
Lecture-08: Distribution and renewal functions

1 Convolution of distribution functions

Definition 1.1. For two distribution functions F, G : R → [0,1] the convolution of F and G is a distribu-
tion function F ∗ G : R → [0,1] defined as

(F ∗ G)(x)≜
∫

y∈R
F(x − y)dG(y), x ∈ R.

Remark 1. Verify that F ∗ G is indeed a distribution function. That is, the function (F ∗ G) is

(a) right continuous, i.e. limxn↓x(F ∗ G)(xn) exists,

(b) non-decreasing, i.e. (F ∗ G)(z)⩾ (F ∗ G)(x) for all z ⩾ x,

(c) having left limit of zero and right limit of unity, i.e. limx→−∞(F ∗ G)(x) = 0, limx→∞(F ∗ G)(x) = 1.

Remark 2. Verify that convolution is a symmetric and bi-linear operator. That is, for any distribution
functions (F, G) and (Fi : i ∈ [n]), (Gj : j ∈ [m]) and vectors α ∈ Rn, β ∈ Rm, we have

F ∗ G = G ∗ F,
(

∑
i∈[n]

αiFi
)
∗
(

∑
j∈[m]

β jGj
)
= ∑

i∈[n]
∑

j∈[m]

αiβ j(Fi ∗ Gj).

Lemma 1.2. Let X and Y be two independent random variables defined on the probability space (Ω,F, P) with
distribution functions F and G respectively, then the distribution of X + Y is given by F ∗ G.

Proof. The distribution function of sum X + Y is given by H : R → [0,1] where for any z ∈ R,

H(z) = E1{X+Y⩽z} = E[E[1{X+Y⩽z}|σ(Y)]] = E[F(z − Y)] =
∫

y∈R+

F(z − y)dG(y).

Definition 1.3. Let X : Ω → RN be an independent random sequence defined on the probability space
(Ω,F, P) with distribution function F, then the distribution of Sn ≜ ∑n

i=1 Xi is given by Fn ≜ Fn−1 ∗ F for
all n ⩾ 2 and F1 = F.

Lemma 1.4. Consider a renewal sequence S : Ω → RN
+ with i.i.d. inter-renewal time sequence X : Ω → RN

+

having common distribution F : R+ → [0,1]. The distribution function of nth renewal instant Sn ≜ ∑n
i=1 Xi is

given by P{Sn ⩽ t} = Fn(t) for all t ∈ R, where Fn is n-fold convolution of the distribution function F.

Remark 3. The distribution function Fn is computed inductively as Fn = Fn−1 ∗ F, where F1 = F.

Example 1.5 (Poisson process). For a renewal sequence S with the common distribution for i.i.d.
inter-renewal times being F(x) = 1 − e−λx for x ∈ R+, the distribution of nth renewal instant is

Fn(t) =
∫ t

0

λnsn−1

(n − 1)!
e−λsds.

Corollary 1.6. The distribution function of nth arrival instant Sn for delayed renewal process is G ∗ Fn−1.

Corollary 1.7. The distribution function of counting process ND : Ω → Z
R+
+ for the delayed renewal process is

P
{

ND
t = n

}
= P{Sn ⩽ t} − P{Sn+1 ⩽ t} = (G ∗ Fn−1)t − (G ∗ Fn)t. (1)
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2 Renewal functions

Definition 2.1. Mean of the counting process N : Ω → Z
R+
+ is called the renewal function denoted by

m : R+ → R+ defined by mt = E[Nt] for all t ∈ R+.

Proposition 2.2. Renewal function m for a renewal process N : Ω → Z
R+
+ with distribution of renewal instants

Fn ≜ FSn for each n ∈ N, can be written as mt = ∑n∈N Fn(t).

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

mt = E[Nt] = ∑
n∈N

P{Nt ⩾ n} = ∑
n∈N

P{Sn ⩽ t} = ∑
n∈N

Fn(t).

Example 2.3 (Poisson process). For a renewal sequence S with the common distribution for i.i.d.
inter-renewal times being F(x) = 1 − e−λx for x ∈ R+, the renewal function is

mt = ∑
n∈N

Fn(t) =
∫ t

0
λ
(

e−λs ∑
n∈Z+

(λs)n

s!

)
ds =

∫ t

0
λds = λt.

Corollary 2.4. The renewal function mD for a delayed renewal process ND : Ω → Z
R+
+ with distribution G for

first inter-renewal times and F for other inter-renewal times, is given by mD = G + G ∗ m.

