
Lecture-09: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Consider the counting process N : Ω → Z
R+
+ associated with i.i.d. inter-renewal time sequence

X : Ω → RN
+ with finite mean EXn < ∞. Let N∞ ≜ limt→∞ Nt, then P{N∞ = ∞} = 1.

Proof. It suffices to show P{N∞ < ∞} = 0. Since E[Xn] < ∞, we have P{Xn = ∞} = 0 and

P{N∞ < ∞} = P
⋃

n∈N

{N∞) < n} = P
⋃

n∈N

{Sn = ∞} = P
⋃

n∈N

{Xn = ∞}⩽ ∑
n∈N

P{Xn = ∞} = 0. (1)

Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent inter-
renewal times, P

{
limt→∞ ND

t = ∞
}
= 1.

We observed that the number of renewals Nt increases to infinity with the length of the duration t.
We will show that the growth of Nt is asymptotically linear with time t, and we will find this coefficient
of linear growth of Nt with time t.

1.1 Strong law for renewal processes

Theorem 1.3 (Strong law). For a renewal counting process with inter-arrival times having a finite mean, we
have

lim
t→∞

Nt

t
=

1
µ

almost surely. (2)

Proof. Note that SNt represents the time of last renewal before t, and SNt+1 represents the time of first
renewal after time t. Clearly, we have SNt ⩽ t < SNt+1. Dividing by Nt, we get

SNt

Nt
⩽

t
Nt

<
SNt+1

Nt
. (3)

Since Nt increases monotonically to infinity as t grows large, we can apply strong law of large numbers

to the sum SNt = ∑Nt
i=1 Xi, to get limt→∞

SNt
Nt

= µ almost surely. Hence the result follows.

Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, limt→∞
ND(t)

t = 1
µF

.

Example 1.5. Suppose, you are in a casino with infinitely many games. Every game has a probabil-
ity of win X, i.i.d. uniformly distributed between (0,1). One can continue to play a game or switch
to another one. We are interested in a strategy that maximizes the long-run proportion of wins. Let
N(n) denote the number of losses in n plays. Then the fraction of wins PW(n) is given by

PW(n) =
n − N(n)

n
.

We pick a strategy where any game is selected to play, and continue to be played till the first loss.
Note that, time till first loss is geometrically distributed with mean 1

1−X . We shall show that this
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Figure 1: Time of last renewal

fraction approaches unity as n → ∞. By the previous proposition, we have:

lim
n→∞

N(n)
n

=
1

E[Time till first loss]

=
1

E
[

1
1−X

] =
1
∞

= 0

Hence Renewal theorems can be used to compute these long term averages. We’ll have many such
theorems in the following sections.

1.2 Elementary renewal theorem

Basic renewal theorem implies Nt
t converges to 1

µ almost surely. We are next interested in convergence
of the ratio mt

t . Note that this is not obvious, since almost sure convergence doesn’t imply convergence
in mean. To illustrate this, we have the following example.

Example 1.6. Consider a Bernoulli random sequence X : Ω →{0,1}N with probability P{Xn = 1}=
1/n, and another random sequence Y : Ω → ZN

+ defined as Yn ≜ nXn for n ∈ N. Then, P{Yn = 0}=
1 − 1/n. That is Yn → 0 a.s. However, E[Yn] = 1 for all n ∈ N. So E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we still have mt
t converging to 1

µ . We first
need this technical Lemma.

Proposition 1.7 (Wald’s Lemma for renewal process). Let m : R+ → R+ be the renewal function for a
renewal counting process N : Ω → Z

R+
+ with i.i.d. inter-arrival times X : Ω → RN

+ having finite mean µ =
E[X1] < ∞. Then, Nt + 1 is a stopping time for the sequence X, and

E

[
Nt+1

∑
i=1

Xi

]
= µ(1 + mt).

Proof. We observe that for any n ∈ N, the event {Nt + 1 = n} belongs to σ(X1, . . . , Xn), since

{Nt + 1 = n} = {Sn−1 ⩽ t < Sn} =
{

n−1

∑
i=1

Xi ⩽ t <
n−1

∑
i=1

Xi + Xn

}
∈ σ(X1, . . . , Xn).

