
Lecture-15: Discrete Time Markov Chains

1 Introduction

We have seen that i.i.d. sequences are easiest discrete time processes. However, they don’t capture
correlation well. Hence, we look at the discrete time stochastic processes of the form

Xn+1 = f (Xn, Zn+1),

where Z : Ω → ZN is an i.i.d. sequence independent of initial state X0 ∈ X, and f : X × Z → X is a
measurable function. The set X is called the state space of process X : Ω →XZ+ . We consider a countable
state space X, and if Xn = x ∈ X, then we say that the process X is in state x at time n.

Definition 1.1. For the discrete random process X : Ω → XZ+ , the history until time n is denoted by

Fn ≜ σ(X0, . . . , Xn).

The natural filtration of process X is denoted by F• = (Fn : n ∈ Z+).

Remark 1. We observe that for a process of the form Xn+1 = f (Xn, Zn+1), the event space at time n is
Fn ⊆ σ(X0, Z1, . . . , Zn).

Definition 1.2 (Markov property). A discrete random process X : Ω → XZ+ adapted to a filtration F•
is said to have Markov property if

P({Xn+1 ⩽ x}
∣∣ Fn) = P({Xn+1 ⩽ x}

∣∣ σ(Xn)), n ∈ Z+.

Definition 1.3 (DTMC). For a countable set X, a stochastic process X : Ω →∈ XZ+ is called a discrete
time Markov chain (DTMC) if it satisfies the Markov property.

Remark 2. For a discrete Markov process X : Ω → XZ+ , we have

P({Xn+1 = y} |{Xn = x, Xn−1 = xn−1, . . . , X0 = x0}) = P({Xn+1 = y} |{Xn = x}),

for all non-negative integers n ∈ Z+ and all states x0, x1, . . . , xn−1, x,y ∈ X.

1.1 Homogeneous Markov chain

Definition 1.4. For each time n ∈ Z+, we can define the transition probability

pxy(n)≜ P({Xn+1 = y} |{Xn = x}).

When the transition probability does not depend on n, the DTMC is called homogeneous. The matrix
P ∈ [0,1]X×X is called the transition matrix.

Definition 1.5. If a non-negative matrix A ∈ RX×X
+ satisfies ∑y∈X axy ⩽ 1 for all x ∈ X, then it is called

a sub-stochastic matrix.

Definition 1.6. If the second property holds with equality, then it is called a stochastic matrix.

Remark 3. For a stochastic matrix, the all one column vector 1T ∈ {1}X is a right eigenvector with
eigenvalue unity, i.e. A1T = 1T .
Remark 4. The transition matrix P is stochastic matrix. Each row px = (pxy : y ∈ X) of the stochastic
matrix P is a distribution on the state space X. This is the conditional distribution of Xn+1 given Xn = x.

Definition 1.7. If in addition AT is stochastic, then A is called doubly stochastic.

Remark 5. For a doubly stochastic matrix A = AT , and hence 1A = 1AT = (A1T)T = 1. For a doubly
stochastic matrix, the all one vector 1 ∈ {1}X is both a left and right eigenvector with eigenvalue unity.
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1.2 Transition graph

Let E be the collection of ordered pairs of states (x,y) ∈ X×X such that pxy > 0, i.e.

E =
{
(x,y) ∈ X×X : pxy > 0

}
.

We say that x is a neighbor of y, when (x,y) ∈ E and denote it by x ∼ y. The out and in degrees of a
vertex x ∈ V are defined as

degout(x) = |{y ∈ V : x ∼ y}| = ∑
y∈V

1{(x,y)∈E}, degin(x) = |{y ∈ V : y ∼ x}| = ∑
y∈V

1{(y,x)∈E}.

For each edge e ∈ E, we define the weight function w : E → [0,1] such that w(e) ≜ pxy for each edge
e = (x,y) ∈ E. We observe that for a fixed vertex x, we have ∑e=(x,y)∈E w(e) = 1. Then a transition
matrix P can be represented by a directed edge-weighted graph G = (X, E,w).