Proof. We can write the renewal function for the delayed renewal process as

mD
t = END

t = ∑
n∈N

(G ∗ Fn−1)t = Gt + (G ∗ m)t. (2)

Remark 4. If G = F, then m = F + F ∗ m

3 Laplace transform of distribution functions and renewal functions

Definition 3.1. For a distribution function F : R → [0,1] the Laplace transform L(F) is a map F̃ : C → C

defined
F̃(s)≜

∫
y∈R

e−sydF(y) = E[e−sX ],

where s lies in the region such that
∣∣F̃(s)∣∣ < ∞, and X is a random variable with distribution F.

Lemma 3.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform
of individual distribution functions.

Proof. Let F, G : R → [0,1] be two distribution functions such that L(F) = F̃ and L(G) = G̃, then

L(F ∗ G)(s) =
∫

x∈R
e−sx

∫
y∈R

dF(x − y)dG(y) =
∫

y∈R
e−sydG(y)

∫
x−y∈R

e−s(x−y)dF(x − y) = F̃(s)G̃(s).

Corollary 3.3. Let X and Y be two independent random variables defined on the probability space (Ω,F, P) with
Laplace transform of distribution functions F̃ and G̃ respectively, then the Laplace transform of the distribution
of X + Y is given by F̃G̃.

Corollary 3.4. Let X : Ω → RN be an independent random sequence defined on the probability space (Ω,F, P)
with the Laplace transform of the distribution function given by F̃, then the Laplace transform of the distribution
of Sn ≜ ∑n

i=1 Xi is given by L(Fn) = (F̃)n.
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Corollary 3.5. We denote the Laplace transform for the inter-arrival time distribution F by L(F) = F̃, then the
Laplace transform of the renewal function m is given by

m̃(s) =
F̃(s)

1 − F̃(s)
, ℜ

{
F̃(s)

}
< 1.

Example 3.6 (Poisson process). The Laplace transform of an exponential distribution F(x) = 1 −
e−λx for x ∈ R+ is given by F̃(s) = λ

λ+s for ℜ(s) > −λ. For a renewal sequence S with the common
distribution for i.i.d. inter-renewal times being the exponential distribution F, the Laplace transform
for the renewal function is

m̃(s) =
F̃(s)

1 − F̃(s)
=

λ

s
, ℜ(s) > −λ.

The Laplace transform for the distribution Fn is given by

F̃n(s) =
(

1 +
s
λ

)−n
, ℜ(s) > −λ.

Lemma 3.7. Let the Laplace transforms for the distributions of the first inter-arrival time and the subsequent
inter-arrival times be denoted by G̃ =L(G) and F̃ =L(F) respectively, then the Laplace transform of the renewal
function mD for the delayed renewal process is

m̃D(s) =
G̃(s)

1 − F̃(s)
, ℜ

{
F̃(s)

}
< 1. (3)

Proposition 3.8. For renewal process with EXn > 0, the renewal function is bounded for all finite times.

Proof. Since we assumed that P{Xn = 0} < 1, it follow from continuity of probabilities that there exists
α > 0, such that P{Xn ⩾ α} = β > 0. We can define bivariate random variables

X̄n = α1{Xn⩾α} ⩽ Xn.

Note that since Xi’s are i.i.d. , so are X̄i’s. Each X̄i takes values in {0,α} with probabilities 1 − β and
β respectively. Let N̄t denote the renewal process with inter-arrival times X̄n, with arrivals at integer
multiples of α. Then for all sample paths, we have

Nt = ∑
n∈N

1{∑n
i=1 Xi⩽t} ⩽ ∑

n∈N

1{∑n
i=1 X̄i⩽t} = N̄t.

Hence, it follows that ENt ⩽ EN̄t, and we will show that EN̄t is finite. We can write the joint event of
number of arrivals ni at each arrival instant in iα for i ∈ {0, . . . ,k − 1}, as

k−1⋂
i=0

{N̄iα = ni} = {X1 < α}
k−1⋂
i=0

{
Xni+1 ⩾ α

} k−1⋂
i=0

ni⋂
j=2

{
Xni−1+j < α

}
.

It follows that the joint distribution of number of arrivals at first k arrival instants is

P

(
k−1⋂
i=0

{N̄iα = ni}
)
= (1 − β)

k−1

∏
i=0

(β)(1 − β)ni−1.

It follows that the number of arrivals is independent at each arrival instant kα and geometrically dis-
tributed with mean 1/β and (1 − β)/β for k ∈ N and k = 0 respectively. Thus, for all t ⩾ 0,

ENt ⩽ EN̄t ⩽
⌈ t

α ⌉
β

⩽
t
α + 1

β
< ∞. (4)

Corollary 3.9. For delayed renewal process with EXn > 0, the renewal function is bounded at all finite times.
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