Thus Nt + 1 is a stopping time with respect to the random sequence X, and the result follows from
Wald’s Lemma.
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Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the
renewal function satisfies

lim
t→∞

mt

t
=

1
µ

. (4)

Proof. By the assumption, we have mean µ < ∞. Further, we know that SNt+1 > t. Taking expectations
on both sides and using Proposition 1.7, we have µ(mt + 1) > t. Dividing both sides by µt and taking
liminf on both sides, we get

liminf
t→∞

mt

t
⩾

1
µ

. (5)

We employ a truncated random variable argument to show the reverse inequality. We define trun-
cated inter-arrival times (X̄n = min(Xn, M) : n ∈ N) with mean denoted by µM. These modified inter-
arrival times are i.i.d. and hence we can define the corresponding renewal process (S̄n = ∑n

i=1 X̄i : n ∈N)
and the associated counting process N̄t = ∑n∈N 1{S̄n⩽t}. Note that since Sn ⩾ S̄n, the number of arrivals

would be higher for renewal process N̄t with truncated random variables. That is,

Nt ⩽ N̄t. (6)

Further, due to truncation of inter-arrival time, next renewal happens within M units of time, that is
S̄N̄t+1 ⩽ t + M. Taking expectations on both sides in the above equation, using Proposition 1.7, dividing
both sides by tµM, and taking limsup on both sides, we obtain

limsup
t→∞

m̄t

t
⩽

1
µM

.

Recognizing that limM→∞ µM = µ, the result follows from taking expectations on both sides of (6), and
the lower bound on liminf on the ratio mt/t.

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have limt→∞
mD(t)

t = 1
µF

.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain X : Ω →
XN taking values in a discrete set X ⊂ R. Let the initial state be X0 = x ∈ X and τ+

y (0) = 0 for
y ̸= x ∈ X, then we can inductively define the nth recurrent time to state y as a stopping time

τ+
y (n) = inf

{
k > τ+

y (n − 1) : Xk = y
}

.

Since any discrete time Markov chain satisfies the strong Markov property, it follows that τ+
y : Ω →

NN form a delayed renewal process with the first arrival distribution Px

{
τ+

y (1) = k
}
= f (k)xy , and

the common distribution of the inter-arrival duration Xn,n ⩾ 2 in terms of first return probability
as

Py

{
τ+

y (1) = k
}
= f (k)yy , k ∈ N.

We denote the associated counting process by Ny : Ω → ZN
+ , where Ny(n) = ∑i∈N1{τ+y (i)⩽n} =

∑n
k=11{Xk=y} denotes the number of visits to state y up to time n. Let µyy = Eyτ+

y (1) be the finite
mean inter-arrival time for the renewal process, also the mean recurrence time to state y. From the
strong law for delayed renewal processes it follows that

Py

{
lim
n∈N

Ny(n)
n

=
1

µyy

}
= 1.

Since Ny(n) is number of visits to state y in first n time steps, we have Ex Ny(n) =

∑n
k=1 Px {Xk = y} = ∑n

k=1 p(k)xy From the basic renewal theorem for delayed renewal process it fol-
lows that

lim
n∈N

∑n
k=1 p(k)xy

n
= lim

n∈N

Ex[Ny(n)]
n

=
1

µyy
.
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1.3 Central limit theorem for renewal processes

Theorem 1.11. For a renewal process with inter-arrival times having finite mean µ and finite variance σ2, the
associated counting process converges to a normal random variable in distribution. Specifically,

lim
t→∞

P

Nt − t
µ

σ
√

t
µ3

< y

 =
1√
2π

∫ y

−∞
e−

x2
2 dx.

Proof. Take u = t
µ + yσ

√
t

µ3 . We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {Nt < u} = {Su > t}. By equating probability measures on both sides, we get

P{Nt < u} = P
{

Su − uµ

σ
√

u
>

t − uµ

σ
√

u

}
= P

{
Su − uµ

σ
√

u
> −y

(
1 +

yσ√
tµ

)−1/2
}

.

By central limit theorem, Su−uµ

σ
√

u converges to a normal random variable with zero mean and unit
variance as t grows. We also observe that

lim
t→∞

−y
(

1 +
yσ√

tu

)−1/2
= −y.

These results combine with the symmetry of normal random variable to give us the result.
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