Example 1.8 (Random walk on lattice). We denote the random particle location on a d-dimensional
lattice after n steps by Xn ∈ Zd, where the random i.i.d. step-size sequence is denoted by Z : Ω →
(Zd)N having common probability mass function p ∈ [0,1]Z

d
. The particle location at time n is

Xn = ∑n
i=1 Zi. We will show that X is a homogeneous DTMC.

For a lattice point x ∈ Zd, we can write the conditional expectation

E[1{Xn=x}|Fn−1] = ∑
y∈Zd

E[1{Xn−1=x−y}1{Zn=y}|Fn−1] = ∑
y∈Zd

p(y)1{Xn−1=x−y} =E[1{Xn=x}|σ(Xn−1)].

Markov property of the random walk follows from the independence of random step-sizes. Homo-
geneity follows from the identical distribution of random step-sizes.

1.3 Random walks on graphs

Any homogeneous finite state Markov chain X : Ω → XZ+ can be thought of as a random walk on
the directed edge weighted transition graph G = (X, E,w), where E ⊆ V × V ≜

{
(x,y) : pxy > 0

}
and

w : E → [0,1] defined as we ≜ pe for all e ∈ E. Random walk on this graph is denoted by the random
location Xn : Ω → X of a particle on this graph after n random steps, where each step is random such
that

P({Xn+1 = y} |{Xn = x}) = pe1{e=(x,y)∈E}.

1.4 Chapman Kolmogorov equations

Let ν(n) ∈ M(X) denote the marginal distribution of the process X at time n ∈ Z+, i.e. νx(n) ≜
P{Xn = x} for all x ∈ X.

Definition 1.9. We can define n-step transition probabilities for a homogeneous Markov chain X : Ω →
XZ+ for states x,y ∈ X and non-negative integers m,n ∈ Z+ as

p(n)xy ≜ P({Xn+m = y} |{Xm = x}).

Remark 6. It follows from the Markov property and law of total probability that

p(m+n)
xy = ∑

z∈X
p(m)

xz p(n)zy .

We can write this result compactly in terms of transition probability matrix P as P(n) = Pn.

Remark 7. We can write this vector ν(n) in terms of initial probability vector ν(0) and the transition
matrix P as ν(n) = ν(0)Pn.

Remark 8. Let f : X→ R be a vector then we define its inner product of matrix P : X×X→ R as a vector
⟨P, f ⟩ : X → R, where (P f )x ≜ ⟨px, f ⟩ = ∑y∈X Pxy fy, x ∈ X. It follows that, we can write (P f )x =

E[ f (X1)| {X0 = x}] = Ex f (X1).

2



1.5 Strong Markov property (SMP)

Definition 1.10. Let τ : Ω → Z+ be an almost surely finite integer valued stopping time adapted to the
natural filtration of the stochastic process X : Ω → XZ+ . Then for all x0, . . . , xn−1, x,y ∈ X, the process X
satisfies the strong Markov property if

P({Xτ+1 = y} |{Xτ = x, . . . , X0 = x0}) = pxy.

Lemma 1.11. Discrete time Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and an event A = {Xτ = x, . . . , X0 = x0} ∈ Fτ . Then, we have

P({Xτ+1 = y} ∩ A) = ∑
n∈Z+

P({Xτ+1 = y,τ = n} ∩ A) = ∑
n∈Z+

pxyP(A ∩ {τ = n}) = pxyP(A).

This equality follows from the fact that the event {τ = n} is completely determined by {X0, . . . , Xn}

Example 1.12 (Non-stopping time). As an exercise, if we try to use the Markov property on ar-
bitrary random variable τ, the SMP may not hold. Consider a Markov chain X : Ω → XZ+ with
natural filtration F•. For example, define a non-stopping time τy : Ω → Z+ for some state y ∈ X

τy ≜ inf{n ∈ Z+ : Xn+1 = y} .

