process, all adapted to a filtration F•.
Then, the following are true.

i If τ1 ⩽ τ2 almost surely, then Fτ1 ⊆ Fτ2 .

ii σ(τ) ⊆ Fτ , and σ(Xτ) ⊆ Fτ .

Proof. Recall, that for any t ⩾ 0, we have {τ ⩽ t} ∈ Ft.

i From the hypothesis τ1 ⩽ τ2 a.s., we get {τ2 ⩽ t} ⊆ {τ1 ⩽ t} a.s., where both events belong to Ft
since they are stopping times. The result follows since for any A ∈ Fτ1 and t ∈ T, we can write
A ∩ {τ2 ⩽ t} = A ∩ {τ1 ⩽ t} ∩ {τ2 ⩽ t} ∈ Ft.

ii Any event A ∈ σ(τ) is generated by inverse images {τ ⩽ s} for s ∈ R. Indeed {τ ⩽ s} ∈ Fτ since
{τ ⩽ s} ∩ {τ ⩽ t} = {τ ⩽ s ∧ t} ∈ Ft, for all t ∈ T.

The events of the form {Xτ ⩽ x} for real x ∈ R generate the event subspace σ(Xτ), and event
{Xτ ⩽ x} ∩ {τ ⩽ t} ∈ Ft for all t ∈ T. This implies that σ(Xτ) ⊆ Fτ .

Definition 1.12. Consider a process X : Ω → XT and its natural filtration F•, and a stopping time τ :
Ω → T with respect to X, then the stopped process (Xτ∧t : t ∈ T) is defined for all t ∈ T by

Xτ∧t ≜ Xt1{t⩽τ} + Xτ1{t>τ}.

Lemma 1.13. Let F• be the natural filtration associated with the process X : Ω → XT , and τ be an associated
stopping time. Let H≜ σ(Xτ∧t, t ∈ T) be the event space generated by the stopped process (Xτ∧t : t ∈ T) and Fτ

be the stopping-time event space. Then Fτ =H for T discrete.

Proof. Let A ∈H, then we have A ∩ {τ ⩽ t} ∈ Ft for any t ∈ T, and hence H ⊆ Fτ .
For the converse, we assume T = N and recall that for any stopping time τ, we have ∪k∈N(A ∩

{τ = k}) = A. To show that Fτ ⊆H, it suffices to show that for any A ∈ Fτ we have A ∩ {τ = k} ∈H

for all k ∈ N. We will show this by induction on k ∈ N.

k = 1: We take any A ∈ Fτ , then A ∩ {τ = 1} ∈ F1 ⊆H since τ ⩾ 1 almost surely.
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k > 1: We assume that the induction hypothesis holds for some k − 1 ∈ N. For any A ∈ Fτ , we have
A ∩ {τ = k} ∈ Fk = σ(X1, . . . , Xk). Further, {τ = k} = {τ = k} ∩ {τ ⩾ k}, and therefore, we can
write

1A∩{τ=k} = f (X1, . . . , Xk)1{τ⩾k} = f (Xτ∧1, . . . , Xτ∧k)(1 − 1{τ⩽k−1}) ∈H.

This implies that A ∩ {τ = k} ∈H, and hence Fτ ⊆H.
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