We can verify that τy is not a stopping time for the process X. From the definition of τy, we have
Xτy+1 = y, and for x ∈ X such that pxy > 0

P(
{

Xτy+1 = y
}
|
{

Xτy = x, . . . , X0 = x0

}
) = 1 ̸= P({X1 = y} |{X0 = x}) = pxy.

Example 1.13 (Regeneration points of DTMC). Let x0 ∈ X be a fixed state and τ0 = 0. Let τ+
x0
(n)

denote the stopping times at which the Markov chain visits state x0 for the nth time. That is,

τ+
x0
(n)≜ inf

{
n > τ+

x0
(n − 1) : Xn = x0

}
.

Then (Xτ+x0+m : m ∈Z+) is a stochastic replica of X with X0 = x0 and can be studied as a regenerative
process.

1.6 Random mapping representation

Proposition 1.14. Any homogeneous DTMC X : Ω → XZ+ on finite state space X has a random mapping
representation. That is, there exists an i.i.d. sequence Z : Ω → ZN and a measurable function f : X× Z → X

such that Xn = f (Xn−1, Zn) for each n ∈ N.

Proof. We can order any finite set, and hence we can assume the finite state space X= [n], without any
loss of generality. For ith row of the transition matrix P, we can define

Fi,k ≜
k

∑
j=1

pij = P({Xn+1 ⩽ k}
∣∣ {Xn = i}).

We assume Z : Ω → [0,1]N to be a sequence of i.i.d. uniform random variables. We define a function
f : [n]× [0,1]→ [n] as

f (i,z)≜
n

∑
k=1

k1{Fi,k−1⩽z<Fi,k}, i ∈ [n],z ∈ [0,1].

To show that this choice of function f and i.i.d. sequence Z works, it suffices to show that pij =
P{ f (i, Zn) = j}. Indeed, we can write

P{ f (i, Zn) = j} = E1{ f (i,Zn)=j} = E1{Fi,j−1⩽Zn<Fi,j} = Fi,j − Fi,j−1 = pij.
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2 Communicating classes

Definition 2.1. Let x,y ∈X. If p(n)xy > 0 for some n ∈ Z+, then we say that state y is accessible from state
x and denote it by x → y. If two states x,y ∈X are accessible to each other, they are said to communicate
with each other and denoted by x ↔ y. A set of states that communicate are called a communicating
class.

Definition 2.2. A relation R on a set X is a subset of X×X.

Definition 2.3. An equivalence relation R ⊆ X×X has following three properties.

Reflexivity: If x ∈ X, then (x, x) ∈ R.

Symmetry: If (x,y) ∈ R, then (y, x) ∈ R.

Transitivity: If (x,y), (y,z) ∈ R, then (x,z) ∈ R.

Remark 9. Equivalence relations partition a set X.

Proposition 2.4. Communication is an equivalence relation.

Proof. Reflexivity follows from zero-step transition, and symmetry follows from the definition of com-
municating class. For transitivity, suppose x ↔ y and y ↔ z. Then we can find m,n ∈ N such that
p(m)

xy > 0 and p(n)yz > 0. From Chapman Kolmogorov equations, we have m + n ∈ N such that

p(m+n)
xz = ∑

w∈Z+

p(m)
xw p(n)wz ⩾ p(m)

xy p(n)yz > 0.

2.1 Irreducibility and periodicity

A consequence of the previous result is that communicating classes are disjoint or identical.

Definition 2.5. A Markov chain with a single communicating class is called an irreducible Markov
chain.

Definition 2.6. A class property is the one that is satisfied by all states in the communicating class.

Remark 10. We will see many examples of class properties. Once we have shown that a property is a
class property, then one only needs to check that one of the states in the communicating class has the
property for the entire class to have that.

Definition 2.7. We denote the set of recurrence times for a Markov chain with transition probability
matrix P : X×X→ [0,1] to re-visit a state x ∈ X as

Ax ≜
{

n ∈ N : p(n)xx > 0
}
⊆ N.

Remark 11. If one can re-visit a state x in m and n steps, then also in m+ n steps, since p(m+n)
xx ⩾ p(m)

xx p(n)xx .
It follows that this set is closed under addition.

Definition 2.8. The period of state x is defined as d(x)≜ gcd(Ax). If the period is 1, we say the state is
aperiodic.

Proposition 2.9. Periodicity is a class property.

Proof. We will show that for two communicating states x ↔ y, the periodicities are identical. We will
show that d(x)|d(y) and d(y)|d(x). We choose m,n ∈ N such that

p(m+n)
xx ⩾ p(m)

xy p(n)yx > 0, p(m+n)
yy ⩾ p(n)yx p(m)

xy > 0.

It follows that m + n ∈ Ax ∩ Ay. Let s ∈ Ax, then it follows that m + n + s ∈ Ay, since

p(n+s+m)
yy ⩾ p(n)yx p(s)xx p(m)

xy > 0.

Hence d(y)|n + m and d(y)|n + s + m which implies d(y)|s. Since the choice of s ∈ Ax was arbitrary, it
follows that d(y)|d(x). Similarly, we can show that d(x)|d(y).
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Lemma 2.10. If A is a set closed under addition and gcd(A) = 1, then there exists m0 ∈ A such that m ∈ A for
all m ⩾ m0.

Proof. Since the set of recurrence A is closed under addition, for any a ∈ A, we have na ∈ A for all n ∈ N.
If the minimal element of A is 1, then there is nothing to prove.

Let |A| = N. By Bezout’s Lemma, there exists c ∈ ZN such that,

∑
i∈[N]

ciai = 1.

Hence,

∑
i∈[N]

ciai mod a1 ≡ 1 mod a1

∑
i∈[N]

(ci mod a1)ai mod a1 ≡ 1 mod a1.

Let fi ≜ ci mod a1 ⩾ 0. Also, define d = ∑i∈[N] fiai. Clearly, d mod a1 ≡ 1 mod a1. Hence, any number
m > a1d can be represented as

m = kd + la1, m mod a1 = k, l = (m − kd)/a1.

Proposition 2.11. If a Markov chain X : Ω → XZ+ on a finite state space X is irreducible and aperiodic, then
there exists an integer n0 such that p(n)xy > 0 for all x,y ∈ X and n ⩾ n0.

Proof. Since periodicity is a class property, it follows that gcd(Ax) = 1 for all states x ∈ X. Further,
we have mx ∈ Ax such that n ∈ Ax for all n ⩾ mx. Further for any pair of states x,y ∈ X, we can find

nxy ∈ N such that p
(nxy)
xy > 0 from the irreducibility of the Markov chain. It follows that p(n)xy > 0 for all

n ⩾ nxy + my ∈ N. Since the state space X is finite, we have a finite n0 ≜ supx∈X mx + supx,y∈X nxy ∈ N

such that pn
xy > 0 for any state x,y ∈ X for all n ⩾ a.

Example 2.12 (Random walk on a ring). Let G = (V, E) be a finite graph where V = {0, . . . ,n − 1}
and E = {(i, i + 1) : i ∈ V} where addition is modulo n. Let ξ : Ω → {−1,1}N be a random i.i.d.
sequence of step-sizes with Eξn = 2p − 1. We denote the location of particle after n random steps
by Xn ≜ X0 + ∑n

i=1 ξi. It follows that the random walk X : Ω → VN is an irreducible homogeneous
Markov chain with period 2 if n is even, else it is aperiodic as well.

A Bézout’s identity

Lemma A.1 (Bézout). Let a and b be integers with greatest common divisor d. Then there exist integers x and
y such that ax + by = d. Moreover, the integers of the form az + bt are exactly the multiples of d.

Proof.
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